JPH0626362Y2 - Electric dust collector pulse power supply - Google Patents

Electric dust collector pulse power supply

Info

Publication number
JPH0626362Y2
JPH0626362Y2 JP1350488U JP1350488U JPH0626362Y2 JP H0626362 Y2 JPH0626362 Y2 JP H0626362Y2 JP 1350488 U JP1350488 U JP 1350488U JP 1350488 U JP1350488 U JP 1350488U JP H0626362 Y2 JPH0626362 Y2 JP H0626362Y2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
electrostatic precipitator
discharge electrode
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1350488U
Other languages
Japanese (ja)
Other versions
JPH01120954U (en
Inventor
豊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1350488U priority Critical patent/JPH0626362Y2/en
Publication of JPH01120954U publication Critical patent/JPH01120954U/ja
Application granted granted Critical
Publication of JPH0626362Y2 publication Critical patent/JPH0626362Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は電気集じん装置(以下EPと略す)のパルス電
源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a pulse power supply for an electrostatic precipitator (hereinafter abbreviated as EP).

〔従来の技術〕[Conventional technology]

第2図に示す様な従来の(直結型)パルス電源では、交
流電源1に低圧交流電力制御器2を介して接続する高圧
変圧器3と、該高圧変圧器3の高圧側に接続する整流器
4と、該整流器4の直流側出力に直流リアクトル5を介
して接続するコンデンサ6と、該コンデンサ6の高圧端
子とEPの放電電極8との間に挿入する高電圧スイッチ
7と、該高圧変圧器3の低圧側交流電流iを検出する変
流器11と、該コンデンサ6に印加される電圧Vを検
出する電圧検出器21と、EP電圧Vを検出する電圧
検出器22、及び前記電流i、前記電圧V,Vを信
号入力し、それらを計器表示し、あるいはそれらの数値
により所定のiあるいはVあるいはVに自動的に制
御するために該低圧交流電力制御器2を調節する信号α
を出力する制御装置20から構成される。但し、制御装
置20は該αの値そのものを任意に設定し出力すること
もできる。
In a conventional (direct connection type) pulse power source as shown in FIG. 2, a high voltage transformer 3 connected to an AC power source 1 via a low voltage AC power controller 2 and a rectifier connected to the high voltage side of the high voltage transformer 3. 4, a capacitor 6 connected to the DC side output of the rectifier 4 via a DC reactor 5, a high voltage switch 7 inserted between a high voltage terminal of the capacitor 6 and a discharge electrode 8 of the EP, and a high voltage transformer. The current transformer 11 for detecting the low-voltage side alternating current i of the device 3, the voltage detector 21 for detecting the voltage V 1 applied to the capacitor 6, the voltage detector 22 for detecting the EP voltage V 2 , and The low-voltage AC power controller 2 for inputting the current i and the voltages V 1 and V 2 and displaying them on a meter, or automatically controlling to a predetermined i or V 1 or V 2 by their numerical values. Signal α to adjust
It is comprised from the control apparatus 20 which outputs. However, the control device 20 can also arbitrarily set and output the value itself of α.

従来のパルス電源では、高電圧スイッチ7が非導通の
間、コンデンサ6に印加される電圧(以下コンデンサ電
圧)Vと放電電極と集じん電極間の電圧即ちEP電圧
EPは全く独立のため、V,VEPの値を知るべ
く、V,VEPを個々に検出する電圧検出器21,2
2を具備し、該電圧検出器21,22により検出される
電圧信号V,Vを制御装置20に入力することによ
り、EPの高圧荷電制御に必要な下記制御機能を有して
いる。
In the conventional pulse power supply, the voltage applied to the capacitor 6 (hereinafter referred to as capacitor voltage) V C and the voltage between the discharge electrode and the dust collecting electrode, that is, the EP voltage V EP, are completely independent while the high voltage switch 7 is not conducting. , V C , V EP , in order to know the values of V C , V EP , voltage detectors 21, 2 for individually detecting V C , V EP
2 and has the following control functions necessary for high-voltage charging control of the EP by inputting the voltage signals V 1 and V 2 detected by the voltage detectors 21 and 22 to the control device 20.

(1)電流i一定制御 (2)コンデンサ電圧V一定制御 (3)EP火花放電検出及び火花放電発生頻度一定制御 (4)EP低電圧検出及び同低電圧回復制御 なお、上記のEP低電圧減少は、内部電極間金属短絡あ
るいは異常放電発生等により、電極間が短絡あるいは短
絡に近い状態となり、EP電圧が極めて低い電圧となる
現象である。
(1) Current i constant control (2) Capacitor voltage V C constant control (3) EP spark discharge detection and spark discharge occurrence frequency constant control (4) EP low voltage detection and low voltage recovery control The decrease is a phenomenon in which the EP voltage becomes a very low voltage due to a short circuit between electrodes or a state close to a short circuit due to a metal short circuit between internal electrodes or abnormal discharge.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

従来のパルス電源では、高電圧スイッチが非導通の間、
コンデンサ電圧VとEP電圧VEPが全く独立なた
め、前記制御機能を実現するためにコンデンサ電圧V
とEP電圧VEPを個々に独立の電圧検出器を用いて検
出する必要があった。
In conventional pulsed power supplies, while the high voltage switch is off,
Since the capacitor voltage V C and the EP voltage V EP are completely independent, the capacitor voltage V C for realizing the control function is
It was necessary to detect the EP voltage V EP and the EP voltage V EP individually by using independent voltage detectors.

本考案の課題は、上記従来の問題点を解消することがで
きるEPのパルス電源を提供することである。
An object of the present invention is to provide an EP pulse power supply that can solve the above-mentioned conventional problems.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案においては、コンデンサ電圧VとEP電圧V
EPとの関係式から、VよりVEPを算出することが
できることに着目し、本考案によるEPのパルス電源
は、コンデンサ電圧Vを検出する電圧検出器のみを具
備し、検出されたVによりVEPを算出する手段を具
備することにより、VEPを検出する電圧検出器を省略
するようにしてなるものである。
In the present invention, the capacitor voltage V C and the EP voltage V C
The relational expression between the EP, focuses on the fact that it is possible to calculate the V EP than V C, pulsed power EP by the present invention may comprise only the voltage detector for detecting the capacitor voltage V C, were detected V By providing a means for calculating V EP by C, the voltage detector for detecting V EP is omitted.

〔作用〕[Action]

第2図に示される従来の直結型パルス電源では、第3図
に示す等価回路で表わされるのでコンデンサ電圧V
EP電圧VEPには次の様な関係がある。
In the conventional direct-coupling type pulse power supply shown in FIG. 2, it is represented by the equivalent circuit shown in FIG. 3, and therefore the capacitor voltage V C and the EP voltage V EP have the following relationship.

高電圧スイッチが導通後、ある時間経過し、非導通にな
った瞬間のコンデンサ電圧をVCB,EP電圧をV
すると VCB=V……(1) コンデンサとEPの静電容量が既知でそれぞれC,C
EPとすると高電圧スイッチが導通する直前のコンデン
サ電圧をVCP,EP電圧をVとすると、それらとV
とは次の様な関係がある。
Let V CB be the capacitor voltage and V D be the EP voltage at the moment when the high voltage switch becomes non-conducting after a certain time has passed since conduction. V CB = V D (1) The capacitance between the capacitor and EP is Known and C P and C respectively
When EP capacitor voltage immediately before the high-voltage switch is conducting V CP, when the EP voltage and V B, they and V
It has the following relationship with D.

したがって、(1),(2)式より つまり、第3図に示す等価回路で表される直結型パルス
電源の高電圧スイッチが導通している間の過渡現象を除
き、しかも高電圧スイッチの導通時間がEPの電極間で
発生するコロナ放電による減衰の時定数に比べ十分に短
い場合、EP電圧の特性値V,Vともコンデンサ電
圧VCB,VCPにて算出することができる。
Therefore, from equations (1) and (2) That is, except for the transient phenomenon while the high voltage switch of the direct connection type pulse power supply represented by the equivalent circuit shown in FIG. 3 is conducting, the corona discharge which occurs between the electrodes of which the conduction time of the high voltage switch is EP When it is sufficiently shorter than the time constant of the attenuation due to, the characteristic values V D and V B of the EP voltage can be calculated by the capacitor voltages V CB and V CP .

第3図に示す等価回路の説明を以下に行う。The equivalent circuit shown in FIG. 3 will be described below.

は第2図のコンデンサ6,SWは高電圧スイッチ
7,CEPは放電電極8及び集じん電極9で構成される
電極空間を表わしており、L,Rはそれぞれコンデンサ
6とEPの電極空間を接続する電路に浮遊するインダク
タンス、抵抗を表わす。また、REPは電極空間のコロ
ナ放電抵抗を表わしているが実際は未知である。
C P represents the capacitor 6 in FIG. 2, SW represents the high voltage switch 7, C EP represents the electrode space composed of the discharge electrode 8 and the dust collecting electrode 9, and L and R represent the electrodes of the capacitor 6 and EP, respectively. Indicates the inductance and resistance floating in the electric path that connects the spaces. Further, the R EP fact is represents a corona discharge resistance of the electrode space is unknown.

第3図のSWは、第2図の高電圧スイッチ7を表わして
おり、同回路は高電圧スイッチ7が導通している間、す
なわちSWがONしている間、LCR直列共振回路の過渡
現象状態となる。
SW in FIG. 3 represents the high-voltage switch 7 in FIG. 2, and this circuit shows the transient phenomenon of the LCR series resonance circuit while the high-voltage switch 7 is conducting, that is, while SW is ON. It becomes a state.

但し、本考案ではこのLCR直列共振回路の過渡現象につ
いては取り扱う必要がなく、過渡現象開始直前と直後の
状態についてのみ論じるのでその詳細については省略す
る。
However, in the present invention, it is not necessary to deal with the transient phenomenon of the LCR series resonant circuit, and only the states immediately before and after the start of the transient phenomenon will be discussed, so the details thereof will be omitted.

〔実施例〕〔Example〕

第1図は本考案による一実施例としてのパルス電源の構
成を示す図であり、第1図において、交流電源1に低圧
交流電力制御器2を介して接続する高圧変圧器3と該高
圧変圧器3の高圧側に接続する整流器4と、該整流器4
の直流側出力に負荷側短絡時等の突入電流を抑制し、整
流器を保護するための直流リアクトル5を介して接続す
るコンデンサ6と、該コンデンサ6の高圧端子とEPの
放電電極8との間に挿入する高電圧スイッチ7と、該高
圧変圧器3の低圧側交流電流iを検出する変流器11
と、該コンデンサ6に印加される電圧(コンデンサ電圧
)Vを検出する電圧検出器12と、i,Vを信
号入力し、それらを計器表示し、演算処理し、また、
i,Vに応じて該低圧交流電力制御器2を調整する信
号αを出力する制御装置20から構成される。
FIG. 1 is a diagram showing a configuration of a pulse power source as an embodiment according to the present invention. In FIG. 1, a high voltage transformer 3 connected to an AC power source 1 via a low voltage AC power controller 2 and the high voltage transformer. Rectifier 4 connected to the high voltage side of the rectifier 3, and the rectifier 4
Between the high-voltage terminal of the capacitor 6 and the discharge electrode 8 of the EP, which is connected to the DC side output of the capacitor 6 via the DC reactor 5 for suppressing the inrush current at the time of short-circuiting the load side and protecting the rectifier. High-voltage switch 7 to be inserted into the high-voltage transformer 3 and a current transformer 11 for detecting the low-voltage side alternating current i of the high-voltage transformer 3.
And a voltage detector 12 for detecting a voltage (capacitor voltage V C ) V C applied to the capacitor 6, and signals i and V C are input, and these are displayed as an instrument, arithmetic processing is performed, and
The control device 20 outputs a signal α for adjusting the low-voltage AC power controller 2 according to i, V C.

本考案により第2図に示す従来例にて具備していたEP
電圧VEPを検出する電圧検出器22を省略したが、前
記「従来の技術」に記載の各種制御機能のうち、EP電
圧VEPを信号入力することにより実現していた前記
(3),(4)の制御に必要な各々「EP火花放電検出」と
「EP低電圧検出」はコンデンサ電圧Vの信号のみに
より次の様に実現できる。
The EP provided by the present invention in the conventional example shown in FIG.
Although the voltage detector 22 for detecting the voltage V EP is omitted, of the various control functions described in the above-mentioned “Prior Art”, it is realized by inputting the EP voltage V EP as a signal.
The "EP spark discharge detection" and the "EP low voltage detection" required for the control of (3) and (4) can be realized as follows only by the signal of the capacitor voltage V C.

(1)まず、「EP火花放電検出」はパルス電源のみなら
ず、通常のEPの直流高圧電源ではEP電圧が火花放電
発生時急峻に消失する(0になる)現象に着目し、EP
電圧VEPのレベルがある一定値以下になったことによ
り、火花放電の発生を検出したり(第4図)、VEP
急峻な低下をその変化率、すなわち微分値 としてとらえ火花放電を検出したりする方法(第5図)
が一般に採用されているが、前記「作用」に記載の通
り、本考案におけるパルス電源では該高電圧スイッチ7
が非導通になった瞬間のEP電圧Vとコンデンサ電圧
CBには V=VCB なる関係あるため、EPで火花放電が発生した場合、該
高電圧スイッチ7の非導通直後、V,VCBとも0に
なっているので上記通常の火花検出方法をコンデンサ電
圧Vの信号vにより適用してもEP火花放電をEP
電圧VEPを用いた場合と同様に検出可能である(第6
図)。
(1) First, "EP spark discharge detection" focuses on the phenomenon that the EP voltage suddenly disappears (becomes 0) when a spark discharge occurs not only with a pulse power supply but also with a normal EP DC high voltage power supply.
The occurrence of spark discharge is detected when the level of the voltage V EP is below a certain value (Fig. 4), and the sharp decrease of V EP is the rate of change, that is, the differential value. To detect spark discharges (Fig. 5)
Is generally adopted, but as described in the above “Operation”, the high voltage switch 7 is used in the pulse power supply of the present invention.
Since the EP voltage V D and the capacitor voltage V CB at the moment when the switch becomes non-conducting have a relationship of V D = V CB , when spark discharge occurs at the EP, immediately after the non-conduction of the high voltage switch 7, V D , V CB are both 0, so even if the above-mentioned ordinary spark detection method is applied by the signal v c of the capacitor voltage V c , EP spark discharge is EP
It can be detected as in the case of using the voltage V EP (6th
Figure).

(2)次に「EP低電圧検出」は通常EP電圧が継続して
ある一定期間所定電圧以下になることで検出しているが
本考案におけるパルス電源ではこの状態のとき、前記V
及び該高電圧スイッチ7の導通直前のEP電圧V
ともに前記所定電圧以下になっている。
(2) Next, "EP low voltage detection" is usually detected by the EP voltage continuing to fall below a predetermined voltage for a certain period of time. In the pulse power supply of the present invention, in this state, the V
Both D and the EP voltage V B immediately before the high voltage switch 7 is turned on are equal to or lower than the predetermined voltage.

したがって、前記「作用」に記載の通り、 なる関係及びV=VCBの関係により、コンデンサ電
圧Vの信号vから上記V,Vを算出すれば、そ
の数値からEP低電圧状態を容易に検出できる。(第7
図)。
Therefore, as described in the above "action", The relationship between the relationship and V D = V CB made, by calculating the V B, V D from the signal v c of the capacitor voltage V c, it can be easily detected EP low voltage condition from that number. (7th
Figure).

また、以上の「EP火花放電検出」及び「EP低電圧検
出」の機能の他EPの荷電状態を知る上で、EP荷電電
圧の計器等による表示も要求されるが、これに対して
も、上記関係式によるV,VをEP電圧データとし
て表示すれば、同要求は満足される。
In addition to the functions of "EP spark discharge detection" and "EP low voltage detection" described above, in order to know the charging state of EP, it is required to display the EP charging voltage with a meter or the like. If V D and V B according to the above relational expressions are displayed as EP voltage data, the same requirement is satisfied.

以上、コンデンサ電圧Vの検出信号vから「EP火
花放電検出」、「EP低電圧検出」あるいはEP電圧デ
ータとしてV,Vを表示するための具体的な回路ブ
ロックを第8図に示す。回路を製作する上で、コンデン
サ、EPの静電容量を知る必要があるが何れも定数とし
て取り扱うことができるため、特に問題はない。
Above, "EP spark discharge detection" from the detection signal v c of the capacitor voltage V c, V D as "EP Low Voltage Detection" or EP voltage data, in FIG. 8 a specific circuit block for displaying V B Show. In manufacturing a circuit, it is necessary to know the electrostatic capacitances of the capacitor and EP, but since both can be treated as constants, there is no particular problem.

また、当然のことながら、V,Vを算出する手段と
して、第8図の様なアナログ演算回路の他、マイクロコ
ンピュータを用いたソフトウェアプログラムによる演算
を採用することもできる。
Further, as a matter of course, as means for calculating V D and V B , in addition to the analog arithmetic circuit as shown in FIG. 8, arithmetic by a software program using a microcomputer can be adopted.

なお前記高電圧スイッチとして交流電源の周波数と同期
して回転する同期モータ、あるいは周波数変換装置(イ
ンバータ)を介して、あるいは直接交流電源と接続され
る誘導モータにより駆動される機械式回転火花ギャッ
プ、あるいは、3点トリガギャップ、レーザトリガギャ
ップなどのトリガ機構付きの火花ギャップや高圧サイリ
スタなどの半導体高電圧制御素子を用いることもでき
る。
A synchronous motor that rotates in synchronization with the frequency of the AC power source as the high-voltage switch, or a mechanical rotary spark gap driven by an induction motor that is directly connected to the AC power source via a frequency conversion device (inverter), or Alternatively, a semiconductor high voltage control element such as a spark gap with a trigger mechanism such as a three-point trigger gap or a laser trigger gap, or a high voltage thyristor can be used.

また前記電圧検出器として、抵抗分圧器、容量分圧器、
抵抗容量分圧器を用いることができる。
As the voltage detector, a resistance voltage divider, a capacitance voltage divider,
A resistive capacitance voltage divider can be used.

〔考案の効果〕[Effect of device]

本考案によれば、EPの直結型パルス電源において、E
P火花放電検出、EP低電圧検出、EP電圧データをコ
ンデンサ電圧により得る手段を具備することにより、従
来不可欠であったEP電圧を直接検出する電圧検出器を
省略することができる。
According to the present invention, in the direct connection type pulse power source of EP, E
By providing a means for obtaining P spark discharge detection, EP low voltage detection, and EP voltage data by a capacitor voltage, it is possible to omit the voltage detector which directly detects the EP voltage, which was indispensable in the past.

また、それによりパルス電源の構成部品の低減、低コス
ト化、コンパクト化等の効果を得ることができる。
Further, by doing so, it is possible to obtain the effects of reducing the number of components of the pulse power supply, reducing the cost, and making the device compact.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例としてのパルス電源の構成
図、第2図は従来例としてのパルス電源の構成図、第3
図はパルス電源の等価回路図、第4図はレベルにてEP
火花放電を検出する原理図、第5図は微分値にてEP火
花放電を検出する原理図、第6図はコンデンサ電圧のE
P火花放電発生時の説明図、第7図はコンデンサ電圧か
らEP低電圧を検出する原理図、第8図は本考案により
具備する回路ブロックの具体例を示す図である。 1……交流電源、2……低圧交流電力制御器、3……高
圧変圧器、4……整流器、5……直流リアクトル、6…
…コンデンサ、7……高電圧スイッチ、8……放電電
極、9……集じん電極、12……電圧検出器。
FIG. 1 is a block diagram of a pulse power source as one embodiment of the present invention, FIG. 2 is a block diagram of a pulse power source as a conventional example, and FIG.
Figure is equivalent circuit diagram of pulse power supply. Figure 4 is EP at level.
Fig. 5 is a principle diagram for detecting spark discharge, Fig. 5 is a principle diagram for detecting EP spark discharge by differential value, and Fig. 6 is E of capacitor voltage.
FIG. 7 is an explanatory diagram when P spark discharge occurs, FIG. 7 is a principle diagram for detecting an EP low voltage from a capacitor voltage, and FIG. 8 is a diagram showing a specific example of a circuit block provided by the present invention. 1 ... AC power supply, 2 ... Low-voltage AC power controller, 3 ... High-voltage transformer, 4 ... Rectifier, 5 ... DC reactor, 6 ...
... condenser, 7 ... high voltage switch, 8 ... discharge electrode, 9 ... dust collecting electrode, 12 ... voltage detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】電気集じん装置の直流高圧電源として、サ
イリスタあるいはトランジスタ等の電力制御素子より成
る低圧交流電力制御器を介して交流電源に接続される高
圧変圧器と、該高圧変圧器の高圧側に接続する整流器
と、該整流器の直流側出力に直流リアクトルを介して接
続される一端を接地したコンデンサと、該コンデンサの
高圧端子(非接地端子)と電気集じん装置の放電電極の
間に挿入し、該コンデンサの高圧端子と該放電電極間を
定期的あるいは任意のタイミングで電気的に導通せし
め、該コンデンサの蓄積電荷を急峻に前記電気集じん装
置の放電電極と集じん電極間の容量性空間に放電するこ
とにより、該放電電極と該集じん電極間に急峻な立上り
のパルス高電圧を印加し、任意のあるいは不定の時間経
過後、非導通となる高電圧スイッチから構成される電気
集じん装置のパルス電源において、 該コンデンサに印加される電圧を検出する電圧検出器
と、該電圧検出器により検出される電圧値より前記電気
集じん装置の放電電極と集じん電極間の電圧を算出する
演算器を具備することを特徴とする電気集じん装置のパ
ルス電源。
1. A high voltage transformer connected to an AC power source via a low voltage AC power controller comprising a power control element such as a thyristor or a transistor as a DC high voltage power source for an electrostatic precipitator, and a high voltage of the high voltage transformer. Between the high-voltage terminal (ungrounded terminal) of the capacitor and the discharge electrode of the electrostatic precipitator, a rectifier connected to the rectifier, a capacitor whose one end is connected to the DC output of the rectifier via a DC reactor The capacitor is inserted to electrically connect the high-voltage terminal of the capacitor and the discharge electrode electrically at regular or arbitrary timing, and the accumulated charge of the capacitor is sharply changed to the capacitance between the discharge electrode and the dust-collection electrode of the electrostatic precipitator. A high pulse voltage with a steep rise is applied between the discharge electrode and the dust collecting electrode by discharging into a neutral space, and becomes non-conductive after an arbitrary or uncertain time elapses. In a pulse power supply of an electrostatic precipitator including a pressure switch, a voltage detector that detects a voltage applied to the capacitor, and a discharge electrode of the electrostatic precipitator based on a voltage value detected by the voltage detector. A pulse power supply for an electrostatic precipitator, comprising a calculator for calculating a voltage between the precipitator electrodes.
JP1350488U 1988-02-05 1988-02-05 Electric dust collector pulse power supply Expired - Lifetime JPH0626362Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1350488U JPH0626362Y2 (en) 1988-02-05 1988-02-05 Electric dust collector pulse power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1350488U JPH0626362Y2 (en) 1988-02-05 1988-02-05 Electric dust collector pulse power supply

Publications (2)

Publication Number Publication Date
JPH01120954U JPH01120954U (en) 1989-08-16
JPH0626362Y2 true JPH0626362Y2 (en) 1994-07-20

Family

ID=31223862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1350488U Expired - Lifetime JPH0626362Y2 (en) 1988-02-05 1988-02-05 Electric dust collector pulse power supply

Country Status (1)

Country Link
JP (1) JPH0626362Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562473B2 (en) 2013-08-27 2017-02-07 8 Rivers Capital, Llc Gas turbine facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562473B2 (en) 2013-08-27 2017-02-07 8 Rivers Capital, Llc Gas turbine facility

Also Published As

Publication number Publication date
JPH01120954U (en) 1989-08-16

Similar Documents

Publication Publication Date Title
KR100299014B1 (en) Ground circuit breaker with broadband noise immunity
US4290003A (en) High voltage control of an electrostatic precipitator system
US4138232A (en) Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator
EP0138157B1 (en) Static leonard apparatus
EP1429437A2 (en) Arc detection apparatus and method
CN1878685B (en) Electric vehicle controller
JP2767892B2 (en) Power supply for electric discharge machine
JPH0626362Y2 (en) Electric dust collector pulse power supply
US3510763A (en) Apparatus for testing the insulation of electrical wire or cable by high voltage impulses
JPH0832126B2 (en) Power supplies for circuits and disconnectors
US6813123B2 (en) Method for protecting a DC generator against overvoltage
JP3592852B2 (en) Pulse power supply for electric dust collector
CA1237763A (en) Modulated power supply for an electrostatic precipitator
JPH0213095Y2 (en)
JP3643062B2 (en) Power supply for electric dust collection
KR0166895B1 (en) Power source voltage sensing apparatus
JPS5941144B2 (en) Current imbalance detection device
JPS5870850A (en) High voltage power source of electric dust collector
JPS60131019A (en) Dc ground-fault relay
JPS6028835A (en) Pulse power source for electric dust collector
JPS5922688Y2 (en) capacitive proximity switch
JP2001289604A (en) Device and method for diagnosing fault of displacement detector
KR970003829Y1 (en) Service interruption sensing device of home electric apparatus
JPS6321872B2 (en)
JPS5825727Y2 (en) Gapless arrester abnormality detection device