JP2585013B2 - How to purify xenon - Google Patents

How to purify xenon

Info

Publication number
JP2585013B2
JP2585013B2 JP62207671A JP20767187A JP2585013B2 JP 2585013 B2 JP2585013 B2 JP 2585013B2 JP 62207671 A JP62207671 A JP 62207671A JP 20767187 A JP20767187 A JP 20767187A JP 2585013 B2 JP2585013 B2 JP 2585013B2
Authority
JP
Japan
Prior art keywords
xenon
adsorption
adsorption tower
temperature
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62207671A
Other languages
Japanese (ja)
Other versions
JPS6451312A (en
Inventor
雅美 志野
英明 高野
実雄 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
Original Assignee
KYODO SANSO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO filed Critical KYODO SANSO
Priority to JP62207671A priority Critical patent/JP2585013B2/en
Publication of JPS6451312A publication Critical patent/JPS6451312A/en
Application granted granted Critical
Publication of JP2585013B2 publication Critical patent/JP2585013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 利用産業分野 この発明は、例えば、空気分離装置の主凝縮器の液体
酸素から製造した粗キセノンより、簡単な設備にて高純
度キセノンを極めて高い収率で製造する方法に関する。
The present invention relates to a method for producing high-purity xenon in a very simple yield from crude xenon produced from liquid oxygen in a main condenser of an air separation unit. About.

背景技術 キセノンは、化学合成できないため、極微量しか含ま
れないが、空気より分離する方法しかなく、現在では、
大型の空気分離装置の上部精留塔主凝縮器の液体酸素中
からクリプトンと併産、分離されている。
BACKGROUND ART Xenon, which cannot be chemically synthesized, contains only a trace amount, but there is only a method of separating it from air.
It is co-produced and separated from krypton from the liquid oxygen in the main condenser of the upper rectification column of a large air separation unit.

従来、クリプトンの濃縮に伴つて液体酸素中の炭化水
素特にメタンが濃縮され爆発の危険が生じるため、防爆
を考慮した種々の方法が提案されている。
Conventionally, hydrocarbons, especially methane, in liquid oxygen are concentrated with the concentration of krypton, and there is a risk of explosion. Therefore, various methods considering explosion protection have been proposed.

例えば、炭化水素類が爆発の危険性のない程度までク
リプトン、キセノンの濃度を抑制し、触媒で炭化水素類
を燃焼除去した後、精留でクリプトン、キセノンを濃縮
する方法((株)フジ・テクノシステム技術資料1986-2
−1、430〜431頁)、アルゴン置換塔を設け、ここで酸
素とアルゴンを置換した後、クリプトン、キセノンを精
留で濃縮する方法(特公昭47-22937)、高圧窒素と酸素
を置換した後、クリプトン、キセノンを精留で濃縮する
方法(特開昭57-95583)等がある。
For example, a method in which the concentration of krypton and xenon is reduced to such a degree that hydrocarbons do not cause an explosion, and after burning and removing hydrocarbons with a catalyst, krypton and xenon are concentrated by rectification (Fuji Corporation) Techno System Technical Document 1986-2
-1, pp. 430-431), an argon replacement column was installed, where oxygen and argon were replaced, and then krypton and xenon were concentrated by rectification (JP-B-47-22937). Thereafter, there is a method of concentrating krypton and xenon by rectification (JP-A-57-95583).

空気分離装置の上部精留塔主凝縮器から導出される液
体酸素中にはキセノンが数十ppm程度、他にクリプトン
及び炭化水素類が含まれており、クリプトンとキセノン
を併産する場合には、クリプトンの濃縮に伴いメタン等
の炭化水素類も濃縮される。
The liquid oxygen derived from the main condenser of the upper rectification column of the air separation unit contains xenon in the order of tens of ppm, krypton and hydrocarbons, and when krypton and xenon are produced together, As krypton is concentrated, hydrocarbons such as methane are also concentrated.

そのため、クリプトン、キセノンの濃縮を押え、触媒
で炭化水素類を燃焼除去したり、または酸素とアルゴン
もしくは窒素と置換しなければならなかつた。
Therefore, it was necessary to suppress the concentration of krypton and xenon, burn off hydrocarbons with a catalyst, or replace oxygen with argon or nitrogen.

また、炭化水素の爆発を防止する観点からクリプト
ン、キセノンの濃縮度が押えられるため、クリプトン、
キセノンを高純度化するには多段階の精留操作が必要で
あり、酸素とアルゴンの置換や酸素と高圧窒素の置換が
必要で、設備コストが高くなると共に、キセノン総収率
がせいぜい60%程度と低いという問題があった。
In addition, the concentration of krypton and xenon is suppressed from the viewpoint of preventing the explosion of hydrocarbons, so that krypton,
To purify xenon requires a multi-stage rectification operation, which requires replacement of oxygen and argon or replacement of oxygen and high-pressure nitrogen, which increases equipment costs and reduces the total xenon yield to at most 60%. There was a problem of low degree.

さらに、従来法にてキセノンを高純度化するには、寒
冷源及びその供給ラインや精留塔が必要であり、設備費
や製造コストが高くつく問題があった。
Furthermore, in order to purify xenon by the conventional method, a cold source, a supply line thereof, and a rectification column are required, and there has been a problem that equipment costs and production costs are high.

発明の目的 この発明は、空気分離装置の主凝縮器の液体酸素から
製造した粗キセノンより、極低温の寒冷源を必要としな
い簡単な設備にて、高純度キセノンを極めて高い収率で
製造できるキセノンの高純化方法を目的としている。
Object of the Invention The present invention can produce high-purity xenon in extremely high yield from crude xenon produced from liquid oxygen in the main condenser of an air separation unit with simple equipment that does not require a cryogenic cold source. It aims at a method of purifying xenon.

発明の概要 この発明は、 所定の吸着温度に保持した真空下の吸着塔に、粗キセノ
ンを導入し、 吸着塔圧力が大気圧以上になった時点で、所要量のオフ
ガスを吸着塔の頭部からブローした後、吸着温度より若
干高い所定のパージ温度まで吸着塔の温度を徐々に上
げ、 先に得た高純度キセノンの一部を吸着塔に導入すること
により、塔内の気相部、キセノン未吸着部及びキセノン
吸着部にある不純物をパージし、その際のオフガスを粗
キセノンとして回収し、 その後、所定の脱着回収温度まで吸着塔を加温し、かつ
真空または低圧吸引してキセノンを吸着させ高純度キセ
ノンを得ることを特徴とするキセノンの高純化方法であ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for introducing crude xenon into an adsorption tower under a vacuum maintained at a predetermined adsorption temperature and, when the pressure of the adsorption tower becomes equal to or higher than the atmospheric pressure, a required amount of off-gas is supplied to the head of the adsorption tower. After blowing from, the temperature of the adsorption tower is gradually raised to a predetermined purge temperature slightly higher than the adsorption temperature, and a part of the high-purity xenon obtained earlier is introduced into the adsorption tower, whereby the gas phase in the tower, Purging impurities in the xenon non-adsorbed portion and the xenon adsorbed portion, recovering off gas at that time as crude xenon, then heating the adsorption tower to a predetermined desorption recovery temperature, and vacuum or low pressure suction to remove xenon A highly purified xenon method characterized by obtaining high-purity xenon by adsorption.

発明の構成 この発明において、真空下の吸着塔にキセノンを導入
し、かつキセノン回収時に真空または低圧吸引して、キ
セノンを回収する理由は、吸脱着時の温度スイング(TS
A)により得られる有効吸着量に加えて、吸脱着時の圧
力スイング(PSA)による有効吸着量をも得るためであ
る。
In the present invention, the reason for introducing xenon into an adsorption tower under vacuum and recovering xenon by vacuum or low pressure suction at the time of xenon recovery is that the temperature swing (TS
This is because, in addition to the effective adsorption amount obtained in A), the effective adsorption amount due to pressure swing (PSA) during adsorption and desorption is also obtained.

したがって、有効吸着量が大きくなるため、回収後、
吸着塔内に残留するキセノンを少なくでき、次の吸着工
程では塔内に整った吸着帯を形成でき、その結果、分離
特性を向上できる。
Therefore, since the effective adsorption amount increases, after collection,
Xenon remaining in the adsorption tower can be reduced, and in the next adsorption step, a regular adsorption band can be formed in the tower, and as a result, the separation characteristics can be improved.

また、吸着工程後、吸着塔の温度を所定のパージ温度
まで徐々に上げ先に得た高純度キセノンの一部を吸着塔
に導入して、塔内をパージする理由は、吸着塔の温度を
徐々に上げることにより、吸着剤に吸着されている酸
素、クリプトン等の不純物とキセノンとの吸着置換現象
を惹起させて吸着剤中の不純物濃度を下げることがで
き、さらに、高純度キセノンの一部を吸着塔に導入し
て、塔内をパージすることにより、塔内気相部、キセノ
ン未吸着部の不純物を吸着塔外に排気するとともに気相
の不純物濃度を減少させることができ、キセノン吸着部
に吸着されている若干の不純物を脱着させ、逆にキセノ
ンを吸着させるためである。
After the adsorption step, the temperature of the adsorption tower is gradually raised to a predetermined purge temperature, a part of the high-purity xenon obtained earlier is introduced into the adsorption tower, and the inside of the tower is purged. By gradually raising the concentration of impurities in the adsorbent can be reduced by causing an adsorption and substitution phenomenon of xenon and impurities such as oxygen and krypton adsorbed on the adsorbent, and furthermore, a part of high-purity xenon Is introduced into the adsorption tower, and the inside of the tower is purged, whereby impurities in the gas phase part in the tower and the xenon non-adsorbed part can be exhausted to the outside of the adsorption tower, and the impurity concentration in the gas phase can be reduced. This is for desorbing some impurities adsorbed on the substrate and conversely adsorbing xenon.

さらに、塔内をパージしその際のオフガスを粗キセノ
ンとして回収するのは、系外に放出するキセノンを極力
少なくし、キセノン収率を向上させるためである。
Furthermore, the reason for purging the inside of the column and collecting the off-gas at that time as crude xenon is to minimize xenon released to the outside of the system and to improve the xenon yield.

次に、この発明において、吸着塔温度をパージ温度ま
で徐々に上げることにより、吸着剤に吸着されている酸
素、クリプトン等の不純物とキセノンとが吸着置換され
る現象について詳述する。
Next, in the present invention, a phenomenon in which xenon is adsorbed and replaced with oxygen and krypton and other impurities adsorbed on the adsorbent by gradually increasing the temperature of the adsorption tower to the purge temperature will be described in detail.

まず、キセノンを選択的に吸着する吸着剤を充填した
吸着塔に粗キセノン、例えば純度90%程度で、不純物と
して酸素、クリプトンを含むガスを吸着塔に供給した
後、吸着塔頭部から所要量のオフガスをブローし、その
後、吸着塔の温度をパージ温度まで徐々に上げることに
より、吸着されているキセノン及び不純物が脱着され、
気相中のキセノン濃度が高くなる このため、キセノンが再吸着され、吸着剤中のキセノ
ン比率が高くなる。逆に、気相中の不純物濃度は温度上
昇以前より高くなる。また、温度上昇により吸着容量が
減少するのに見合ったガス量がパージガスとともに塔頂
部から排気される。
First, crude xenon, for example, a gas having a purity of about 90% and containing oxygen and krypton as impurities is supplied to an adsorption tower filled with an adsorbent for selectively adsorbing xenon to the adsorption tower, and then a required amount of gas is supplied from the head of the adsorption tower. By blowing off gas and then gradually raising the temperature of the adsorption tower to the purge temperature, the adsorbed xenon and impurities are desorbed,
The xenon concentration in the gas phase increases. As a result, xenon is re-adsorbed and the xenon ratio in the adsorbent increases. Conversely, the impurity concentration in the gas phase becomes higher than before the temperature rise. Further, a gas amount commensurate with the decrease in the adsorption capacity due to the temperature rise is exhausted from the tower top together with the purge gas.

また、この発明においては、吸着塔の温度を所定のパ
ージ温度まで徐々に上げた後、先に得た高純度キセノン
の一部を吸着塔に導入して塔内をパージするという方法
以外に、吸着工程後、加温したパージガスを塔内に導入
することにより、吸着塔温度をパージ温度まで昇温する
ことと、塔内を高純度キセノンでパージすることを同時
に行っても同様の効果が得られる。
Further, in the present invention, after gradually raising the temperature of the adsorption tower to a predetermined purge temperature, a part of the high-purity xenon obtained earlier is introduced into the adsorption tower to purify the inside of the tower, After the adsorption step, the same effect can be obtained by simultaneously introducing the heated purge gas into the tower to raise the temperature of the adsorption tower to the purge temperature and simultaneously purging the inside of the tower with high-purity xenon. Can be

この発明において、粗キセノンは前述した精留法など
の従来法にて製造精製されたものを用いるほか、空気分
離装置の上部精留塔主凝縮器から導出されるキセノン含
有液体酸素を、キセノンを選択的に吸着する吸着剤を充
填した複数の吸着塔に導入して吸脱着を行なうことによ
り、順次キセノンを濃縮すると共に、キセノン純度向上
のため炭化水素類を触媒で燃焼除去して高濃度キセノン
を製造する方法を利用することにより、空気分離装置の
上部精留塔主凝縮器から導出されるキセノン含有液体酸
素より、キセノンを安全かつ高純度、高収率で安価に製
造できる。
In the present invention, crude xenon is produced and refined by a conventional method such as the above-mentioned rectification method.In addition, xenon-containing liquid oxygen derived from the main condenser of the upper rectification column of the air separation device is converted to xenon. The xenon is sequentially concentrated by introducing and adsorbing and desorbing into a plurality of adsorption towers filled with an adsorbent that selectively adsorbs, and high-concentration xenon is obtained by burning off hydrocarbons with a catalyst to improve xenon purity. By using the method of producing xenon, xenon can be produced safely, with high purity, with high yield, and at low cost from xenon-containing liquid oxygen derived from the main condenser of the upper rectification column of the air separation device.

また、この発明において、吸着塔の構成は、実施例の
構成のほか、塔内に充填される吸着剤を所要温度に制御
できかつ粗キセノンと接触させ、また、真空または低圧
吸引できる構成であればいずれの構成でもよく、キセノ
ンを選択的に吸着する吸着剤として、シリカゲル、活性
炭、あるいは分子ふるい効果のあるゼオライト等を使用
するとよい。
Further, in the present invention, the configuration of the adsorption tower is not limited to the configuration of the embodiment, but may be a configuration in which the adsorbent charged in the column can be controlled to a required temperature and brought into contact with crude xenon, and a vacuum or low pressure suction can be performed. Any configuration may be used, and silica gel, activated carbon, zeolite having a molecular sieve effect, or the like may be used as an adsorbent for selectively adsorbing xenon.

発明の図面に基づく開示 第1図はこの発明による高純化方法に用いる装置の回
路構成図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit configuration diagram of an apparatus used in a purification method according to the present invention.

ここでは、塔内に冷却,加温用の熱媒体ライン(2)
として巻管を配置し、吸着剤として活性炭を充填した構
成からなる吸着塔(1)を用いた例を示す。
Here, a heat medium line for cooling and heating in the tower (2)
An example using an adsorption tower (1) having a configuration in which a winding tube is arranged and filled with activated carbon as an adsorbent is shown.

吸着塔(1)の底部には、粗キセノンタンク(3)か
ら例えば濃度が90%程度の粗キセノンを導入できるよう
導入ライン(4)が設けられ、また、吸着塔(1)頭部
には吸引ライン(5)と粗キセノンタンク(3)の回収
ライン(6)が接続されている。
At the bottom of the adsorption tower (1), an introduction line (4) is provided so that crude xenon having a concentration of, for example, about 90% can be introduced from the crude xenon tank (3). The suction line (5) and the collection line (6) of the crude xenon tank (3) are connected.

さらに、吸着塔(1)底部には、製品の高純化キセノ
ンを収納した高純化キセノンタンク(7)からのパージ
ライン(8)が接続され、また、高純化キセノン回収用
の精製ライン(9)が接続されている。
Further, a purge line (8) from a highly purified xenon tank (7) containing highly purified xenon of the product is connected to the bottom of the adsorption tower (1), and a purification line (9) for recovering the highly purified xenon. Is connected.

上記構成からなる装置において、この発明による高純
化方法を説明すると、まず、吸着塔(1)の熱媒体ライ
ン(2)に冷媒を通して、吸着剤を例えば、20℃〜−80
℃に冷却する。
In the apparatus having the above-described configuration, the purification method according to the present invention will be described. First, a refrigerant is passed through a heat medium line (2) of an adsorption tower (1) to, for example, 20 ° C. to −80
Cool to ° C.

ついで吸着塔(1)内に、粗キセノンタンク(4)よ
り粗キセノンを導入し、さらに所要量のオフガスにてブ
ローする。
Next, crude xenon is introduced into the adsorption tower (1) from the crude xenon tank (4), and further blown with a required amount of off-gas.

このブローガスを粗キセノンの製造工程あるいはそれ
以前の工程に戻すことにより、キセノンの収率が向上す
る。
By returning the blow gas to a process for producing crude xenon or a process before that, the yield of xenon is improved.

さらに、吸着塔(1)を例えば10℃だけ徐々に昇温し
ながら高純化キセノンタンク(7)よりの高純化キセノ
ンにて、吸着塔(1)内をパージすることにより、吸着
塔(1)内の気相のみならず、吸着剤中もパージされる
吸着置換現象が得られる。
Further, by purging the inside of the adsorption tower (1) with the highly purified xenon from the highly purified xenon tank (7) while gradually increasing the temperature of the adsorption tower (1) by, for example, 10 ° C., the adsorption tower (1) An adsorption displacement phenomenon in which the adsorbent is purged as well as the gaseous phase inside is obtained.

この際のオフガスは、回収ライン(6)より粗キセノ
ンタンク(3)に回収する。
The off-gas at this time is recovered from the recovery line (6) to the crude xenon tank (3).

次に、吸着塔(1)の熱媒体ライン(2)に熱媒を通
して、吸着剤を例えば、120℃以下に加熱してキセノン
を脱着させ、精製ライン(9)より回収すると、高純化
キセノンが得られる。
Next, a heat medium is passed through a heat medium line (2) of the adsorption tower (1), and the adsorbent is heated to, for example, 120 ° C. or less to desorb xenon, and recovered from the purification line (9). can get.

発明の効果 この発明の高純化方法により、常圧及び常温あるいは
キセノンが液化しない程度の低温範囲にて、かつ吸着塔
のみでキセノンの高純化が可能なため、従来の如き、極
低温源が不要でかつ設備が簡単なため、設備費が安く製
造コストを低減でき、さらに98%以上の総収率で、濃度
99.99%以上の高純度キセノンが製造できる。
Advantageous Effects of Invention According to the high-purification method of the present invention, xenon can be highly purified at normal pressure and room temperature or in a low temperature range where xenon does not liquefy, and only in an adsorption tower. And the equipment is simple, the equipment cost is low and the production cost can be reduced.
High purity xenon of 99.99% or more can be manufactured.

また、操作温度、圧力が常温、常圧に近いため、高純
化のための所謂ランニングコスト並びに設備費が、従来
の1/3程度に低減できる利点がある。
Further, since the operating temperature and pressure are close to normal temperature and normal pressure, there is an advantage that so-called running cost and equipment cost for high purification can be reduced to about 1/3 of the conventional one.

実施例 酸素発生量が15000Nm3/Hrの全低圧式空気分離装置の
精留塔の主凝縮器から150Nm3/Hrの液体酸素を抜き取り
ガス化したとき含有するキセノンは31ppm、クリプトン
は70ppm、メタンは38ppm、他の炭化水素は極く微量であ
つた。
EXAMPLE oxygen generation amount xenon containing upon withdrawal gasifying liquid oxygen 150 Nm 3 / Hr from the main condenser of the rectification column of the total low pressure air separation apparatus 15000 nm 3 / Hr is 31 ppm, krypton 70 ppm, methane Was 38 ppm and other hydrocarbons were very small.

上記ガスを−170℃に冷却したシリカゲル充填の吸着
塔にキセノンが破過するまで流した後、120℃まで加温
し100Torrまで減圧するとキセノンが1.4%、クリプトン
が0.14%、炭化水素類が0.066%の濃度であつた。この
際の炭化水素類の濃度は爆発限界以下である。
After flowing the above gas through a silica gel packed adsorption tower cooled to -170 ° C until xenon breaks through, it is heated to 120 ° C and depressurized to 100 Torr, where xenon is 1.4%, krypton is 0.14%, and hydrocarbons are 0.066%. % Concentration. At this time, the concentration of hydrocarbons is below the explosion limit.

上記濃縮ガスを触媒塔に導入し、炭化水素類を除去し
生成する水分、炭酸ガスを除去塔で除去した後、上記濃
縮ガスを−150℃のシリカゲル充填の吸着塔にキセノン
が破過するまで流し、−100℃まで加温してキセノン濃
度の低いものを吸着塔出口側から排出した後、−100℃
で粗キセノンタンクからガスの一部を吸着塔に流し、吸
着塔内のクリプトン、酸素をパージした後常温まで加温
しキセノンを回収した。
The concentrated gas is introduced into the catalyst tower, and water produced by removing hydrocarbons and carbon dioxide gas are removed by the removal tower.Then, the xenon gas is passed through the adsorption tower filled with silica gel at -150 ° C until xenon breaks through. After the mixture was heated to -100 ° C and discharged with a low xenon concentration from the outlet of the adsorption tower, the temperature was lowered to -100 ° C.
A part of the gas was flowed from the crude xenon tank to the adsorption tower, and after krypton and oxygen in the adsorption tower were purged, the mixture was heated to room temperature to collect xenon.

このようにして得られた濃度90%の粗キセノンを0℃
に冷却し、活性炭を充填した真空下の吸着塔に700l導入
し、80lのオフガスでブローした。
The thus obtained crude xenon having a concentration of 90% is subjected to 0 ° C.
, 700 l was introduced into an adsorption tower under a vacuum filled with activated carbon, and blown with 80 l of off-gas.

その後、熱媒体ライン(2)に15℃の空気を流し、10
℃/hrの速度で加温して吸着塔温度を10℃とし、吸着塔
に高純度キセノンを315l供給してパージし、この際のオ
フガスを粗キセノンタンクに回収した。
After that, air at 15 ° C was passed through the heating medium line (2),
The temperature of the adsorption tower was raised to 10 ° C. by heating at a rate of ° C./hr, 315 l of high-purity xenon was supplied to the adsorption tower and purged, and the off-gas at this time was collected in a crude xenon tank.

次に、活性炭を90℃に加温して、精製キセノンを620l
回収した。
Next, the activated carbon was heated to 90 ° C, and 620 l of purified xenon was added.
Collected.

このときの吸着塔圧力は100Torrであり、得られたキ
セノン純度は99.99%以上であり、また、収率は98%で
あった。
At this time, the pressure in the adsorption tower was 100 Torr, the purity of xenon obtained was 99.99% or more, and the yield was 98%.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明による高純化方法に用いる装置の回路
構成図である。 1……吸着塔、2……熱媒体ライン、3……粗キセノン
タンク、4……導入ライン塔、5……吸引ライン、6…
…回収ライン、7……高純化キセノンタンク、8……パ
ージライン、9……精製ライン。
FIG. 1 is a circuit configuration diagram of an apparatus used in the purification method according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Adsorption tower, 2 ... Heat medium line, 3 ... Crude xenon tank, 4 ... Introduction line tower, 5 ... Suction line, 6 ...
… Recovery line, 7… Purified xenon tank, 8… Purge line, 9… Purification line.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定の吸着温度に保持した真空下の吸着塔
に、粗キセノンを導入し、 吸着塔圧力が大気圧以上になった時点で、所要量のオフ
ガスを吸着塔の頭部からブローした後、吸着温度より若
干高い所定のパージ温度まで吸着塔の温度を徐々に上
げ、 先に得た高純度キセノンの一部を吸着塔に導入すること
により、塔内の気相部、キセノン未吸着部及びキセノン
吸着部にある不純物をパージし、その際のオフガスを粗
キセノンとして回収し、 その後、所定の脱着回収温度まで吸着塔を加温し、かつ
真空または低圧吸引してキセノンを脱着させ高純度キセ
ノンを得ることを特徴とするキセノンの高純化方法。
1. Crude xenon is introduced into an adsorption tower under a vacuum maintained at a predetermined adsorption temperature, and when the pressure of the adsorption tower becomes higher than the atmospheric pressure, a required amount of off-gas is blown from the head of the adsorption tower. After that, the temperature of the adsorption tower is gradually raised to a predetermined purge temperature slightly higher than the adsorption temperature, and a part of the high-purity xenon obtained earlier is introduced into the adsorption tower, so that the gas phase in the tower and the xenon gas are removed. Purging impurities in the adsorption section and the xenon adsorption section, recovering off gas at that time as crude xenon, then heating the adsorption tower to a predetermined desorption recovery temperature, and vacuum or low pressure suction to desorb xenon A highly pure xenon purification method characterized by obtaining high-purity xenon.
JP62207671A 1987-08-20 1987-08-20 How to purify xenon Expired - Fee Related JP2585013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62207671A JP2585013B2 (en) 1987-08-20 1987-08-20 How to purify xenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62207671A JP2585013B2 (en) 1987-08-20 1987-08-20 How to purify xenon

Publications (2)

Publication Number Publication Date
JPS6451312A JPS6451312A (en) 1989-02-27
JP2585013B2 true JP2585013B2 (en) 1997-02-26

Family

ID=16543635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62207671A Expired - Fee Related JP2585013B2 (en) 1987-08-20 1987-08-20 How to purify xenon

Country Status (1)

Country Link
JP (1) JP2585013B2 (en)

Also Published As

Publication number Publication date
JPS6451312A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
US5039500A (en) Process for producing xenon
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US6123909A (en) Method and apparatus for purification of argon
US4746332A (en) Process for producing high purity nitrogen
EP0227990A1 (en) Process for adsorbing and separating carbon dioxide from gas mixture
CS145292A3 (en) Process for preparing extremely pure argon
JP3020842B2 (en) Argon purification method and apparatus
BR112019003474B1 (en) ADSORPTION PROCESS FOR XENON RECOVERY
US4874592A (en) Production process of xenon
JP2000233909A (en) Method for refining waste argon gas from single crystal producing furnace
JP2585013B2 (en) How to purify xenon
JP4070399B2 (en) Helium gas purification method
JP3294067B2 (en) Krypton manufacturing method
US6240745B1 (en) Process and plant for the purification and cryogenic separation of air without precooling
JPH07133982A (en) Method and apparatus for preparing high purity argon
JP2005503987A (en) Method and apparatus for purifying hydrogen bromide
JPH09110406A (en) Production of neon and helium
JP3256811B2 (en) Method for purifying krypton and xenon
JP2630350B2 (en) Xenon production method
JPH0243684B2 (en)
JPH0579754A (en) Manufacturing method of high purity nitrogen
JPH0525801B2 (en)
JPH02272288A (en) Recovering method for argon
JPH0463804B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees