JPH0460052B2 - - Google Patents

Info

Publication number
JPH0460052B2
JPH0460052B2 JP61047850A JP4785086A JPH0460052B2 JP H0460052 B2 JPH0460052 B2 JP H0460052B2 JP 61047850 A JP61047850 A JP 61047850A JP 4785086 A JP4785086 A JP 4785086A JP H0460052 B2 JPH0460052 B2 JP H0460052B2
Authority
JP
Japan
Prior art keywords
xenon
gas
adsorption
concentrated
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61047850A
Other languages
Japanese (ja)
Other versions
JPS62297206A (en
Inventor
Masami Shino
Hideaki Takano
Jitsuo Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
Original Assignee
KYODO SANSO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO filed Critical KYODO SANSO
Priority to JP4785086A priority Critical patent/JPS62297206A/en
Publication of JPS62297206A publication Critical patent/JPS62297206A/en
Publication of JPH0460052B2 publication Critical patent/JPH0460052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • F25J3/04757Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/36Xenon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、空気分離装置の主凝縮器の液体酸
素から簡単な設備により、安全かつ高収率で高純
度キセノンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing high purity xenon safely and in high yield using simple equipment from liquid oxygen in the main condenser of an air separation device.

従来の技術 キセノンは空気中に0.086ppmという僅かな量
しか含まれていないため、現在では大型の空気分
離装置の上部精留塔主凝縮器の液体酸素中からク
リプトンと併産されており、キセノンだけを製造
する方法はない。
Conventional technology Since xenon is contained in the air in a small amount of 0.086 ppm, it is currently co-produced with krypton from the liquid oxygen in the main condenser of the upper rectification column of large air separation equipment. There is no way to manufacture only one.

従来法では、クリプトンの濃縮に伴つて液体酸
素中の炭化水素特にメタンが濃縮され爆発の危険
が生じる。そのため、従来から種々の方法が提案
されており、例えば炭化水素類が爆発の危険性の
ない程度までクリプトン、キセノンの濃度を抑制
し、触媒で炭化水素類を燃焼除去した後、精留で
クリプトン、キセノンを濃縮する方法((株)フジ・
テクノシステム技術資料(61−2−1)P430〜
431)、アルゴン置換塔を設け、ここで酸素とアル
ゴンを置換した後、クリプトン、キセノンを精留
で濃縮する方法(特公昭47−22937)、高圧窒素と
酸素を置換した後、クリプトン、キセノンを精留
で濃縮する方法(特開昭57−95583)等がある。
In the conventional method, as krypton is concentrated, hydrocarbons, particularly methane, in liquid oxygen are concentrated, creating a risk of explosion. For this reason, various methods have been proposed in the past. For example, the concentration of krypton and xenon is suppressed to a level where the hydrocarbons do not pose an explosion risk, and after the hydrocarbons are burned off with a catalyst, the krypton and xenon are removed by rectification. , Method for concentrating xenon (Fuji Co., Ltd.)
Technosystem technical data (61-2-1) P430~
431), a method in which an argon displacement column is provided, in which oxygen and argon are replaced, and then krypton and xenon are concentrated by rectification (Japanese Patent Publication No. 47-22937), after replacing oxygen with high-pressure nitrogen, krypton and xenon are concentrated. There is a method of concentrating by rectification (Japanese Patent Application Laid-open No. 57-95583).

発明が解決しようとする問題点 空気分離装置の上部精留塔主凝縮器から導出さ
れる液体酸素中にはキセノンが数+ppm程度、他
にクリプトン及び炭化水素類が含まれており、ク
リプトンとキセノンを併産する場合には、クリプ
トンの濃縮に伴いメタン等の炭化水素類も濃縮さ
れる。そのため、クリプトン、キセノンの濃縮を
押え、触媒で炭化水素類を燃焼除去したり、又は
酸素とアルゴンもしくは窒素と置換しなければな
らなかつた。又、炭化水素の爆発を防止する観点
からクリプトン、キセノンの濃縮度が押えられる
ため、クリプトン、キセノンを高純度化するには
多段階の精留操作が必要であり、酸素とアルゴン
の置換や酸素と高圧窒素の置換が必要で、設備コ
ストが高くなると共にキセノン収率が低いという
欠点がある。
Problems to be Solved by the Invention The liquid oxygen derived from the main condenser of the upper rectification column of the air separation device contains xenon of several ppm, as well as krypton and hydrocarbons. When krypton is co-produced, hydrocarbons such as methane are also concentrated as krypton is concentrated. Therefore, it was necessary to suppress the concentration of krypton and xenon, burn off hydrocarbons with a catalyst, or replace oxygen with argon or nitrogen. In addition, the concentration of krypton and xenon is limited in order to prevent explosions of hydrocarbons, so a multi-step rectification operation is required to purify krypton and xenon, such as replacing oxygen with argon and This method requires replacement with high-pressure nitrogen, resulting in high equipment costs and low xenon yields.

この発明は、かかる現状にかんがみ、空気分離
装置の上部精留塔主凝縮器から導出される液体酸
素よりキセノンを安全かつ高純度、高収率で安価
に製造する方法を提案するものである。
In view of the current situation, the present invention proposes a method for safely producing xenon with high purity, high yield, and low cost from liquid oxygen derived from the main condenser of the upper rectification column of an air separation device.

問題点を解決するための手段 この発明は、空気分離装置の上部精留塔主凝縮
器から導出されるキセノン含有液体酸素を、キセ
ノンを選択的に吸着する吸着剤を充填した複数の
吸着塔に導入して吸脱着を行なうことにより、順
次キセノンを濃縮すると共に、キセノン純度向上
のため炭化水素類を触媒で燃焼除去し高純度キセ
ノンを製造することにある。
Means for Solving the Problems This invention transfers xenon-containing liquid oxygen derived from the main condenser of the upper rectification column of an air separation device to a plurality of adsorption columns filled with an adsorbent that selectively adsorbs xenon. By introducing xenon and performing adsorption and desorption, xenon is successively concentrated, and hydrocarbons are burned off with a catalyst to improve xenon purity, thereby producing high-purity xenon.

この発明において、キセノンを選択的に吸着す
る吸着剤を使用するのは、キセノン含有酸素ガス
を吸着塔に流し、塔出口からキセノンが流出し始
めた時点で原料ガスの供給を止め、吸着したキセ
ノンを回収すれば、高収率で得ることができるた
めであると同時に、メタン濃縮による爆発の危険
性を防止するためである。
In this invention, an adsorbent that selectively adsorbs xenon is used. Oxygen gas containing xenon is passed through an adsorption tower, and when xenon begins to flow out from the tower outlet, the supply of raw material gas is stopped, and the adsorbed xenon is This is because if methane is recovered, it can be obtained in high yield, and at the same time, the risk of explosion due to methane concentration is prevented.

なお、キセノン以外の非着目物質を選択的に吸
着する吸着剤を使用した場合は、吸着剤の再生工
程で吸着塔に残存するキセノンを系外に放出せざ
るを得ないため収率は前記方法に比べて低い。
Note that if an adsorbent that selectively adsorbs non-target substances other than xenon is used, the xenon remaining in the adsorption tower must be released from the system during the adsorbent regeneration process, so the yield will be lower than the above method. lower than that.

又、複数の吸着塔を使用するのは、原料ガス中
のキセノンを順次濃縮し高純度化すると共に吸着
塔の排ガスをリサイクルさせることにより、系外
に排出するキセノンを最小限に押えることができ
るためである。
In addition, the use of multiple adsorption towers allows the xenon in the raw material gas to be sequentially concentrated and purified, and by recycling the exhaust gas from the adsorption towers, it is possible to minimize the amount of xenon discharged outside the system. It's for a reason.

さらに、高純度キセノンを回収する前に製品ガ
スの一部で吸着塔内をパージする場合には、パー
ジにより塔内に残存するクリプトン、酸素を系外
に追い出し、より少ない塔数でキセノンの高純度
化を達成できる。
Furthermore, when purging the inside of the adsorption tower with a part of the product gas before recovering high-purity xenon, the krypton and oxygen remaining in the tower can be expelled from the system by purging, resulting in high xenon production with fewer columns. Purification can be achieved.

上記キセノンを選択的に吸着する吸着剤として
は、シリカゲル、活性炭、あるいは分子ふるい効
果のあるゼオライト等を使用する。
As the adsorbent for selectively adsorbing xenon, silica gel, activated carbon, zeolite having a molecular sieving effect, or the like is used.

作 用 この発明によれば、空気分離装置の上部精留塔
主凝縮器から導出した液体酸素中から主としてキ
セノンを吸着剤に吸着させて分離するから、炭化
水素類の爆発の危険性がなく高度に濃縮し、高純
度のキセノンを得ることができる。
Effects According to this invention, since xenon is mainly separated from the liquid oxygen derived from the main condenser of the upper rectification column of the air separation device by adsorbing it to the adsorbent, there is no risk of explosion of hydrocarbons and the It is possible to obtain highly pure xenon by concentrating it into

発明の効果 この発明は、吸着操作を主体としてキセノンを
重点的に濃縮するため、従来の精留を主体とする
クリプトン、キセノン併産によるキセノン製造方
法に比べ、高圧設備を必要とせず、又アルゴンや
窒素で置換する必要もなく、炭化水素類の濃縮に
よる爆発の危険がなく、安全かつ高収率で安価に
高純度キセノンを製造できる。
Effects of the Invention This invention concentrates xenon primarily through adsorption operations, and therefore does not require high-pressure equipment and does not require argon There is no need for substitution with hydrogen or nitrogen, there is no danger of explosion due to concentration of hydrocarbons, and high-purity xenon can be produced safely, in high yield, and at low cost.

実施例 この発明を実施例に基いて詳細に説明する。Example This invention will be explained in detail based on examples.

実施例 1 第1図の工程図に示すように、酸素発生量が
15000Nm3/Hrの全低圧式空気分離装置の精留塔
1の主凝縮器から150Nm3/Hrの液体酸素を抜き
取りガス化したとき含有するキセノンは31ppm、
クリプトンは70ppm、メタンは38ppm、他の炭化
水素は極く微量であつた。
Example 1 As shown in the process diagram of Figure 1, the amount of oxygen generated was
When 150Nm 3 /Hr of liquid oxygen was extracted from the main condenser of rectification column 1 of the 15000Nm 3 /Hr total low-pressure air separation device and gasified, the xenon content was 31ppm.
Krypton was 70 ppm, methane was 38 ppm, and other hydrocarbons were in extremely small amounts.

上記ガスを−170℃に冷却したシリカゲル充填
の吸着塔2にキセノンが破過するまで流した後、
120℃まで加温し100Torrまで減圧してキセノン
濃縮がスタンク9に回収するとキセノンが1.4%、
クリプトンが0.14%、炭化水素類が0.066%の濃
度であつた。この際の炭化水素類の濃度は爆発限
界以下である。
After flowing the above gas into an adsorption tower 2 filled with silica gel cooled to -170°C until xenon breaks through,
When heated to 120℃ and depressurized to 100Torr, the xenon concentration is collected in tank 9, resulting in 1.4% xenon.
The concentration was 0.14% for krypton and 0.066% for hydrocarbons. The concentration of hydrocarbons at this time is below the explosive limit.

上記濃縮ガスを触媒塔3に導入し、炭化水素類
を除去し生成する水分、炭酸ガスを除去塔4で除
去した後、上記濃縮ガスを−150℃のシリカゲル
充填の吸着塔5にキセノンが破過するまで流し、
−100℃まで加温してキセノン濃度の低いものを
吸着塔出口側から排出した後、−100℃で製品ガス
タンク6から製品ガスの一部を吸着塔5に流し、
吸着塔内のクリプトン、酸素をパージした後常温
まで加温しキセノンを回収した。この際のキセノ
ン純度は99.9%であつた。
The concentrated gas is introduced into the catalyst tower 3, hydrocarbons are removed, and the generated moisture and carbon dioxide are removed in the removal tower 4. The concentrated gas is then transferred to an adsorption tower 5 filled with silica gel at -150°C to remove xenon. Rinse it until it passes,
After heating to -100°C and discharging the low xenon concentration from the adsorption tower outlet side, a part of the product gas is flowed from the product gas tank 6 to the adsorption tower 5 at -100°C.
After purging the krypton and oxygen in the adsorption tower, it was heated to room temperature and xenon was recovered. The xenon purity at this time was 99.9%.

この実施例の他に吸着塔5を製品ガスの一部で
パージしたときの排ガスをキセノン濃縮ガスタン
ク9に回収すればキセノンの回収率を95%まで向
上することができる。
In addition to this embodiment, if the exhaust gas generated when the adsorption tower 5 is purged with a portion of the product gas is recovered into the xenon concentrated gas tank 9, the recovery rate of xenon can be improved to 95%.

又、吸着塔2に酸素ガスをキセノンが破過する
まで流した後回収する際比較的高濃度にキセノン
が脱着してくる条件、すなわち常温から120℃ま
で加熱し100Torrまで減圧して脱着ガスを回収す
れば、キセノン9.3%、クリプトン0.51%、炭化
水素類0.24%を含むガスが得られ、そのガスの炭
化水素類を除去した後、冷却した吸着塔5に導入
すれば塔内をパージするのに必要な製品ガス量を
減少できる。
In addition, after flowing oxygen gas into the adsorption tower 2 until xenon breaks through, the conditions are such that xenon is desorbed at a relatively high concentration during recovery, i.e., heating from room temperature to 120°C and reducing the pressure to 100 Torr to remove the desorbed gas. If recovered, a gas containing 9.3% xenon, 0.51% krypton, and 0.24% hydrocarbons will be obtained, and after removing the hydrocarbons from this gas, it will be introduced into the cooled adsorption tower 5 to purge the inside of the tower. can reduce the amount of product gas required.

なお、精留塔1の後に吸着塔2と水分、炭酸ガ
スの除去塔4を配置したのは、吸着塔2の回収ガ
ス中のキセノン濃度が低いため除去塔4での再生
時のキセノンの損失を最小限に押えられることに
ある。
The reason why the adsorption tower 2 and the moisture and carbon dioxide gas removal tower 4 are placed after the rectification tower 1 is to prevent the loss of xenon during regeneration in the removal tower 4 since the concentration of xenon in the gas recovered from the adsorption tower 2 is low. The goal is to keep the amount of energy to a minimum.

又、吸着塔2の温度範囲としては酸素の液化温
度以上で可能であるが、−150〜−180℃程度でキ
セノン濃度が高く、吸着塔5ではキセノンの液化
温度以上で可能であるが−120〜−150℃程度でキ
セノン濃度が高い。又、吸着塔の吸着圧力は大気
圧〜3.0Kg/cmGである。
In addition, although the temperature range of the adsorption tower 2 is above the liquefaction temperature of oxygen, the xenon concentration is high at around -150 to -180°C, and the temperature range of the adsorption tower 5 is possible above the liquefaction temperature of xenon, but it is -120°C. The xenon concentration is high at ~-150℃. Further, the adsorption pressure of the adsorption tower is from atmospheric pressure to 3.0 kg/cmG.

実施例 2 第2図の工程図に示すように、実施例1と同じ
く精留塔1の主凝縮器から抜き出しガス化した酸
素ガスを吸着塔2に流しキセノン濃度を1.4%に
濃縮したガスを触媒塔3に導びき、ここで炭化水
素類を燃焼除去し生成する炭酸ガスと水分を除去
塔4で除去した後のキセノン濃縮ガスを−150℃
の吸着塔5にキセノンが破過するまで流した後、
−100℃〜常温まで加温したときの脱着ガスを回
収した。このときのキセノン濃度は94%であつ
た。
Example 2 As shown in the process diagram of Fig. 2, as in Example 1, the gasified oxygen gas extracted from the main condenser of the rectification column 1 was flowed into the adsorption column 2, and the gas was concentrated to a xenon concentration of 1.4%. The xenon concentrated gas is led to the catalyst tower 3, where the hydrocarbons are burned and removed, and the generated carbon dioxide and water are removed in the removal tower 4.
After flowing xenon into the adsorption tower 5 until it breaks through,
The desorbed gas was collected when heated from -100°C to room temperature. The xenon concentration at this time was 94%.

この回収ガスを−20℃の活性炭充填の吸着塔7
にキセノンが破過するまで流した後、製品ガスの
一部で吸着塔7内をパージした後、90℃まで加温
してキセノンを回収し、その後デオキソを通して
脱酸素を行ない99.995%以上の高純度キセノンを
製造することができた。
This recovered gas is transferred to an adsorption tower 7 packed with activated carbon at -20°C.
After passing the gas until xenon breaks through, purge the interior of the adsorption tower 7 with a part of the product gas, heat it to 90°C to recover the xenon, and then deoxygenate it through deoxo to achieve a high concentration of 99.995% or more. It was possible to produce pure xenon.

なお、吸着塔5の脱着時の排ガスをキセノン濃
縮ガスタンク9に回収し、吸着塔7の排ガスのう
ちキセノン濃度の高い部分をキセノン濃縮ガスタ
ンク10に回収すればキセノン回収率は95%であ
つた。
Note that if the exhaust gas from the adsorption tower 5 during desorption was collected into the xenon concentrated gas tank 9, and the part of the exhaust gas from the adsorption tower 7 with a high xenon concentration was collected into the xenon concentrated gas tank 10, the xenon recovery rate was 95%.

吸着塔2,5の温度範囲は実施例1に記載した
温度と同じであり、吸着塔7では−65℃〜常温程
度でキセノン回収率が高い。
The temperature range of the adsorption towers 2 and 5 is the same as that described in Example 1, and the xenon recovery rate in the adsorption tower 7 is high at about -65°C to room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例における工程図、
第2図はこの発明の他の実施例における工程図で
ある。 1……精留塔、2,5,7……吸着塔、3……
触媒塔、4……除去塔、6……製品ガスタンク、
8……デオキソ、9,10……キセノン濃縮ガス
タンク。
FIG. 1 is a process diagram of an embodiment of this invention.
FIG. 2 is a process diagram of another embodiment of the present invention. 1... Rectification column, 2, 5, 7... Adsorption column, 3...
Catalyst tower, 4...removal tower, 6...product gas tank,
8...Deoxo, 9,10...Xenon concentrated gas tank.

Claims (1)

【特許請求の範囲】 1 空気分離装置の上部精留塔主凝縮器の液体酸
素中のキセノンを、キセノンを選択的に吸着する
吸着剤を充填した複数の吸着塔に導入し、吸脱着
を行なうことにより、順次キセノンを濃縮すると
共に炭化水素類を触媒で燃焼除去し、高純度キセ
ノンを得ることを特徴とするキセノンの製造方
法。 2 空気分離装置の上部精留塔主凝縮器から導出
されるキセノン含有液体酸素をガス化して液化温
度より高い温度でかつキセノンを選択的に吸着す
る吸着剤を充填した吸着塔にキセノンが破過する
まで流しキセノンを濃縮回収し、当該ガス中の炭
化水素類を触媒で燃焼除去したキセノン濃縮ガス
をその液化温度より高い温度に冷却し、かつキセ
ノンを選択的に吸着する吸着剤を充填した吸着塔
にキセノンが破過するまで流し、その後製品ガス
の一部で吸着塔内をパージし、高純度のキセノン
を得ることを特徴とする特許請求の範囲第1項に
記載のキセノン製造方法。 3 空気分離装置の上部精留塔主凝縮器から導出
されるキセノン含有液体酸素をガス化して液化温
度より高い温度でかつキセノンを選択的に吸着す
る吸着剤を充填した吸着塔にキセノンが破過する
まで流しキセノンを濃縮回収し、当該ガス中の炭
化水素類を触媒で燃焼除去したキセノン濃縮ガス
をその液化温度より高い温度に冷却しかつキセノ
ンを選択的に吸着する吸着剤を充填した吸着塔に
キセノンが破過するまで流しキセノンを濃縮回収
し、その後キセノンを選択的に吸着する吸着剤を
充填した吸着塔に上記キセノン濃縮ガスをキセノ
ンが破過するまで流した後、製品ガスの一部で吸
着塔内をパージすることにより、高純度のキセノ
ンを回収することを特徴とする特許請求の範囲第
1項に記載のキセノン製造方法。
[Scope of Claims] 1. Xenon in liquid oxygen in the main condenser of the upper rectification column of an air separation device is introduced into a plurality of adsorption columns filled with an adsorbent that selectively adsorbs xenon to perform adsorption and desorption. A method for producing xenon, which comprises sequentially concentrating xenon and burning off hydrocarbons using a catalyst to obtain high-purity xenon. 2 The xenon-containing liquid oxygen derived from the main condenser of the upper rectification column of the air separation device is gasified and the xenon is passed through the adsorption column filled with an adsorbent that selectively adsorbs xenon at a temperature higher than the liquefaction temperature. The xenon concentrated gas is concentrated and recovered by flowing it until the xenon is concentrated and recovered, and the hydrocarbons in the gas are burned off with a catalyst.The xenon concentrated gas is cooled to a temperature higher than its liquefaction temperature, and the adsorption method is filled with an adsorbent that selectively adsorbs xenon. The method for producing xenon according to claim 1, characterized in that xenon is allowed to flow through the column until it breaks through, and then the interior of the adsorption column is purged with a portion of the product gas to obtain highly pure xenon. 3 The xenon-containing liquid oxygen derived from the main condenser of the upper rectification column of the air separation device is gasified and the xenon breaks through to an adsorption column filled with an adsorbent that selectively adsorbs xenon at a temperature higher than the liquefaction temperature. An adsorption tower filled with an adsorbent that selectively adsorbs xenon and cools the concentrated xenon gas to a temperature higher than its liquefaction temperature after concentrating and recovering the xenon and burning off the hydrocarbons in the gas with a catalyst. The xenon concentrated gas is passed through an adsorption tower filled with an adsorbent that selectively adsorbs xenon until xenon breaks through, and then a part of the product gas is concentrated and recovered. 2. The method for producing xenon according to claim 1, wherein highly pure xenon is recovered by purging the inside of the adsorption tower.
JP4785086A 1986-03-05 1986-03-05 Production of xenon Granted JPS62297206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4785086A JPS62297206A (en) 1986-03-05 1986-03-05 Production of xenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4785086A JPS62297206A (en) 1986-03-05 1986-03-05 Production of xenon

Publications (2)

Publication Number Publication Date
JPS62297206A JPS62297206A (en) 1987-12-24
JPH0460052B2 true JPH0460052B2 (en) 1992-09-25

Family

ID=12786843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4785086A Granted JPS62297206A (en) 1986-03-05 1986-03-05 Production of xenon

Country Status (1)

Country Link
JP (1) JPS62297206A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794048B2 (en) * 1990-10-13 1998-09-03 共同酸素株式会社 Xenon concentration adjustment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117997A (en) * 1974-04-26 1976-10-16 Le Tekunorojichiesukii I Koroj Separation of kryptonnxenon condensate from air
JPS5743186A (en) * 1980-08-29 1982-03-11 Nippon Oxygen Co Ltd Production of krypton and xenon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117997A (en) * 1974-04-26 1976-10-16 Le Tekunorojichiesukii I Koroj Separation of kryptonnxenon condensate from air
JPS5743186A (en) * 1980-08-29 1982-03-11 Nippon Oxygen Co Ltd Production of krypton and xenon

Also Published As

Publication number Publication date
JPS62297206A (en) 1987-12-24

Similar Documents

Publication Publication Date Title
US5039500A (en) Process for producing xenon
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
KR960002190B1 (en) Process for the purification of the inert gases
US4689062A (en) Argon recovery from ammonia plant purge gas utilizing a combination of cryogenic and non-cryogenic separating means
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
EP0349655A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
AU670808B2 (en) Purification of oxygen by cryogenic adsorption
JPH04219111A (en) Manufacture of high purity gas
US4746332A (en) Process for producing high purity nitrogen
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
US9708188B1 (en) Method for argon production via cold pressure swing adsorption
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
US4874592A (en) Production process of xenon
JPH04295587A (en) Production system of rough neon
JP3294067B2 (en) Krypton manufacturing method
US6240745B1 (en) Process and plant for the purification and cryogenic separation of air without precooling
JPH0460052B2 (en)
JPH01176416A (en) Purifying method for combustion exhaust gas
JP3639087B2 (en) Helium recovery method
JP3256811B2 (en) Method for purifying krypton and xenon
JPS6129768B2 (en)
JPS61163106A (en) Process and device for recovering inert gas
KR910002383B1 (en) Production of xenon
JPS62117612A (en) Regenerating method for adsorption tower
JP2585013B2 (en) How to purify xenon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees