JPH092808A - Production of krypton - Google Patents

Production of krypton

Info

Publication number
JPH092808A
JPH092808A JP7174433A JP17443395A JPH092808A JP H092808 A JPH092808 A JP H092808A JP 7174433 A JP7174433 A JP 7174433A JP 17443395 A JP17443395 A JP 17443395A JP H092808 A JPH092808 A JP H092808A
Authority
JP
Japan
Prior art keywords
krypton
xenon
gas
tower
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7174433A
Other languages
Japanese (ja)
Other versions
JP3294067B2 (en
Inventor
Hideaki Takano
英明 高野
Toshiaki Oonishi
俊晶 大西
Katsuhiko Tsukada
勝彦 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
KYODO SANSO KK
Original Assignee
KYODO SANSO
KYODO SANSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO, KYODO SANSO KK filed Critical KYODO SANSO
Priority to JP17443395A priority Critical patent/JP3294067B2/en
Publication of JPH092808A publication Critical patent/JPH092808A/en
Application granted granted Critical
Publication of JP3294067B2 publication Critical patent/JP3294067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • F25J3/04757Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: To produce krypton of high purity at high yield at a low cost in a safe manner by concentrating krypton in a liquefied oxygen taken out from a main condenser in an upper rectification tower of an air separation apparatus by an absorption process. CONSTITUTION: A liquefied oxygen containing krypton and xenon is taken out from a main condenser 1 in an upper rectification tower of an air separation apparatus. The liquefied oxygen is gasified followed by absorption and separation of the xenon with an absorption tower 2 packed with a xenon selective absorbent at -170 deg.C. A through gas is introduced into the absorption tower 3 packed with a krypton selective absorbent at -170 deg.C until the breakthrough of the krypton. Then, the tower is warmed up to 70 deg.C with good attention on the concentration of hydrocarbons to desorb the krypton and the recovered krypton is collected in a krypton concentrated gas tank 4. Hydrocarbons in the krypton concentrated gas are burned in a catalyst tower 5 and water and carbon dioxide gas are removed by a removing tower 6. Then, the krypton concentrated gas is introduced into an absorption tower 7 packed with a krypton selective absorbent and cooled down to -170 deg.C until the breakthrough. Then, the tower is warmed up to -100 deg.C, purged with a product gas, and further warmed up to 70 deg.C to recover the krypton.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空気分離装置の上部
精留塔主凝縮器の液化酸素中に含有されるクリプトンを
吸着法を主体として濃縮させることを繰り返し、高純度
のクリプトンを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention repeatedly produces a high-purity krypton by repeatedly concentrating krypton contained in liquefied oxygen in the main condenser of an upper rectification column of an air separation device mainly by an adsorption method. Regarding the method.

【0002】[0002]

【従来の技術】放電管用封入ガスとして用いられるクリ
プトンは、空気中に1.14ppmという僅かな量しか
含まれていないため、現在では大型の空気分離装置の上
部精留塔主凝縮器の液化酸素中から蒸留によってキセノ
ンと併産されている。上記液化酸素中から蒸留によって
回収する方法は、クリプトンの濃縮に伴って液化酸素中
の炭化水素、特にメタンが濃縮されて爆発の危険が生じ
る。その対策としては、従来から種々の方法が提案され
ており、例えば、炭化水素類の爆発の危険性のない程度
までキセノン、クリプトンの濃度を抑制し、触媒で炭化
水素類を燃焼除去したのち、蒸留によってクリプトン、
キセノンを濃縮する方法((株)フジ・テクノシステム
技術資料(61−2−1)、p430〜431)、クリ
プトンとキセノンが濃縮された混合物中になお含まれる
酸素を放散塔の中で十分にアルゴンと置換したのち気化
し、次に炭化水素を触媒により燃焼して発生する二酸化
炭素と水を分離し、次いで混合物を分離塔で放圧し、そ
の底部からクリプトンとキセノンを液体の形で取出す方
法(特公昭47−22937号公報)、加圧下で高圧窒
素と酸素を置換したのち、クリプトン、キセノンを蒸留
により濃縮する方法(特開昭57−95583号公報)
等が提案されている。
2. Description of the Related Art Since krypton used as a filling gas for discharge tubes is contained in the air in a small amount of 1.14 ppm, liquefied oxygen in the main condenser of the upper rectification column of a large air separation apparatus is currently used. It is co-produced with xenon by distillation from the inside. In the method of recovering from liquefied oxygen by distillation, hydrocarbons, particularly methane, in liquefied oxygen are concentrated with the concentration of krypton, which causes a danger of explosion. As a countermeasure, various methods have been proposed in the past, for example, after suppressing the concentration of xenon and krypton to the extent that there is no risk of explosion of hydrocarbons, and burning and removing hydrocarbons with a catalyst, Krypton, by distillation
Method for concentrating xenon (FUJI TECHNOSYSTEM Technical Data (61-2-1), p430-431), oxygen contained in a mixture enriched with krypton and xenon is sufficiently contained in the stripping tower. A method of vaporizing after replacing with argon, then separating carbon dioxide and water generated by burning a hydrocarbon by a catalyst, then depressurizing the mixture in a separation column, and taking out krypton and xenon in a liquid form from the bottom thereof. (JP-B-47-22937), a method in which high-pressure nitrogen and oxygen are replaced under pressure, and then krypton and xenon are concentrated by distillation (JP-A-57-95583).
Etc. have been proposed.

【0003】一方、吸着方法でクリプトン、キセノンを
併産する方法としては、空気を90〜110°Kの温度
で、それと同一の温度に保たれた孔径5〜150Åの細
孔を有する吸着剤に通し、キセノン、クリプトン、窒
素、酸素および炭化水素を吸着剤に吸着させ、次に吸着
剤の温度を1〜8時間の中に90〜110°Kから25
0〜280°Kに、次に2〜4時間の中に250〜28
0°Kから500〜650°Kに、段階的に上昇させる
ことにより、該ガスを脱着させることからなる、容量で
1〜46%のクリプトン、容量で0.1〜4%のキセノ
ン、容量で94.5〜46%の窒素、容量で最大2%の
酸素、容量で最大2%の炭化水素を含むクリプトン−キ
セノン混合物を、空気から分離する方法(特開昭51−
117997号公報)が提案されている。
On the other hand, as a method of co-producing krypton and xenon by an adsorption method, an adsorbent having pores with a pore diameter of 5 to 150 Å kept at the same temperature as that of air at a temperature of 90 to 110 ° K is used. Xenon, krypton, nitrogen, oxygen and hydrocarbons are adsorbed on the adsorbent, and then the adsorbent temperature is changed from 90 to 110 ° K to 25 within 1 to 8 hours.
0-280 ° K, then 250-28 in 2-4 hours
The gas is desorbed by gradually increasing it from 0 ° K to 500 to 650 ° K, which is 1 to 46% by volume of krypton, 0.1 to 4% by volume of xenon, and by volume. Method for separating a krypton-xenon mixture containing 94.5-46% nitrogen, up to 2% oxygen by volume and up to 2% hydrocarbon by volume from air (JP-A-51-
No. 117997) has been proposed.

【0004】また、クリプトンの製造方法としては、ク
リプトン、キセノンおよびメタン等を極微量含有する液
化酸素を濃縮塔に供給し、精留により濃縮する工程と、
該工程で得られた濃縮液をメタンパージ塔に導き該液中
のメタンを酸素ガスとの向流接触により塔頂より同伴パ
ージせしめると共に塔底に濃縮液を留出せしめる工程
と、留出濃縮液を気化した後、触媒燃焼筒で燃焼せしめ
生成した水分、炭酸ガスを吸着除去する工程と、該工程
で得られた混合ガスを脱酸精製処理したのちクリプトン
とキセノンに精留分離する工程とからなる方法(特開昭
57−43186号公報)が提案されている。
As a method for producing krypton, a step of supplying liquefied oxygen containing a very small amount of krypton, xenon, methane and the like to a concentration column and concentrating it by rectification,
A step of introducing the concentrated liquid obtained in the step to a methane purging column to purge methane in the liquid by countercurrent contact with oxygen gas from the top of the tower and distilling the concentrated liquid to the bottom of the tower; From the step of adsorbing and removing the water and carbon dioxide gas produced by combustion in a catalytic combustion tube after the gasification, and the step of rectifying and separating krypton and xenon after deoxidizing and purifying the mixed gas obtained in the step. (Japanese Patent Laid-Open No. 57-43186) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特公昭47−22
937号公報、特開昭57−95583号公報ならびに
特開昭51−117997号公報に開示の方法は、クリ
プトン−キセノン混合物を回収するものであって、高純
度、高収率でクリプトンを安価に製造することができな
いという問題点を有している。また、特開昭57−43
186号公報に開示の方法は、クリプトンとキセノンに
精留分離する旨記載されているが、どの程度の純度のク
リプトンが、どの程度の収率で得られるのか明示されて
いない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The methods disclosed in Japanese Patent Application Laid-Open No. 937, Japanese Patent Application Laid-Open No. 57-95583, and Japanese Patent Application Laid-Open No. 51-117997 are for recovering a krypton-xenon mixture, and are capable of producing krypton inexpensively with high purity and high yield. It has a problem that it cannot be manufactured. In addition, JP-A-57-43
Although the method disclosed in Japanese Patent No. 186 discloses that rectification separation is carried out into krypton and xenon, it is not specified how much purity krypton can be obtained in what yield.

【0006】この発明の目的は、上記従来技術の欠点を
解消し、空気分離装置の上部精留塔主凝縮器から導出さ
れる液化酸素中のクリプトンを、吸着方法によって安全
かつ高純度、高収率で安価に製造できるクリプトンの製
造方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to safely and highly purify the krypton in liquefied oxygen discharged from the main condenser of the upper rectification column of the air separation device by using an adsorption method. The object of the present invention is to provide a method for producing krypton that can be produced at a low cost at a high rate.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。空気分離装置の上
部精留塔主凝縮器から導出されるクリプトン、キセノン
含有液化酸素を、先ずキセノンを選択的に吸着する吸着
剤を充填した吸着塔に導入してキセノンだけを吸着さ
せ、スルーしたクリプトンと炭化水素類を含有する酸素
ガスを、クリプトンを選択的に吸着する吸着剤を充填し
た複数の吸着塔に導入して吸脱着を行って順次クリプト
ンを濃縮すると共に、炭化水素類を触媒で燃焼除去する
ことによって、高純度クリプトンを高収率で安価に製造
できることを究明し、この発明に到達した。
Means for Solving the Problems The present inventors have intensively studied and studied to achieve the above object. Liquefied oxygen containing krypton and xenon derived from the main condenser of the upper rectification column of the air separation device was first introduced into an adsorption column filled with an adsorbent that selectively adsorbs xenon to adsorb only xenon, and passed through. Oxygen gas containing krypton and hydrocarbons is introduced into a plurality of adsorption columns filled with an adsorbent that selectively adsorbs krypton, adsorbing and desorbing them to sequentially concentrate krypton, and at the same time, catalyzing hydrocarbons. It was clarified that high-purity krypton can be produced in high yield at low cost by burning and removing, and the present invention was reached.

【0008】すなわち、本願の第1項の発明は、空気分
離装置の上部精留塔主凝縮器からのクリプトン、キセノ
ン含有液化酸素をガス化し、キセノンを選択的に吸着す
る吸着剤を充填した複数の吸着塔に導入し、キセノンを
吸着させてクリプトンを該吸着塔からスルーさせること
によってキセノンと分離したのち、クリプトンを選択的
に吸着する吸着剤を充填した複数の吸着塔に導入し、吸
脱着を行うことによって順次クリプトンを濃縮すると共
に炭化水素類を触媒により燃焼除去し、高純度クリプト
ンを得ることを特徴とするクリプトンの製造方法であ
る。
That is, according to the first aspect of the present invention, a plurality of adsorbents which gasify the liquid oxygen containing krypton and xenon from the main condenser of the upper rectification column of the air separation device and which adsorbs xenon selectively are filled. After adsorbing xenon to separate xenon by adsorbing xenon and letting krypton pass through from the adsorption column, it is introduced into a plurality of adsorption columns filled with an adsorbent that selectively adsorbs krypton, and adsorbed / desorbed. The method for producing krypton is characterized in that high purity krypton is obtained by sequentially concentrating krypton and burning and removing hydrocarbons by a catalyst.

【0009】また、本願の第2項の発明は、空気分離装
置の上部精留塔主凝縮器から導出されるクリプトン、キ
セノン含有液化酸素をガス化し、酸素の液化温度より高
い温度で、かつキセノンを選択的に吸着する吸着剤を充
填した吸着塔に導入し、キセノンを吸着させてクリプト
ンを該吸着塔からスルーさせることによってキセノンと
分離したのち、クリプトンを選択的に吸着する吸着剤を
充填した吸着塔にクリプトンが破過するまで流し、吸着
したガス中の炭化水素が爆発限界に入らないよう酸素を
充圧しつつ脱着してクリプトンを濃縮回収し、回収ガス
を触媒塔に導入して炭化水素類を燃焼除去したクリプト
ン濃縮ガスを、その液化温度より高い温度に冷却し、か
つクリプトンを選択的に吸着する吸着剤を充填した吸着
塔にクリプトンが破過するまで流し、その後製品ガスの
一部で吸着塔内をパージし、高純度クリプトンを得るこ
とを特徴とするクリプトンの製造方法である。
The second aspect of the invention of the present application is to gasify the liquefied oxygen containing krypton and xenon, which is discharged from the main condenser of the upper rectification column of the air separation unit, at a temperature higher than the liquefaction temperature of oxygen and at the same time as xenon. Was introduced into an adsorption column filled with an adsorbent that selectively adsorbs xenon and separated from xenon by allowing krypton to pass through the adsorption column and then filled with an adsorbent that selectively adsorbs krypton. It flows until the krypton breaks through the adsorption tower, desorbs while concentrating and recovering krypton by charging oxygen so that the hydrocarbons in the adsorbed gas do not reach the explosion limit, and the recovered gas is introduced into the catalyst tower to introduce hydrocarbons. The krypton-enriched gas, which has been burned to remove the compounds, is cooled to a temperature higher than its liquefaction temperature and adsorbed in an adsorption tower filled with an adsorbent that selectively adsorbs krypton. It flowed to superatmospheric be, then purged in the adsorption tower in the part of the product gas, a method for producing a krypton, characterized in that to obtain high-purity krypton.

【0010】さらに、本願の第3項の発明は、空気分離
装置の上部精留塔主凝縮器から導出されるクリプトン、
キセノン含有液化酸素をガス化し、酸素の液化温度より
高い温度で、かつキセノンを選択的に吸着する吸着剤を
充填した吸着塔に導入し、キセノンを吸着させてクリプ
トンを該吸着塔からスルーさせることによってキセノン
と分離したのち、クリプトンを選択的に吸着する吸着剤
を充填した吸着塔にクリプトンが破過するまで流し、吸
着したガス中の炭化水素が爆発限界に入らないよう酸素
を充圧しつつ脱着してクリプトンを濃縮回収し、回収ガ
スを触媒塔に導入して炭化水素類を触媒により燃焼除去
したクリプトン濃縮ガスを、その液化温度より高い温度
に冷却し、かつクリプトンを選択的に吸着する吸着剤を
充填した吸着塔にクリプトンが破過するまで流してクリ
プトンを濃縮回収し、さらに塔内を高真空にして吸着さ
れているキセノンを除去し、その後クリプトン濃縮ガス
をその液化温度より高い温度に冷却し、かつクリプトン
を選択的に吸着する吸着剤を充填した吸着塔にクリプト
ンが破過するまで流したのち、製品ガスの一部で吸着塔
内をパージし、高純度クリプトンを得ることを特徴とす
るクリプトンの製造方法である。
Further, the invention of the third aspect of the present application is a krypton which is derived from the main condenser of the upper rectification column of the air separation device,
To gasify liquefied oxygen containing xenon, introduce it into an adsorption tower filled with an adsorbent that selectively adsorbs xenon at a temperature higher than the liquefaction temperature of oxygen, adsorb xenon, and let krypton pass through the adsorption tower. After being separated from xenon by, flow through an adsorption column filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through, desorbing while adsorbing oxygen so that hydrocarbons in the adsorbed gas do not reach the explosion limit. Then, the krypton is concentrated and recovered, and the recovered gas is introduced into the catalyst tower to burn and remove hydrocarbons by the catalyst, and the krypton concentrated gas is cooled to a temperature higher than its liquefaction temperature and selectively adsorbs krypton. Xenon is adsorbed by flowing it through an adsorption tower filled with agent until the krypton breaks through, concentrating and recovering krypton, and then applying a high vacuum to the inside of the tower. After removing it, the krypton-enriched gas is cooled to a temperature higher than its liquefaction temperature and allowed to flow through an adsorption column filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through. A method for producing krypton, which comprises purifying the inside of an adsorption tower to obtain high-purity krypton.

【0011】[0011]

【作用】本願の第1項の発明においては、空気分離装置
の上部精留塔主凝縮器からのクリプトン、キセノン含有
液化酸素をガス化し、キセノンを選択的に吸着する吸着
剤を充填した複数の吸着塔に導入し、キセノンを吸着さ
せてクリプトンを該吸着塔からスルーさせることによっ
てキセノンと分離したのち、クリプトンを選択的に吸着
する吸着剤を充填した複数の吸着塔に導入し、吸脱着を
行うことによって順次クリプトンを濃縮すると共に炭化
水素類を触媒により燃焼除去することによって、酸素を
アルゴンや窒素と置換させなくても、炭化水素類の爆発
の危険性がなく、高純度クリプトンを高収率で安価に製
造することができる。
In the first aspect of the present invention, a plurality of adsorbents which gasify krypton- and xenon-containing liquefied oxygen from the main condenser of the upper rectification column of the air separation device and are filled with an adsorbent which selectively adsorbs xenon are provided. After being introduced into an adsorption tower and separated from xenon by adsorbing xenon and letting krypton pass through from the adsorption tower, it is introduced into a plurality of adsorption towers filled with an adsorbent that selectively adsorbs krypton, and adsorption / desorption is performed. By sequentially concentrating krypton and burning and removing hydrocarbons by a catalyst, there is no danger of explosion of hydrocarbons even if oxygen is not replaced with argon or nitrogen, and high purity krypton with high yield is obtained. It can be manufactured at a low rate.

【0012】また、本願の第2項の発明においては、キ
セノンと分離したクリプトン含有酸素ガスを、クリプト
ンを選択的に吸着する吸着剤を充填した吸着塔にクリプ
トンが破過するまで流し、吸着したガス中の炭化水素が
爆発限界に入らないよう酸素を充圧しつつ脱着してクリ
プトンを濃縮回収し、回収ガスを触媒塔に導入して炭化
水素類を燃焼除去したクリプトン濃縮ガスを、その液化
温度より高い温度に冷却し、かつクリプトンを選択的に
吸着する吸着剤を充填した吸着塔にクリプトンが破過す
るまで流し、その後製品ガスの一部で吸着塔内をパージ
することによって、吸着塔内に残存するクリプトン、酸
素を系外に追い出し、より少ない塔数でクリプトンの高
純度化を達成することができる。
In the second aspect of the present invention, the krypton-containing oxygen gas separated from the xenon is flowed and adsorbed in an adsorption tower filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through. The krypton enriched gas obtained by desorbing and concentrating and recovering krypton while charging oxygen so that the hydrocarbons in the gas do not reach the explosion limit and introducing the recovered gas into the catalyst column to burn and remove hydrocarbons By cooling the mixture to a higher temperature and flowing it into an adsorption tower filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through, and then purging the inside of the adsorption tower with a part of the product gas, The remaining krypton and oxygen can be driven out of the system to achieve high purification of krypton with a smaller number of columns.

【0013】本願の第3項の発明においては、キセノン
と分離したクリプトン含有酸素ガスを、クリプトンを選
択的に吸着する吸着剤を充填した吸着塔にクリプトンが
破過するまで流し、吸着したガス中の炭化水素が爆発限
界に入らないよう酸素を充圧しつつ脱着してクリプトン
を濃縮回収し、回収ガスを触媒塔に導入して炭化水素類
を触媒により燃焼除去したクリプトン濃縮ガスを、その
液化温度より高い温度に冷却し、かつクリプトンを選択
的に吸着する吸着剤を充填した吸着塔にクリプトンが破
過するまで流してクリプトンを濃縮回収し、さらに塔内
を高真空にして吸着されているキセノンを除去し、その
後クリプトン濃縮ガスをその液化温度より高い温度に冷
却し、かつクリプトンを選択的に吸着する吸着剤を充填
した吸着塔にクリプトンが破過するまで流したのち、製
品ガスの一部で吸着塔内をパージすることによって、吸
着塔内に残存するクリプトン、酸素を系外に追い出し、
より少ない塔数でクリプトンの高純度化を達成すること
ができる。
In the third aspect of the present invention, the krypton-containing oxygen gas separated from the xenon is flowed through an adsorption tower filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through, and the adsorbed gas is adsorbed in the adsorbed gas. Of the krypton concentrated gas, which is desorbed while charging oxygen so that the hydrocarbons do not enter the explosive limit, is concentrated and recovered, and the recovered gas is introduced into the catalyst tower to burn and remove hydrocarbons by the catalyst. Xenon that is cooled to a higher temperature and flows through an adsorption column filled with an adsorbent that selectively adsorbs krypton until krypton breaks through to concentrate and recover krypton, and then the inside of the column is evacuated to a high vacuum to adsorb xenon. And then the krypton-enriched gas is cooled to a temperature above its liquefaction temperature and adsorbed in an adsorption column filled with an adsorbent that selectively adsorbs krypton. After tons flowed until breakthrough, expelled by purging the inside of the adsorption tower in the part of the product gas, krypton remaining in the adsorption tower, the oxygen out of the system,
Higher purification of krypton can be achieved with a smaller number of towers.

【0014】この発明において、クリプトンを選択的に
吸着する吸着剤を使用するのは、クリプトン含有酸素ガ
スを吸着塔に流し、塔出口からクリプトンが流出し始め
た時点でクリプトン含有酸素ガスの供給を停止し、吸着
したクリプトンを回収すれば、高収率でクリプトンを得
ることができると共に、メタン濃縮による爆発の危険性
を防止するためである。また、この発明において複数の
吸着塔を使用するのは、クリプトン含有酸素ガス中のク
リプトンを順次濃縮すると共に、吸着塔の排ガスをリサ
イクルさせることによって、系外に排出するクリプトン
を最小限に抑制できるからである。上記クリプトンを選
択的に吸着する吸着剤としては、シリカゲル、活性炭あ
るいは分子ふるい効果を有するゼオライト等を用いるこ
とができる。
In the present invention, the adsorbent which selectively adsorbs krypton is used because the oxygen gas containing krypton is caused to flow through the adsorption column and the oxygen gas containing krypton is supplied at the time when the krypton starts to flow out from the outlet of the column. By stopping and recovering the adsorbed krypton, it is possible to obtain krypton in a high yield and to prevent the risk of explosion due to methane concentration. In addition, the use of a plurality of adsorption towers in the present invention allows the krypton in the krypton-containing oxygen gas to be sequentially concentrated and the exhaust gas from the adsorption tower to be recycled, thereby minimizing the krypton discharged to the outside of the system. Because. As the adsorbent that selectively adsorbs krypton, silica gel, activated carbon, zeolite having a molecular sieving effect, or the like can be used.

【0015】なお、この発明によれば、空気分離装置か
ら出る液化酸素中のクリプトンばかりでなく、放射性ク
リプトンを含む使用済核燃料再処理工場の排ガスの低温
蒸留回収設備におけるクリプトンの分離も、主成分ガス
が酸素から酸窒素混合ガスに置き換わるだけで、吸着目
的成分がクリプトンであることは同一であり、同様に高
純度のクリプトンを高収率で安価に得ることができる。
According to the present invention, not only the krypton in the liquefied oxygen discharged from the air separation device but also the krypton separation in the low temperature distillation recovery facility of the exhaust gas of the spent nuclear fuel reprocessing plant containing radioactive krypton is the main component. It is the same that the adsorption target component is krypton simply by replacing the gas with oxygen and the oxy-nitrogen mixed gas, and similarly, highly pure krypton can be obtained at a high yield at a low cost.

【0016】[0016]

【実施例】【Example】

実施例1 図1に示す工程図に示すとおり、酸素発生量が1500
0Nm3/Hrの全低圧式空気分離装置の精留塔1の主
凝縮器から150Nm3/Hrの液化酸素を抜き取りガ
ス化したところ、酸素ガス中に含有するクリプトンは7
0ppm、キセノンは31ppm、メタンは38pp
m、他の炭化水素は極微量であった。上記ガスを−17
0℃に冷却したキセノンを選択的に吸着するシリカゲル
を充填した吸着塔2に導入し、キセノンを選択的に吸着
させ、クリプトンを含有する酸素ガスはスルーさせた。
キセノンが除去されたスルーガスは、−170℃に冷却
したクリプトンを選択的に吸着する活性炭を充填した吸
着塔3にクリプトンが破過するまで流したのち、−50
℃まで加温してクリプトン濃度の低い脱着ガスを吸着塔
3の出口から排出し、さらに70℃まで加温し100T
orrまで減圧することでクリプトンを回収する。この
間炭化水素が高濃度にならないよう注意しながら、クリ
プトン濃縮ガスタンク4にクリプトン濃縮ガスを回収し
たところ、クリプトン2%、炭化水素類0.5%の濃度
であった。
Example 1 As shown in the process chart shown in FIG.
0 nm 3 / Hr was withdrawn gasifying liquefied oxygen 150 Nm 3 / Hr from the main condenser of the rectification column 1 of all the low-pressure air separation device, krypton contained in the oxygen gas 7
0ppm, xenon 31ppm, methane 38pp
m, other hydrocarbons were very small. -17 above gas
Xenon cooled to 0 ° C. was introduced into an adsorption tower 2 filled with silica gel that selectively adsorbs xenon, xenon was selectively adsorbed, and oxygen gas containing krypton was passed through.
The through gas from which xenon had been removed was passed through an adsorption tower 3 filled with activated carbon that selectively adsorbs krypton cooled to −170 ° C. until the krypton passed through the adsorption tower 3, and then -50
The desorption gas with a low krypton concentration was discharged from the outlet of the adsorption tower 3 by heating to 70 ° C and further heated to 70 ° C to 100T.
Krypton is recovered by reducing the pressure to orr. When the krypton-concentrated gas was recovered in the krypton-concentrated gas tank 4 while paying attention not to increase the hydrocarbon concentration during this period, the krypton concentration was 2% and the hydrocarbons concentration was 0.5%.

【0017】このクリプトン濃縮ガス回収の際は、加温
を急激に行うと活性炭に吸着されている炭化水素類が脱
着し、数%にまで濃度上昇する危険性を防止するため、
数回の酸素ガス希釈と真空回収を繰り返す脱着操作を行
うことが必要である。なお、クリプトンを選択的に吸着
する吸着剤としてシリカゲル、ゼオライトを用いれば、
脱着操作における酸素ガスでの希釈は必要ないが、吸着
塔3が大型化するため、この実施例1では吸着塔3を小
型化する目的で、クリプトンを選択的に吸着する活性炭
を用いた。クリプトン濃縮ガスタンク4のクリプトン濃
縮ガスは、触媒塔5に導入して炭化水素類を燃焼除去
し、生成する水分、炭酸ガスを除去塔6で除去した。炭
化水素類を燃焼除去したクリプトン濃縮ガスは、−17
0℃に冷却したクリプトンを選択的に吸着する活性炭を
充填した吸着塔7にクリプトンが破過するまで流したの
ち、−100℃まで加温してクリプトン濃度の低いもの
を吸着塔7の出口から排出したのち、−100℃で製品
ガスタンク8から製品クリプトンガスの一部を吸着塔7
に流し、吸着塔7内の酸素をパージした後、70℃まで
加温してクリプトンを回収した。回収したクリプトンの
純度は、99.9%であった。
During the recovery of the krypton concentrated gas, in order to prevent the risk that the hydrocarbons adsorbed on the activated carbon will be desorbed and the concentration will rise to several% when the heating is rapidly performed,
It is necessary to perform a desorption operation in which oxygen gas dilution and vacuum recovery are repeated several times. If silica gel or zeolite is used as an adsorbent that selectively adsorbs krypton,
Although it is not necessary to dilute with an oxygen gas in the desorption operation, the adsorption tower 3 becomes large in size. Therefore, in this Example 1, activated carbon that selectively adsorbs krypton was used for the purpose of downsizing the adsorption tower 3. The krypton concentrated gas in the krypton concentrated gas tank 4 was introduced into the catalyst tower 5 to burn and remove hydrocarbons, and the produced water and carbon dioxide gas were removed in the removal tower 6. The krypton enriched gas from which hydrocarbons have been burned and removed is -17
After flowing through an adsorption tower 7 filled with activated carbon that selectively adsorbs krypton cooled to 0 ° C. until the krypton breaks through, it is heated to −100 ° C. and a low krypton concentration is discharged from the outlet of the adsorption tower 7. After being discharged, a part of the product krypton gas is adsorbed from the product gas tank 8 at -100 ° C.
After purging oxygen in the adsorption tower 7, it was heated to 70 ° C. and krypton was recovered. The purity of the recovered krypton was 99.9%.

【0018】上記吸着塔7を製品クリプトンガスの一部
でパージしたときの排ガスを、クリプトン濃縮ガスタン
ク4に回収したところ、クリプトンの回収率は、95%
まで向上することができた。前記クリプトンを選択的に
吸着する活性炭を充填した吸着塔3からのクリプトン濃
縮ガスの回収における温度範囲としては、酸素の液化温
度以上で可能であるが、−150〜−180℃程度でク
リプトン濃度が高い。また、クリプトンを選択的に吸着
する活性炭を充填した吸着塔7からのクリプトンの回収
における温度範囲としては、酸素の液化温度以上で可能
であるが、−150〜−180℃程度でクリプトン濃度
が高い。さらに、吸着塔2、3、7の吸着圧力は、大気
圧〜3.0kg/cm2・Gで十分である。
The exhaust gas obtained when the adsorption tower 7 was purged with a part of the product krypton gas was recovered in the krypton concentrated gas tank 4, and the recovery rate of krypton was 95%.
Was able to improve. The temperature range for recovering the krypton-enriched gas from the adsorption tower 3 packed with activated carbon that selectively adsorbs krypton can be a temperature above the liquefaction temperature of oxygen, but the krypton concentration is about -150 to -180 ° C. high. The temperature range for recovering krypton from the adsorption tower 7 filled with activated carbon that selectively adsorbs krypton can be equal to or higher than the liquefaction temperature of oxygen, but the krypton concentration is high at about -150 to -180 ° C. . Further, the adsorption pressure of the adsorption towers 2 , 3, 7 is sufficient to be atmospheric pressure to 3.0 kg / cm 2 · G.

【0019】実施例2 図2の工程図に示すとおり、実施例1と同じく精留塔1
の主凝縮器から抜き出しガス化したクリプトン70pp
m、キセノン31ppm、メタン38ppm、他の炭化
水素極微量を含有する酸素ガスを、−170℃に冷却し
たキセノンを選択的に吸着するシリカゲルを充填した吸
着塔2に導入し、キセノンを選択的に吸着させ、クリプ
トンを含有する酸素ガスはスルーさせた。キセノンが除
去されたスルーガスは、−170℃に冷却したクリプト
ンを選択的に吸着する活性炭を充填した吸着塔3にクリ
プトンが破過するまで流したのち、70℃まで加温し1
00Torrまで減圧して炭化水素が高濃度にならない
よう注意しながら、クリプトン濃縮ガスタンク4にクリ
プトン濃縮ガスを回収したところ、クリプトン2%、炭
化水素類0.5%の濃度であった。
Example 2 As shown in the process diagram of FIG. 2, the rectification column 1 is the same as in Example 1.
70pp of gasified krypton extracted from the main condenser of
m, xenon 31 ppm, methane 38 ppm, and an oxygen gas containing a very small amount of other hydrocarbons are introduced into an adsorption tower 2 filled with silica gel that selectively adsorbs xenon cooled to -170 ° C. to selectively xenon the xenon. It was adsorbed and oxygen gas containing krypton was passed through. The through gas from which xenon had been removed was passed through an adsorption tower 3 filled with activated carbon that selectively adsorbs krypton cooled to -170 ° C until krypton passed through, and then heated to 70 ° C.
When the krypton concentrated gas was recovered in the krypton concentrated gas tank 4 while paying attention not to increase the hydrocarbon concentration by reducing the pressure to 00 Torr, the krypton concentration was 2% and the hydrocarbons concentration was 0.5%.

【0020】クリプトン濃縮ガスタンク4のクリプトン
濃縮ガスは、触媒塔5に導入して炭化水素類を燃焼除去
し、生成する水分、炭酸ガスを除去塔6で除去した。炭
化水素類を燃焼除去したクリプトン濃縮ガスは、−15
0℃に冷却したクリプトンを選択的に吸着する活性炭を
充填した吸着塔7にクリプトンが破過するまで流したの
ち、−100℃まで加温してクリプトン濃度の低いもの
を吸着塔7の出口から排出したのち、−100℃から7
0℃まで加温して真空ポンプによりクリプトンをタンク
9に回収した。回収したクリプトンの濃度は、95%で
あった。その後吸着塔7を高真空にすることによって吸
着されているキセノンを大気に放出する。このタンク9
に回収したガスを−20℃に冷却したクリプトンを選択
的に吸着する活性炭を充填した吸着塔10にクリプトン
が破過するまで流したのち、製品ガスタンク8から製品
クリプトンガスの一部を吸着塔10に流し、吸着塔10
内の酸素をパージした後、90℃まで加温してクリプト
ンを回収し、デオキソ11を通過させて脱酸素を行い、
製品タンク8に回収した。回収したクリプトンの純度
は、99.995%であった。
The krypton enriched gas in the krypton enriched gas tank 4 was introduced into the catalyst tower 5 to burn and remove hydrocarbons, and the produced water and carbon dioxide gas were removed in the removal tower 6. The krypton-enriched gas from which hydrocarbons have been burned and removed is -15
After flowing through an adsorption tower 7 filled with activated carbon that selectively adsorbs krypton cooled to 0 ° C. until krypton breaks through, it is heated to −100 ° C. and a low krypton concentration is discharged from the outlet of the adsorption tower 7. After discharging, -100 ℃ to 7
After heating to 0 ° C., krypton was collected in the tank 9 by a vacuum pump. The concentration of krypton recovered was 95%. Then, the adsorption tower 7 is evacuated to a high vacuum to release the adsorbed xenon to the atmosphere. This tank 9
The recovered gas was cooled to −20 ° C. and passed through an adsorption tower 10 filled with activated carbon that selectively adsorbs krypton until the krypton breaks through. Then, a part of the product krypton gas is adsorbed from the product gas tank 8. Flow to the adsorption tower 10
After purging the oxygen in it, it was heated to 90 ° C. to collect krypton, and deoxygenated by passing through deoxo 11.
It was collected in the product tank 8. The purity of the recovered krypton was 99.995%.

【0021】なお、吸着塔10を製品クリプトンガスの
一部でパージしたときの排ガスは、クリプトン濃縮ガス
タンク4またはタンク9に回収し、吸着塔7の排ガスの
うちクリプトン濃度の高い部分は、クリプトン濃縮ガス
タンク4に回収したところ、クリプトンの回収率を95
%まで向上することができた。また、吸着塔3、7から
の回収における温度範囲は、実施例1に記載した温度と
同じであり、吸着塔10からのクリプトン回収における
温度範囲は、−100℃〜常温でクリプトン回収率が高
い。
Exhaust gas obtained when the adsorption tower 10 is purged with a part of the product krypton gas is recovered in the krypton enriched gas tank 4 or tank 9, and the portion of the exhaust gas in the adsorption tower 7 having a high krypton concentration is krypton enriched. When recovered in the gas tank 4, the recovery rate of krypton is 95
It was possible to improve to%. The temperature range in the recovery from the adsorption towers 3 and 7 is the same as the temperature described in Example 1, and the temperature range in the krypton recovery from the adsorption tower 10 is −100 ° C. to room temperature and the krypton recovery rate is high. .

【0022】[0022]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、吸着操作を主体としてクリプトンを重点的に濃縮す
るため、従来の精留を主体とするクリプトン製造方法に
比較し、高圧設備を必要とせず、また、アルゴンや窒素
で酸素を置換する必要もなく、炭化水素類の濃縮による
爆発の危険がなく、安全かつ高収率で安価に高純度のク
リプトンを製造することができる。
As described above, according to the method of the present invention, since the krypton is concentrated mainly by the adsorption operation, a high-pressure facility is required as compared with the conventional krypton production method mainly by the rectification. In addition, it is not necessary to replace oxygen with argon or nitrogen, there is no danger of explosion due to the concentration of hydrocarbons, and high-purity krypton can be produced safely, at high yield, and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1における工程図である。FIG. 1 is a process drawing in a first embodiment of the present invention.

【図2】この発明の実施例2における工程図である。FIG. 2 is a process drawing of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 精留塔 2、3、7、10 吸着塔 4 クリプトン濃縮ガスタンク 5 触媒塔 6 除去塔 8 製品ガスタンク 9 タンク 11 デオキソ 1 rectification tower 2, 3, 7, 10 adsorption tower 4 krypton concentrated gas tank 5 catalyst tower 6 removal tower 8 product gas tank 9 tank 11 deoxo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気分離装置の上部精留塔主凝縮器の液
化酸素中に含有されるクリプトンを、キセノンを選択的
に吸着する吸着剤を充填した吸着塔に導入し、キセノン
を吸着させてクリプトンを該吸着塔からスルーさせるこ
とによってキセノンと分離したのち、クリプトンを選択
的に吸着する吸着剤を充填した複数の吸着塔に導入し、
吸脱着を行うことによって順次クリプトンを濃縮したの
ち、触媒塔に導入して炭化水素類を触媒により燃焼除去
し、高純度クリプトンを得ることを特徴とするクリプト
ンの製造方法。
1. A krypton contained in liquefied oxygen in a main condenser of an upper rectification column of an air separation unit is introduced into an adsorption column filled with an adsorbent which selectively adsorbs xenon to adsorb xenon. After separating krypton from xenon by letting it pass through the adsorption tower, it is introduced into a plurality of adsorption towers filled with an adsorbent that selectively adsorbs krypton,
A method for producing krypton, which comprises successively concentrating krypton by adsorption and desorption, and then introducing it into a catalyst column to burn and remove hydrocarbons by a catalyst to obtain high-purity krypton.
【請求項2】 空気分離装置の上部精留塔主凝縮器から
導出されるクリプトン含有液化酸素をガス化し、酸素の
液化温度より高い温度で、かつキセノンを選択的に吸着
する吸着剤を充填した吸着塔に導入し、キセノンを吸着
させてクリプトンを該吸着塔からスルーさせることによ
ってキセノンと分離したのち、クリプトンを選択的に吸
着する吸着剤を充填した吸着塔にクリプトンが破過する
まで流し、吸着したガス中の炭化水素が爆発限界に入ら
ないよう酸素を充圧しつつ脱着してクリプトンを濃縮回
収し、回収ガスを触媒塔に導入して炭化水素類を燃焼除
去したクリプトン濃縮ガスを、その液化温度より高い温
度に冷却し、かつクリプトンを選択的に吸着する吸着剤
を充填した吸着塔にクリプトンが破過するまで流し、そ
の後製品ガスの一部で吸着塔内をパージし、高純度クリ
プトンを得ることを特徴とするクリプトンの製造方法。
2. A krypton-containing liquefied oxygen discharged from a main condenser of an upper rectification column of an air separation device is gasified and filled with an adsorbent having a temperature higher than the liquefaction temperature of oxygen and selectively adsorbing xenon. Introduced into the adsorption tower, after the xenon is adsorbed and krypton is separated from the xenon by passing through the adsorption tower, the adsorption tower filled with the adsorbent for selectively adsorbing krypton is flowed until the krypton breaks through, The krypton enriched gas obtained by desorbing and desorbing krypton while charging oxygen so that the hydrocarbons in the adsorbed gas do not reach the explosive limit and introducing the recovered gas into the catalyst tower to burn and remove hydrocarbons, Cool it to a temperature higher than the liquefaction temperature and let it flow through an adsorption column filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through, then part of the product gas. A high-purity krypton is obtained by purging the inside of the adsorption tower with.
【請求項3】 空気分離装置の上部精留塔主凝縮器から
導出されるクリプトン含有液化酸素をガス化し、酸素の
液化温度より高い温度で、かつキセノンを選択的に吸着
する吸着剤を充填した吸着塔に導入し、キセノンを吸着
させてクリプトンを該吸着塔からスルーさせることによ
ってキセノンと分離したのち、クリプトンを選択的に吸
着する吸着剤を充填した吸着塔にクリプトンが破過する
まで流し、吸着したガス中の炭化水素が爆発限界に入ら
ないよう酸素を充圧しつつ脱着してクリプトンを濃縮回
収し、回収ガスを触媒塔に導入して炭化水素類を触媒に
より燃焼除去したクリプトン濃縮ガスを、その液化温度
より高い温度に冷却し、かつクリプトンを選択的に吸着
する吸着剤を充填した吸着塔にクリプトンが破過するま
で流してクリプトンを濃縮回収し、さらに塔内を高真空
にして吸着されているキセノンを除去し、その後クリプ
トン濃縮ガスをその液化温度より高い温度に冷却し、か
つクリプトンを選択的に吸着する吸着剤を充填した吸着
塔にクリプトンが破過するまで流したのち、製品ガスの
一部で吸着塔内をパージし、高純度クリプトンを得るこ
とを特徴とするクリプトンの製造方法。
3. A krypton-containing liquefied oxygen discharged from a main condenser of an upper rectification column of an air separation device is gasified, and is filled with an adsorbent having a temperature higher than the liquefaction temperature of oxygen and selectively adsorbing xenon. Introduced into the adsorption tower, after the xenon is adsorbed and krypton is separated from the xenon by passing through the adsorption tower, the adsorption tower filled with the adsorbent for selectively adsorbing krypton is flowed until the krypton breaks through, The adsorbed gas is desorbed while being filled with oxygen so that the hydrocarbons do not reach the explosive limit, and krypton is concentrated and recovered, and the recovered gas is introduced into the catalyst tower to burn and remove hydrocarbons by the catalyst to remove the krypton concentrated gas. , It is cooled to a temperature higher than its liquefaction temperature, and is flowed through an adsorption column filled with an adsorbent that selectively adsorbs krypton until the krypton breaks through. Was concentrated and recovered, and the column was evacuated to a high vacuum to remove the adsorbed xenon, after which the krypton concentrated gas was cooled to a temperature higher than its liquefaction temperature and charged with an adsorbent that selectively adsorbs krypton. A method for producing krypton, characterized in that high-purity krypton is obtained by allowing the krypton to flow through the adsorption tower until it breaks through and then purging the inside of the adsorption tower with a part of the product gas.
JP17443395A 1995-06-15 1995-06-15 Krypton manufacturing method Expired - Fee Related JP3294067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17443395A JP3294067B2 (en) 1995-06-15 1995-06-15 Krypton manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17443395A JP3294067B2 (en) 1995-06-15 1995-06-15 Krypton manufacturing method

Publications (2)

Publication Number Publication Date
JPH092808A true JPH092808A (en) 1997-01-07
JP3294067B2 JP3294067B2 (en) 2002-06-17

Family

ID=15978450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17443395A Expired - Fee Related JP3294067B2 (en) 1995-06-15 1995-06-15 Krypton manufacturing method

Country Status (1)

Country Link
JP (1) JP3294067B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694775B1 (en) 2002-12-12 2004-02-24 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
WO2008111488A1 (en) * 2007-03-09 2008-09-18 Taiyo Nippon Sanso Corporation Process for the concentration of xenon and equipment therefor
CN109292743A (en) * 2018-11-09 2019-02-01 瀚沫能源科技(上海)有限公司 The device and method thereof of concentrated krypton-xenon concentrate in a kind of liquid oxygen
US11460246B2 (en) 2019-12-18 2022-10-04 Air Products And Chemicals, Inc. Recovery of krypton and xenon from liquid oxygen
US11679979B2 (en) 2018-05-08 2023-06-20 Curium Us Llc Systems and methods for production of Xenon-133

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389683B (en) * 2011-08-15 2014-05-28 西北核技术研究所 Method and device for separating krypton from xenon by using active carbon

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694775B1 (en) 2002-12-12 2004-02-24 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
US6829907B2 (en) 2002-12-12 2004-12-14 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
US6848269B2 (en) 2002-12-12 2005-02-01 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
JP2010185658A (en) * 2002-12-12 2010-08-26 Air Products & Chemicals Inc Method and apparatus for recovering krypton and/or xenon
JP2010185659A (en) * 2002-12-12 2010-08-26 Air Products & Chemicals Inc Method and apparatus for recovering krypton and/or xenon
EP2253913A2 (en) 2002-12-12 2010-11-24 Air Products and Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
EP2253912A2 (en) 2002-12-12 2010-11-24 Air Products and Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
WO2008111488A1 (en) * 2007-03-09 2008-09-18 Taiyo Nippon Sanso Corporation Process for the concentration of xenon and equipment therefor
JP5248478B2 (en) * 2007-03-09 2013-07-31 大陽日酸株式会社 Xenon concentration method and concentration apparatus
US11679979B2 (en) 2018-05-08 2023-06-20 Curium Us Llc Systems and methods for production of Xenon-133
CN109292743A (en) * 2018-11-09 2019-02-01 瀚沫能源科技(上海)有限公司 The device and method thereof of concentrated krypton-xenon concentrate in a kind of liquid oxygen
US11460246B2 (en) 2019-12-18 2022-10-04 Air Products And Chemicals, Inc. Recovery of krypton and xenon from liquid oxygen

Also Published As

Publication number Publication date
JP3294067B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US5039500A (en) Process for producing xenon
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
AU670808B2 (en) Purification of oxygen by cryogenic adsorption
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
RU2707767C1 (en) Cryogenic adsorption process for xenon extracting
US11650010B2 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
JP3863483B2 (en) Xenon and / or krypton recovery method and adsorption device
US20030106335A1 (en) Process and adsorbent for the recovery of krypton and xenon from a gas or liquid stream
JPH0313161B2 (en)
JPH06171B2 (en) Improved adsorption purification method
US4874592A (en) Production process of xenon
JPH07194918A (en) Method of refining mixture of specific fluid component and at least one kind of impurity
JPH092808A (en) Production of krypton
JP3824838B2 (en) Noble gas recovery method
JPH08152262A (en) Circulating and adsorbing apparatus for rare gas separating process
JPS6137970B2 (en)
JP3268177B2 (en) Method for producing neon and helium
JP3639087B2 (en) Helium recovery method
JP3256811B2 (en) Method for purifying krypton and xenon
JP3424100B2 (en) Method for purifying krypton and xenon
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPS6129768B2 (en)
KR910002383B1 (en) Production of xenon
JP2585013B2 (en) How to purify xenon
JPH0460052B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees