JPS60122709A - Method for recovering argon - Google Patents

Method for recovering argon

Info

Publication number
JPS60122709A
JPS60122709A JP23103783A JP23103783A JPS60122709A JP S60122709 A JPS60122709 A JP S60122709A JP 23103783 A JP23103783 A JP 23103783A JP 23103783 A JP23103783 A JP 23103783A JP S60122709 A JPS60122709 A JP S60122709A
Authority
JP
Japan
Prior art keywords
argon
exhaust gas
gas composition
adsorption
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23103783A
Other languages
Japanese (ja)
Inventor
Masaomi Tomomura
友村 政臣
Koji Otani
大谷 耕二
Shunsuke Nokita
舜介 野北
Kazuo Someya
和夫 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23103783A priority Critical patent/JPS60122709A/en
Publication of JPS60122709A publication Critical patent/JPS60122709A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Abstract

PURPOSE:To recover efficiently Ar from Ar-base exhaust gas by burning H, CO and hydrocarbon in the exhaust gas, adding CO to remove oxygen, and adsorbing the remaining components except Ar. CONSTITUTION:Gas exhausted from a silicon furnace is a composition contg. CO, CO2, hydrocarbon, hydrogen, oxygen, moisture, etc. besides Ar as the principal component. The exhausted gaseous composition is introduced into catalytic burners 9, 10 through a heater 8 and piping 12. In the burner 9, hydrogen, CO and hydrocarbon in the composition are selectively burned by the action of a catalyst (the 1st stage). In the burner 10, oxygen remaining in the composition passed through the 1st stage is removed by adding CO and causing a catalytic reaction (the 2nd stage). Exhaust gas produced by the catalytic burning is pressurized with a compressor 15 and introduced into an adsorption tower 21a, 21b or 21c through piping 17 to remove impurities by adsorption. The resulting concd. Ar is stored in a product gas tank 26 through piping 27.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、アルゴンの回収方法に係り、アルゴンを使用
する炉、例えば特にシリコン炉から排出される排出ガス
組成物に含まれるアルゴンのみを分離精製して回収する
方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for recovering argon, and is a method for separating and purifying only argon contained in an exhaust gas composition discharged from a furnace using argon, for example, a silicon furnace in particular. and how to recover it.

〔発明の背景〕[Background of the invention]

シリコン炉は溶融に粗シリコンから種子を介して単結晶
シリコンを引き上げて単結晶シリコンを製造するのに用
いられる炉であり、製造に際して雰囲気ガスとしてアル
ゴンが使用される。
A silicon furnace is a furnace used to produce single crystal silicon by pulling up single crystal silicon from melted crude silicon through seeds, and argon is used as an atmospheric gas during production.

このシリコン炉から排出される排ガス組成物にはアルゴ
ンが96〜98%の高濃匿で含まれている。しかもアル
ゴンは高価なことから、該排ガス組成物から分離回収し
て、再利用される方向にある。このようなアルゴン回収
方法として、例えば特開昭54 20295、および特
開昭54−31415に示すように、シリコン炉の排ガ
ス組成物中に含まれる炭化水素、水素、−酸化炭素及び
酸素分を、酸素を添加することにより水分及び二酸化炭
素に変成し、次いで過剰の酸素分を脱酸素筒により反応
除去した後、水分および二酸化炭素などを吸着塔で吸着
除去する方法が開示されている。このような方法では、
脱酸素筒において再生するのに水素ガスを用いるため、
水素が微量残留し、回収したアルゴンガス中の、水素濃
度が高くなること及び回収するに用いる装置が大型化す
るという問題点を有する。さらに、特公昭52−287
50に示すように、排ガス組成物中の一酸化炭素を酸化
させて、生成した二酸化炭素を深冷法によって固化し分
離することによって、アルゴンを回収する方法や、特公
昭50−8999に示すように排ガス組成物中の一酸化
炭素を銅・アンモニア錯体によシ、二酸化炭素をアルカ
リによりそれぞれ除くことによって、アルゴンを回収す
る方法が開示されている。
The exhaust gas composition discharged from this silicon furnace contains argon at a high concentration of 96 to 98%. Moreover, since argon is expensive, there is a tendency to separate and recover it from the exhaust gas composition and reuse it. As such an argon recovery method, for example, as shown in JP-A-54-20295 and JP-A-54-31415, hydrocarbons, hydrogen, carbon oxides and oxygen contained in the exhaust gas composition of a silicon furnace are A method has been disclosed in which oxygen is added to transform the mixture into moisture and carbon dioxide, excess oxygen is removed by reaction in an oxygen removal column, and moisture, carbon dioxide, etc. are adsorbed and removed in an adsorption column. In such a method,
Since hydrogen gas is used for regeneration in the deoxygenation cylinder,
This has the problem that a small amount of hydrogen remains, increasing the hydrogen concentration in the recovered argon gas, and increasing the size of the equipment used for recovery. In addition,
50, there is a method of recovering argon by oxidizing carbon monoxide in the exhaust gas composition and solidifying and separating the generated carbon dioxide using a cryogenic method, and a method of recovering argon as shown in Japanese Patent Publication No. 50-8999. discloses a method for recovering argon by removing carbon monoxide and carbon dioxide from an exhaust gas composition using a copper-ammonia complex and using an alkali, respectively.

前者の方法は、−1ooc程度までの深冷処理を必要と
するので、装置の構造が複雑になるという問題点を有す
る一方、後者では、吸収と放散の操作を要するため、実
用性に難点があるという問題点を有していた。
The former method requires deep cooling to about -1ooc, which makes the structure of the device complicated, while the latter method requires absorption and dissipation operations, making it difficult to put it to practical use. It had some problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、シリコン炉等から排出される排ガス組
成物からアルゴンを回収するのに際し、アルゴンと化学
性質が似ている酸素をあらかじめ除去し、アルゴンを効
率良く回収できると共に経済的かつ工業的に実施するこ
とができるアルコ°ンの回収方法を提供するにある。
An object of the present invention is to remove oxygen, which has chemical properties similar to argon, in advance when recovering argon from exhaust gas compositions discharged from silicon furnaces, etc., thereby making it possible to recover argon efficiently and economically and industrially. The purpose of the present invention is to provide a method for recovering alkones that can be carried out in the following manner.

〔発明の概要〕[Summary of the invention]

この発明の要旨は、排ガス組成物に含まれる一酸化炭素
、水素、炭化水素を、酸素の共存の下で吸着されやすい
水分及び二酸化炭素に変えると共に、さらに残留する酸
素に一酸化炭素を添加して二酸化炭素に変えて、圧力差
を利用した吸・脱着法によシガス組成物から不純物を分
離し、アルゴンを濃縮して回収する構想からなる。
The gist of this invention is to convert carbon monoxide, hydrogen, and hydrocarbons contained in an exhaust gas composition into moisture and carbon dioxide, which are easily adsorbed in the presence of oxygen, and to further add carbon monoxide to the remaining oxygen. The idea is to convert the gas into carbon dioxide, separate impurities from the gas composition using an adsorption/desorption method that utilizes a pressure difference, and concentrate and recover argon.

すなわち、本発明は、シリコン炉から排出されるアルゴ
ンを主成分とし一酸化炭素、水素、炭化水素、二酸化水
素および酸素などを含有してなる排ガス組成物からアル
ゴンを回収する方法において、前興排ガス組成物全触媒
に接触させることによって水素、−酸化炭素および炭化
水素を燃焼させる第一工程と、該第一工程を経たガス組
成物中に一酸化炭素を添加して触媒に接触させることに
よって酸素を除去する第二工程と、該第二工程を経たガ
ス組成物からアルゴンを除く成分を加圧下に於て吸′着
剤に吸着させることによってアルゴンを濃縮して採集す
る第三工程とからなるアルゴンの回収方法を提供するも
のである。さらに、第一工程における排ガス組成物の空
間速度は15000h−を以下で、燃焼温度(触媒層温
度)は60(I’以下に保持すると共に、第二工程の接
触燃焼においては、ガス組成物の空間速度を15000
h−″1以下KL、かつ燃焼温度(触媒層温度)を30
0〜400tll’の条件を保持しつつ実施されること
を特徴としている。
That is, the present invention provides a method for recovering argon from an exhaust gas composition mainly composed of argon and containing carbon monoxide, hydrogen, hydrocarbons, hydrogen dioxide, oxygen, etc., which is discharged from a silicon furnace. A first step in which hydrogen, carbon oxide, and hydrocarbons are combusted by bringing the entire composition into contact with the catalyst, and carbon monoxide is added to the gas composition that has passed through the first step and brought into contact with the catalyst to combust oxygen. a second step of removing argon, and a third step of concentrating and collecting argon by adsorbing the components excluding argon from the gas composition that has passed through the second step onto an adsorbent under pressure. A method for recovering argon is provided. Furthermore, the space velocity of the exhaust gas composition in the first step is kept below 15,000 h-, the combustion temperature (catalyst layer temperature) is kept below 60 (I'), and in the catalytic combustion of the second step, the gas composition is space velocity 15000
h-″1 KL or less, and the combustion temperature (catalyst layer temperature) is 30
It is characterized in that it is carried out while maintaining the conditions of 0 to 400 tll'.

以下、本発明を図にしたがって詳細に説明する。Hereinafter, the present invention will be explained in detail according to the drawings.

第1図は、本発明におけるシリコン炉の排出ガス組成物
からアルゴンを回収する工程ブロック図である。
FIG. 1 is a process block diagram of recovering argon from the exhaust gas composition of a silicon furnace in the present invention.

1はシリコン炉であって、シリコン炉1の底部に接続さ
れた配管2からアルゴンが吹込まれている。そして、該
シリコン炉lから排出される排ガス組成物3は、真空ポ
ンプ4によってオイルヒユームセパレータ5に導かれる
。排ガス組成物はこのオイルヒユームセパレータ5でオ
イルが除かれ、クッションタンク6に貯えられる。次い
で、該クッションタンク6を経た排ガス組成物は圧縮機
7によってヒータ8を経由して接触燃焼器9,10、お
よび吸着塔11にそれぞれ送られてアルゴンのみを精製
回収される。アルゴン回収方法において、アルゴン以外
の他の含有成分を実質的に除去されて精製されたアルゴ
ンは配管2をj+て再びシリコン炉1に供給される。
1 is a silicon furnace, and argon is blown into it from a pipe 2 connected to the bottom of the silicon furnace 1. The exhaust gas composition 3 discharged from the silicon furnace 1 is guided to an oil fume separator 5 by a vacuum pump 4. Oil is removed from the exhaust gas composition by this oil fume separator 5 and stored in a cushion tank 6. Next, the exhaust gas composition that has passed through the cushion tank 6 is sent by a compressor 7 via a heater 8 to contact combustors 9, 10, and an adsorption tower 11, where only argon is purified and recovered. In the argon recovery method, purified argon from which components other than argon have been substantially removed is supplied to the silicon furnace 1 again through the pipe 2.

第2図は、さらに前記アルゴン回収方法の一例を示す構
成系統図である。図において、12はヒータ8に接続さ
れた配管であシ、第1図に示したヒータ8を経た排ガス
組成物は配管12を経て接触燃焼器9.lOに導かれる
。接MfS焼器9では触媒の作用によって排ガス組成物
中の水素、−酸化炭素、炭化水素が選択的に燃焼される
。この燃焼反応に必要な酸素は該排ガス組成物に含有さ
れる酸素のほか、必要に応じ酸素供給管13から補給さ
れる。すなわち、この工程が第一工程に当たる。次に、
第二工程である接触燃焼器IOでは第一工程を経た排ガ
ス組成物中の残留酸素を一酸化炭素を添加すると共に、
触媒を接触させて反応させて除去する。反応に必要な一
酸化炭素は供給管14から補給される。
FIG. 2 is a structural diagram further showing an example of the argon recovery method. In the figure, 12 is a pipe connected to the heater 8, and the exhaust gas composition that has passed through the heater 8 shown in FIG. Guided by lO. In the contact MfS burner 9, hydrogen, carbon oxide, and hydrocarbons in the exhaust gas composition are selectively burned by the action of the catalyst. Oxygen necessary for this combustion reaction is supplied from the oxygen supply pipe 13 as needed in addition to the oxygen contained in the exhaust gas composition. That is, this step corresponds to the first step. next,
In the second step, the catalytic combustor IO, carbon monoxide is added to the residual oxygen in the exhaust gas composition that has passed through the first step, and
The catalyst is brought into contact, reacted, and removed. Carbon monoxide necessary for the reaction is supplied from the supply pipe 14.

接触燃焼した排ガス組成物は、圧縮機15によって加圧
され、それによって生じた熱は冷却器工6により放出さ
れる。このように、加圧された排ガス組成物は配管17
を経て第三工程に送られ、電磁弁18.19または20
を通ってそれぞれの吸着塔21a、21bまだは21C
に圧入される。
The catalytically combusted exhaust gas composition is pressurized by the compressor 15, and the heat generated thereby is released by the cooler 6. In this way, the pressurized exhaust gas composition is transferred to the pipe 17
It is sent to the third process through solenoid valve 18, 19 or 20.
through each adsorption tower 21a, 21b still 21C
is press-fitted into the

これらの吸ノ?1塔21a〜21Cにおける加圧−吸着
処理によって不純分を吸着除去された濃縮アルゴンは、
電磁弁22,23、または24から配管25を経て製品
ガスタンク26に貯えられる。濃縮アルゴンガスは配管
27を介して随時とり出される。
These suckers? The concentrated argon from which impurities have been adsorbed and removed by the pressure-adsorption treatment in the first towers 21a to 21C is
The product gas is stored in a product gas tank 26 via a piping 25 from a solenoid valve 22, 23, or 24. Concentrated argon gas is taken out via piping 27 as needed.

本発明は以上のように第一工程、第二工程および第三工
程から成るもので、第三工程の前に排ガス組成物中の残
留酸素を触媒を介して一酸化炭素と反応させて予じめ除
去し、次の力l1lLE−吸着処理に供することに特徴
がある。
As described above, the present invention consists of a first step, a second step, and a third step, and before the third step, residual oxygen in the exhaust gas composition is reacted with carbon monoxide via a catalyst. It is characterized in that it is removed and subjected to the next adsorption treatment.

すなわち酸素はアルゴンと化学性質が似ているため、吸
着作用に゛よりアルゴンと分離することが離しい。
In other words, since oxygen has similar chemical properties to argon, it is difficult to separate it from argon due to adsorption.

次に、第一工程および第二工程に用いる触媒について説
明する。
Next, the catalyst used in the first step and the second step will be explained.

第一工程において酸素と、水素、−酸化炭素及び炭化水
素との燃焼に供する触媒としては、白金・アルミナ、パ
ラジウムおよびアルミナなどが考えられるが、白金は水
素と一殴化炭素の共存系において一酸化炭素により強く
被害され、顕著な活性の低下を来すので好ましくない。
In the first step, platinum/alumina, palladium, alumina, etc. may be used as a catalyst for the combustion of oxygen, hydrogen, carbon oxide, and hydrocarbon, but platinum is used as a catalyst in the coexistence of hydrogen and carbon oxide. It is not preferable because it is strongly damaged by carbon oxide, resulting in a significant decrease in activity.

一方、パラジウムは、白金に比較して一酸化炭素による
活性低下が少ないので、水素・−を酸化炭素共存系に対
する触媒として、適当である。本発明においては、接触
燃焼器に用いる触媒としてはパラジウム・アルミナ触媒
が使用される。なお、触媒担体としてはアルミナに限定
されず、他の公知の担体も用いられる。
On the other hand, palladium is suitable as a catalyst for a system in which hydrogen and carbon oxide coexist, since its activity is less reduced by carbon monoxide than platinum. In the present invention, a palladium-alumina catalyst is used as the catalyst for the catalytic combustor. Note that the catalyst carrier is not limited to alumina, and other known carriers may also be used.

第二工程の酸素と一酸化炭素との反応に供する触媒とし
ては、上記と同様にパラジウム、アルミナが適当である
。一方、第二工程の吸着塔においては、アルゴンに比較
して、−酸化炭素、二酸化炭素や水分を、選択的に吸着
しやすい吸着剤、例えばゼオライ)5Aなどが充填され
ている。このように選択的に吸着する際の吸着圧力は、
吸着剤の性能に依存するが、ケージ圧で数気圧程度で十
分である。
As the catalyst used for the reaction between oxygen and carbon monoxide in the second step, palladium and alumina are suitable as mentioned above. On the other hand, the adsorption tower in the second step is filled with an adsorbent such as zeolite 5A, which is more likely to selectively adsorb -carbon oxide, carbon dioxide, and water than argon. The adsorption pressure during selective adsorption in this way is
Although it depends on the performance of the adsorbent, a cage pressure of several atmospheres is sufficient.

次に、第三工程における圧力差の吸脱着法による吸着操
作サイクルについて説明する。
Next, an adsorption operation cycle using a pressure difference adsorption/desorption method in the third step will be explained.

吸着操作サイクルは第2図に示すように3基一連の吸着
塔を例とし、第1表に示す6操作から成る。各吸着塔2
12〜21Cは、均圧、加圧、吸着、脱着およびパージ
の5段階の吸着操作からなり、各操作は次に示す動作を
行う。
The adsorption operation cycle is exemplified by a series of three adsorption towers as shown in FIG. 2, and consists of six operations shown in Table 1. Each adsorption tower 2
12 to 21C consist of five stages of adsorption operations: equalization, pressurization, adsorption, desorption, and purging, and each operation performs the following operations.

第1表 均圧段階:パージによシ吸着剤が再生された常圧下の吸
着塔内に、吸着段階にある他塔で濃縮された一部のアル
ゴンが4人され、吸着塔内の圧力が平均化される。これ
によって、次の加圧、吸着段階に入るガス組成は、もと
の排ガス組成物よりもアルゴンに富むことになシ、回収
されるアルゴンの濃縮度と収率の向上を図ることができ
る。
Table 1 Pressure equalization stage: Some argon concentrated in other towers in the adsorption stage is added to the adsorption tower under normal pressure, where the adsorbent has been regenerated by purge, and the pressure inside the adsorption tower is increased. averaged. This ensures that the gas composition entering the next pressurization and adsorption step is richer in argon than the original exhaust gas composition, thereby improving the concentration and yield of recovered argon.

加圧段+¥i:燃焼処理ずみの排ガス組成物が、均圧化
された塔内に所望の吸着操作圧力に達するまて圧入され
る。
Pressurization stage +\i: The combustion-treated exhaust gas composition is pressurized into the pressure-equalized column until the desired adsorption operating pressure is reached.

脱着段階:塔内圧力が大気圧まで降下されるとともに、
前段階で吸着された一酸化炭素、二酸化炭素、窒素およ
び水分が放出される。塔内が大気圧以下に減圧されて操
業されることは、有効である。
Desorption stage: The pressure inside the column is lowered to atmospheric pressure, and
Carbon monoxide, carbon dioxide, nitrogen and moisture adsorbed in the previous stage are released. It is effective to operate the column at a reduced pressure below atmospheric pressure.

パージ段階二大気圧下にある塔内へ塔頂から、吸着段階
にある他塔の濃縮アルゴンの一部が導入され、吸着剤を
洗浄し再生させたのち、塔底がらパージされる。
Purge stage A part of concentrated argon from other towers in the adsorption stage is introduced from the top into the tower under atmospheric pressure, washes and regenerates the adsorbent, and then is purged from the bottom of the tower.

次に、第2図に示される吸着塔の運転操作の手順を、第
1表に従って具体的に述べる。
Next, the operating procedure of the adsorption tower shown in FIG. 2 will be described in detail according to Table 1.

第1操作では、吸着塔21a、21b及び21Cはそれ
ぞれ吸着(21a) 、圧力(21b) 、そして脱着
(21C)の段階に入る。その後、電磁弁22゜28.
29及び30は開放し、電磁弁18,31゜19.32
,23,20,24,33.34及び35は閉じられる
。この弁操作によって、吸着塔21a内にちる排ガス組
成物から一酸化炭素、二酸化炭素、窒素及び水分が吸着
剤に吸着され、残ったアルゴンは′電磁弁22、配管2
5を通シ製品ガスタンク26に入る。
In the first operation, adsorption columns 21a, 21b and 21C enter the stages of adsorption (21a), pressure (21b) and desorption (21C), respectively. After that, the solenoid valve 22°28.
29 and 30 are open, solenoid valves 18, 31° 19.32
, 23, 20, 24, 33.34 and 35 are closed. By this valve operation, carbon monoxide, carbon dioxide, nitrogen, and moisture are adsorbed by the adsorbent from the exhaust gas composition that falls in the adsorption tower 21a, and the remaining argon is
5 and enters the product gas tank 26.

一方、吸着塔21bは均圧段階におシ、吸着塔21aか
ら電磁弁28、配管36、電磁弁29を経て吸着塔21
b内に導入される。一方の濃縮アルゴンによって、吸着
塔2/:b内は大気圧状態から昇圧されて第2操作に入
る。さらに、一方脱着段階にある吸着塔21Cにおいて
は、前段階で吸着された排ガス組成物中の不純物成分が
電磁弁30及びガス排出管37を介して排出され、それ
に伴い塔内圧は降下される。
On the other hand, the adsorption tower 21b is in the pressure equalization stage, and from the adsorption tower 21a through the solenoid valve 28, piping 36, and solenoid valve 29, the adsorption tower 21
b. The pressure inside the adsorption tower 2/:b is increased from atmospheric pressure by one concentrated argon, and the second operation begins. Furthermore, in the adsorption tower 21C in the desorption stage, impurity components in the exhaust gas composition adsorbed in the previous stage are discharged via the electromagnetic valve 30 and the gas discharge pipe 37, and the internal pressure of the tower is accordingly lowered.

第2操作においては、吸着塔21aは引続き吸着段階に
あシ、吸着塔21b、21Cはそれぞれ加圧、パージ段
階に入る。その際、電磁弁22゜28.19.30及び
33は開かれ、一方、電磁弁18,31,32,23,
29,20及び24は閉じられる。この弁操作によって
、前操作で均圧された吸着塔21bには、排ガス組成物
が圧縮機15、冷却器16、ガス送入管及び電磁弁19
を経て供給され加圧される。さらに、パージ段階に入っ
た吸着塔21Cには、吸着塔21aから電磁弁28、配
管36及び−tdi弁33を通って濃縮アルゴンが導入
され、吸着剤の再生が行われる。
In the second operation, the adsorption tower 21a continues to enter the adsorption stage, and the adsorption towers 21b and 21C enter the pressurization and purging stages, respectively. At that time, the solenoid valves 22, 28, 19, 30 and 33 are opened, while the solenoid valves 18, 31, 32, 23,
29, 20 and 24 are closed. By this valve operation, the exhaust gas composition is transferred to the adsorption tower 21b whose pressure was equalized in the previous operation by the compressor 15, the cooler 16, the gas feed pipe, and the solenoid valve 19.
It is supplied and pressurized through. Further, concentrated argon is introduced from the adsorption tower 21a into the adsorption tower 21C which has entered the purge stage through the electromagnetic valve 28, the piping 36 and the -TDI valve 33, and the adsorbent is regenerated.

再生処理後のパージガスは、電磁弁30、配管37を経
て系外に排出される。
The purge gas after the regeneration process is discharged to the outside of the system via the solenoid valve 30 and piping 37.

第3操作においては、吸着塔21a、21bおよび21
Cは脱着、吸着および均圧段階に入る。
In the third operation, adsorption towers 21a, 21b and 21
C enters the desorption, adsorption and pressure equalization stages.

その際、電磁弁31,23,29及び33は開かれ、一
方、電磁弁18,22,28,19,32゜20、及び
30は閉じられる。この弁操作によって、吸着塔21a
は前段階で吸着された排ガス組成物中の不純物成分が電
磁弁31及びガス排出管37を介して排出され、これに
伴い塔内圧は降下される。吸着塔21bでは吸着段階に
入シ、排ガス組成物から一献化炭系、二酸化炭素、窒素
及び水分が吸着剤に吸着され、残ったアルゴンは電磁弁
23を介して配管25を経て製品ガスタンク26に人、
っ。一方、吸着塔21Cは均圧段階にあシ、吸着塔21
bから電磁弁29、配管36及び電磁弁33を経て塔2
1C内に導入される。
In this case, solenoid valves 31, 23, 29 and 33 are opened, while solenoid valves 18, 22, 28, 19, 32° 20 and 30 are closed. By this valve operation, the adsorption tower 21a
The impurity components in the exhaust gas composition adsorbed in the previous stage are discharged via the electromagnetic valve 31 and the gas discharge pipe 37, and the internal pressure of the column is accordingly lowered. The adsorption tower 21b enters the adsorption stage, where carbon dioxide, nitrogen, and water from the exhaust gas composition are adsorbed by the adsorbent, and the remaining argon is passed through the electromagnetic valve 23 and the piping 25 to the product gas tank 26. Man,
Oh. On the other hand, the adsorption tower 21C is in the pressure equalization stage;
b to the tower 2 via the solenoid valve 29, piping 36 and solenoid valve 33.
Introduced within 1C.

同様にして、第4操作においては、吸着塔21a、21
b、21Cはそれぞれパージ、吸着。
Similarly, in the fourth operation, the adsorption towers 21a, 21
b and 21C are purge and adsorption, respectively.

加圧段階として操作される。その際には、電磁弁のうち
、31.28,23.29及び20が開かれ、18,2
2.19,32.30及び24が閉じられる。第5操作
においては、吸着塔21aと21bはそれぞれ均圧、脱
48階として、吸着塔21Cは吸着段階として操作され
る。その際に電磁弁2B、32.24及び33は開かれ
、18゜31.22,19,23,29.20及び30
は閉じられる。
Operated as a pressurization stage. At that time, among the solenoid valves, 31.28, 23.29 and 20 are opened, and 18, 2
2.19, 32.30 and 24 are closed. In the fifth operation, the adsorption towers 21a and 21b are operated as pressure equalization and 48th floor desorption, respectively, and the adsorption tower 21C is operated as an adsorption stage. At that time, solenoid valves 2B, 32.24 and 33 are opened, and 18° 31.22, 19, 23, 29.20 and 30
is closed.

また、第6操作においては、吸着塔21a。In addition, in the sixth operation, the adsorption tower 21a.

21b及び21Cはそれぞれ加圧、パージ及び吸着段階
として操作される。この時、電磁弁のうち、18.32
,29.24及び33が開かれ、同31.22,28,
19,23.20及び30が閉じられる。
21b and 21C are operated as pressurization, purge and adsorption stages, respectively. At this time, 18.32 of the solenoid valves
, 29.24 and 33 were held, and 31.22, 28,
19, 23.20 and 30 are closed.

前述の説明において、均圧段ト皆及びパージ段階にある
吸着塔に尋人される濃縮アルゴンは、吸着段階にある吸
着塔から供給されたが、また、製品ガスタンクから電磁
弁35を通じて供給することもできる。なお図において
、38.39は絞り弁である。
In the above description, the concentrated argon supplied to all the pressure equalization stages and the adsorption tower in the purge stage was supplied from the adsorption tower in the adsorption stage, but it can also be supplied from the product gas tank through the solenoid valve 35. You can also do it. In the figure, 38 and 39 are throttle valves.

さらに、本発明は第3図に示すように、配管37に真空
ポンプ40を配設し、塔内を減圧することによ少吸着さ
れた不純物のガス成分を脱着させることができる。この
方法によれば、吸着剤が効率よく再生されるので、前述
したパージ段階を省略することができると共にアルゴン
の回収率を向上させるのに有効である。
Furthermore, in the present invention, as shown in FIG. 3, a vacuum pump 40 is disposed in the piping 37, and by reducing the pressure inside the column, it is possible to desorb the impurity gas component that has been adsorbed to a small extent. According to this method, since the adsorbent is efficiently regenerated, the above-mentioned purge step can be omitted and it is effective in improving the recovery rate of argon.

以上の説明においては、第3工程において吸着塔を3基
一連した場合を例として説明したが、本発明は、吸着塔
の数はなんら限定されるのでなく、第2図及び253図
は実施形態の一例を示しているにすぎない。
In the above explanation, the case where three adsorption towers are connected in series in the third step has been explained as an example, but the number of adsorption towers is not limited in any way in the present invention, and FIGS. 2 and 253 are the embodiments. This is just an example.

さて、シリコン炉から排出されるガスは、主成分アルゴ
ンをはじめ、−酸化炭素、二酸化炭素。
Now, the gases emitted from the silicon furnace are mainly composed of argon, carbon oxide, and carbon dioxide.

炭化水系、水素、ば素及び水などを含む組成物でろる。It is made of a hydrocarbon-based composition containing hydrogen, barium, water, etc.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

シリコン炉から排出する排ガス組成物を本発明法に用い
られる第2図に示す装置によシアルボンを回収した。
Sialbon was recovered from the exhaust gas composition discharged from the silicon furnace using the apparatus shown in FIG. 2 used in the method of the present invention.

排ガス組成物のガス成分は第2表に示す通シである。第
一工程に2ける燃m4にはパラジウム、アルミナ触媒を
充填して、排ガス組成物の空間速度を1000〜20,
000h−1で燃焼温度を20〜600Cに変化させて
実施した。
The gas components of the exhaust gas composition are as shown in Table 2. The fuel m4 in the first step 2 is filled with palladium and alumina catalyst, and the space velocity of the exhaust gas composition is adjusted to 1000~20.
The combustion temperature was varied from 20 to 600C at 000h-1.

第 2 表 (i景%) 第4図は第一工程における排ガス組成物の空間速度と燃
焼温度との関係警示す線図である。
Table 2 (% i) Figure 4 is a diagram showing the relationship between the space velocity of the exhaust gas composition and the combustion temperature in the first step.

図から明らかなように、排ガス組成物の空間速度が15
000h−1以上において、炭化水素を完全に燃焼させ
るには触媒l一温度6000以上に尚める必要がめる。
As is clear from the figure, the space velocity of the exhaust gas composition is 15
000h-1 or more, it is necessary to raise the catalyst temperature to 6000h-1 or more in order to completely burn the hydrocarbons.

しかし、接触燃焼器の層内の温度が600C以上になる
と、炭化水素が熱分解してカーボンが生成し、触媒層上
にカーボンが・トj4するため、触媒活性が急激に低下
する。従って、炭化水素を効率的に燃焼させるためには
、空間速度を15000h”以下に、燃焼(触媒層)一
度を600C以下の条件に保持されることが好ましい。
However, when the temperature in the layer of the catalytic combustor exceeds 600 C, hydrocarbons are thermally decomposed to produce carbon, and the carbon is deposited on the catalyst layer, resulting in a sharp drop in catalytic activity. Therefore, in order to efficiently burn hydrocarbons, it is preferable that the space velocity is kept at 15,000 h'' or less and the combustion (catalyst layer) temperature is kept at 600 C or less.

また、排ガス組成物に残留する酸素に一酸化炭素を過剰
に添加して燃焼式せる第二工程における燃焼製置とば素
除去率の関係を第5図に示した。ここで、coは排ガス
組成物に含まれているM索ガス量、Cは燃焼処理さnた
酸素ガス量である。
Further, FIG. 5 shows the relationship between the combustion process and the carbon removal rate in the second step of combustion, in which carbon monoxide is added excessively to the oxygen remaining in the exhaust gas composition. Here, co is the amount of hydrogen gas contained in the exhaust gas composition, and C is the amount of oxygen gas subjected to combustion treatment.

この第二工程においては、排ガス組成物の空間速度を1
500h−1とし、燃料温度を300〜400Cの範囲
で排ガス組成物中に一酸化炭素を過剰に添加して残留酸
素を除去した。その結果、残留酸素をIP以下に低減す
ることができた。
In this second step, the space velocity of the exhaust gas composition is reduced to 1
500 h-1, residual oxygen was removed by adding excessive carbon monoxide to the exhaust gas composition at a fuel temperature in the range of 300 to 400C. As a result, residual oxygen could be reduced to below IP.

以上のように第一工程、及び第二工程において処理され
た排ガス組成物をガス分析すると第3表に示す通シであ
る。
Gas analysis of the exhaust gas composition treated in the first step and the second step as described above resulted in the results shown in Table 3.

第 3 表 (胛) 次に、第一工程及び第二工程を経た排ガス組成物を第三
工程に送シ、圧力差吸着処理を施した。
Table 3 (Top) Next, the exhaust gas compositions that had passed through the first and second steps were sent to the third step, where they were subjected to pressure difference adsorption treatment.

圧力差吸着処理は20を容積の吸着塔を用いて、吸着t
を2〜6縁/ tri Gとし、脱着を大気圧中で行い
、サイクル時間を135〜270秒とした。
The pressure difference adsorption process uses an adsorption tower with a volume of 20 t
2 to 6 edges/tri G, desorption was performed at atmospheric pressure, and cycle times were 135 to 270 seconds.

その結果、最終的に回収されたアルゴンは99.9〜9
9.999%の濃度となシ、回収率は50〜65%であ
った。アルゴンの回収Jtは単位時間当シSOO〜16
00’tとなった。
As a result, the final amount of argon recovered was 99.9 to 9
At a concentration of 9.999%, the recovery was 50-65%. Argon recovery Jt is SOO~16 per unit time
It became 00't.

さらに、第3図に示したように、脱着]!l!作におい
て吸着塔内を50〜150■に4gまで減圧して操業し
、パージ段階を省略して実施した。その結果、回収され
7こアルゴン濃&it、99.9〜99.999%とな
シ、回収率は50〜75%と同上した。
Furthermore, as shown in Figure 3, detachment]! l! In the process, the adsorption tower was operated under a reduced pressure of 4 g to 50 to 150 cm, and the purge step was omitted. As a result, the recovered argon concentration was 99.9-99.999%, and the recovery rate was 50-75%, the same as above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に・虎るアルゴンの回収方
法によれば、アルゴンを用いる炉特にシリコン炉から排
出される排ガス組成物から高濃度のアルゴンを回収する
ことができると共に、高収率で回収することができると
いう、顕著な効果を有する。さらに、−酸化炭素も濃縮
されるので、回収して燃料及び化学原料として再利用が
できるという利点を兼ね備えている。
As explained above, according to the argon recovery method of the present invention, it is possible to recover high concentration argon from the exhaust gas composition discharged from a furnace using argon, particularly a silicon furnace, and at a high yield. It has the remarkable effect of being able to be recovered. Furthermore, since -carbon oxide is also concentrated, it has the advantage that it can be recovered and reused as fuel and chemical raw materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるシリコン炉等の排ガス組成物から
アルゴンを回収する工程ブロック図、第2図は本発明に
・糸るアルゴンの回収方法の一列を示す構成系統図、第
3図は本発明に床るアルゴンの回収方法の他の例を示す
構成系統図、第4図は本発明の第一工程における排ガス
組成物の壁間速度とCH4の燃焼製置(’l’clI4
)C’との開面を示す線図、第5図は本発明の第二工程
における燃料温度と酸素除去との関係を示す線図である
。 1・・・シリコン炉、8・・・ヒータ、9.10・・・
接触燃焼器、1=1=、 21 a〜21b・・・吸層
塔。 代理人 弁理士 鵜沼辰之 !4 i 囚 第2図
Fig. 1 is a block diagram of the process for recovering argon from the exhaust gas composition of a silicon furnace, etc. according to the present invention, Fig. 2 is a structural system diagram showing a series of methods for recovering argon according to the present invention, and Fig. 3 is a process block diagram of the present invention. FIG. 4 is a structural diagram showing another example of the argon recovery method according to the present invention, which shows the relationship between the wall velocity of the exhaust gas composition and the CH4 combustion preparation ('l'clI4) in the first step of the present invention.
5 is a diagram showing the relationship between fuel temperature and oxygen removal in the second step of the present invention. 1... Silicon furnace, 8... Heater, 9.10...
Catalytic combustor, 1=1=, 21 a to 21 b... absorption tower. Agent Patent Attorney Tatsuyuki Unuma! 4 i Prisoner Diagram 2

Claims (1)

【特許請求の範囲】 1、アルゴンを主成分とし一酸化炭素、水素、炭化水素
、二酸化炭素および酸素などを含有してなる排ガス組成
物からアルゴンを回収する方法において、前記排ガス組
成物を触媒に接触させることによって水素、−酸化炭素
および炭化水素を燃焼させる第一工程と、該第一工程を
経たガス組成物中に一酸化炭素を添加して触媒に接触さ
せることによって酸素を除去する第二工iと、該第二工
程を経たガス組成物からアルゴンを除く成分を加圧下に
おいて吸着剤に吸着させることによってアルゴンを濃縮
して採集する第三工程とからなることを特徴とするアル
ゴンの回収方法。 2、特許請求の範囲第1項に記載する第一工程において
、排ガス組成物の空間速度は1500h−1以下で、且
つ触媒層の温度が600C以下であることを特徴とする
アルゴンの回収方法。
[Claims] 1. A method for recovering argon from an exhaust gas composition containing argon as a main component and containing carbon monoxide, hydrogen, hydrocarbons, carbon dioxide, oxygen, etc., in which the exhaust gas composition is used as a catalyst. A first step in which hydrogen, carbon oxide and hydrocarbons are combusted by bringing them into contact, and a second step in which oxygen is removed by adding carbon monoxide to the gas composition that has passed through the first step and bringing it into contact with a catalyst. and a third step of concentrating and collecting argon by adsorbing components other than argon from the gas composition that has passed through the second step onto an adsorbent under pressure. Method. 2. A method for recovering argon, characterized in that in the first step described in claim 1, the space velocity of the exhaust gas composition is 1500 h-1 or less, and the temperature of the catalyst layer is 600 C or less.
JP23103783A 1983-12-07 1983-12-07 Method for recovering argon Pending JPS60122709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23103783A JPS60122709A (en) 1983-12-07 1983-12-07 Method for recovering argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23103783A JPS60122709A (en) 1983-12-07 1983-12-07 Method for recovering argon

Publications (1)

Publication Number Publication Date
JPS60122709A true JPS60122709A (en) 1985-07-01

Family

ID=16917281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23103783A Pending JPS60122709A (en) 1983-12-07 1983-12-07 Method for recovering argon

Country Status (1)

Country Link
JP (1) JPS60122709A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140807A (en) * 1984-08-03 1986-02-27 Hitachi Ltd Process and apparatus for purifying gaseous argon
JPS63162509A (en) * 1986-12-26 1988-07-06 Jgc Corp Removing of oxygen from innert gas
US4859435A (en) * 1988-06-10 1989-08-22 Air Products And Chemicals, Inc. Deoxygenation of inert gas streams with methanol
US4859434A (en) * 1988-06-10 1989-08-22 Air Products And Chemicals, Inc. Production of endothermic gases with methanol
JP2011173769A (en) * 2010-02-25 2011-09-08 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2011184287A (en) * 2010-02-10 2011-09-22 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2011195434A (en) * 2010-02-25 2011-10-06 Sumitomo Seika Chem Co Ltd Refining method and refining apparatus for argon gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013010679A (en) * 2011-05-30 2013-01-17 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2014016136A (en) * 2012-07-11 2014-01-30 Nippon Steel & Sumitomo Metal Method and apparatus for recovering and recycling inactive gas after heat treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272394A (en) * 1975-12-15 1977-06-16 Daiyo Sanso Removal of argonncovered gas impuritied
JPS58241A (en) * 1981-06-22 1983-01-05 Central Res Inst Of Electric Power Ind Production of inert gas by catalytic combustion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272394A (en) * 1975-12-15 1977-06-16 Daiyo Sanso Removal of argonncovered gas impuritied
JPS58241A (en) * 1981-06-22 1983-01-05 Central Res Inst Of Electric Power Ind Production of inert gas by catalytic combustion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313161B2 (en) * 1984-08-03 1991-02-21 Hitachi Ltd
JPS6140807A (en) * 1984-08-03 1986-02-27 Hitachi Ltd Process and apparatus for purifying gaseous argon
JPS63162509A (en) * 1986-12-26 1988-07-06 Jgc Corp Removing of oxygen from innert gas
JPH0579601B2 (en) * 1986-12-26 1993-11-04 Jgc Corp
US4859435A (en) * 1988-06-10 1989-08-22 Air Products And Chemicals, Inc. Deoxygenation of inert gas streams with methanol
US4859434A (en) * 1988-06-10 1989-08-22 Air Products And Chemicals, Inc. Production of endothermic gases with methanol
JP2011184287A (en) * 2010-02-10 2011-09-22 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2011173769A (en) * 2010-02-25 2011-09-08 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2011195434A (en) * 2010-02-25 2011-10-06 Sumitomo Seika Chem Co Ltd Refining method and refining apparatus for argon gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013010679A (en) * 2011-05-30 2013-01-17 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2014016136A (en) * 2012-07-11 2014-01-30 Nippon Steel & Sumitomo Metal Method and apparatus for recovering and recycling inactive gas after heat treatment

Similar Documents

Publication Publication Date Title
EP0307843B1 (en) Production of hydrogen and carbon monoxide
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US4816237A (en) Process for purifying argon gas and apparatus used therefor
JPH01127021A (en) Purification and recovery of methane from reclaimed garbage treatment gas
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
EP0545559B1 (en) Separation of gas mixtures
JPS60122709A (en) Method for recovering argon
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
JPH07138007A (en) Purification of argon gas and apparatus therefor
JPH0422848B2 (en)
US4874592A (en) Production process of xenon
JPS6137970B2 (en)
CA2048263A1 (en) Process for helium purification
JPH01176416A (en) Purifying method for combustion exhaust gas
JPH04200713A (en) Manufacture of high-purity carbon monoxide
JPH092808A (en) Production of krypton
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JP2021049482A (en) Method for production of refined gas, and gas purifier
JPS607919A (en) Separating and removing method of carbon dioxide in mixed gas containing carbon monoxide by adsorption
JPH0243684B2 (en)
JPH039392B2 (en)
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JP2000317245A (en) Separation and purification of gas
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPS59159913A (en) Method for recovering gaseous argon from waste gas of argon and oxygen blowing furnace