JPH07133982A - Method and apparatus for preparing high purity argon - Google Patents

Method and apparatus for preparing high purity argon

Info

Publication number
JPH07133982A
JPH07133982A JP5279952A JP27995293A JPH07133982A JP H07133982 A JPH07133982 A JP H07133982A JP 5279952 A JP5279952 A JP 5279952A JP 27995293 A JP27995293 A JP 27995293A JP H07133982 A JPH07133982 A JP H07133982A
Authority
JP
Japan
Prior art keywords
argon
column
purified
tower
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5279952A
Other languages
Japanese (ja)
Inventor
Yutaka Kurosawa
裕 黒沢
Osamu Utada
修 宇多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP5279952A priority Critical patent/JPH07133982A/en
Publication of JPH07133982A publication Critical patent/JPH07133982A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction

Abstract

PURPOSE:To provide a method and an apparatus for preparing a high purity argon without the use of a hydrogenation/deacidification process in an ordinary argon purifying method and further without the use of a high purity argon tower. CONSTITUTION:Air is compressed, refined, cooled, and introduced into a main fractionating tower 51 comprising at least one tower to take out oxygen and/or nitrogen, and argon stock gas with oxygen contents of about several ppm is introduced into the main fractionating tower 51 and is further introduced into an argon fractionating tower 53 of the theoretical stage number of 100 or more preferably of 160 or more for fractionation. Argon gas including nitrogen is taken out by adjusting its amount from a tower top, and high purity fractionated gas or liquid argon is taken out from a portion of the tower below several states or several tens of stages from the tower top and liquified oxygen is taken out from a tower bottom. Refined gas or liquefied argon is further fractionated through adsorption or gettering. In the argon fractionating tower the amount of a reflux is controlled, and the purity of the fractionated argon and the amount of the fractionation of the same are controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を圧縮,精製,冷
却し、液化精留して酸素,窒素とともに高純度アルゴン
を製造する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing high-purity argon together with oxygen and nitrogen by compressing, purifying and cooling air and liquefying and rectifying air.

【0002】[0002]

【従来の技術】図6は、従来の空気深冷分離法による高
純度アルゴン採取方法の一例を示すものである。複精留
塔1の低圧塔(上部塔)の中段から実質的に酸素を主成
分とし、アルゴン5〜15%、窒素微量のアルゴン原料
ガスが管2に抜き出され、粗アルゴン塔3の下部に導入
される。該粗アルゴン塔3の上部には、凝縮器4が設け
られており、前記複精留塔1の中圧塔(下部塔)下部か
ら抜き出され、膨張弁5で低圧となった液化空気が管6
から寒冷源として導入されている。この結果、粗アルゴ
ン塔3を上昇した原料ガスは、前記凝縮器4で液化して
還流液となり、塔内を上昇する前記原料ガスとで液化精
留が行われ、該塔頂部からアルゴン90%以上、酸素数
%以下、窒素数%以下の組成の粗アルゴンが管7に抜き
出される。一方、粗アルゴン塔3の底部からは、液化酸
素が管8に導出されて上部塔へ戻され、凝縮器4で液化
空気が気化したガスは、管9により上部塔に導入され
る。
2. Description of the Related Art FIG. 6 shows an example of a conventional method for collecting high-purity argon by a cryogenic air separation method. From the middle stage of the low pressure column (upper column) of the double rectification column 1, substantially 5 to 15% of argon and a trace amount of nitrogen raw material gas of argon are extracted into the pipe 2, and the lower part of the crude argon column 3 is used. Will be introduced to. A condenser 4 is provided above the crude argon column 3, and liquefied air extracted from the lower part of the intermediate pressure column (lower column) of the double rectification column 1 and having a low pressure by the expansion valve 5 is Tube 6
Has been introduced as a cold source from. As a result, the raw material gas that has risen in the crude argon column 3 is liquefied in the condenser 4 and becomes a reflux liquid, and liquefaction rectification is performed with the raw material gas that rises in the column, and 90% of argon is supplied from the top of the column. As described above, crude argon having a composition of oxygen number% or less and nitrogen number% or less is extracted to the pipe 7. On the other hand, from the bottom of the crude argon column 3, liquefied oxygen is led to the pipe 8 and returned to the upper column, and the gas obtained by vaporizing the liquefied air in the condenser 4 is introduced into the upper column by the pipe 9.

【0003】管7に導出した前記粗アルゴンは、熱交換
器10を通り、戻りガスを冷却して略大気温度となり、
管11から貯槽及び緩衝を兼ねるガスホルダー12を経
て圧縮機13に送られる。圧縮機13で後の工程に必要
な圧力に圧縮された粗アルゴンガスは、管14に吐出さ
れ、水素供給設備15から管16を介して粗アルゴン中
の酸素分を酸素・水素反応によって除去するのに十分な
水素が添加された後、触媒筒17に導入される。該触媒
筒17には、酸素・水素反応を促進する触媒が充填さ
れ、300℃乃至400℃に昇温されており、前記反応
が進行する。この結果、粗アルゴン中の酸素は、添加さ
れた水素と速かに反応して水が生成される。生成した水
を含む粗アルゴンガス(脱酸素アルゴンガス)は、冷却
された後に管18により水分離器19に送られ、さらに
管20を介して切換式乾燥器21に導入される。この乾
燥工程で、前記生成した水分を除去した脱酸素アルゴン
ガスは、管22で熱交換器10に導かれ、冷却されて管
23から高純アルゴン塔(脱窒素塔)24の中段に導入
される。
The crude argon discharged to the pipe 7 passes through the heat exchanger 10 and cools the return gas to a substantially atmospheric temperature.
It is sent from a pipe 11 to a compressor 13 via a gas holder 12 which also serves as a storage tank and a buffer. The crude argon gas compressed by the compressor 13 to a pressure necessary for the subsequent process is discharged into the pipe 14, and the oxygen content in the crude argon is removed by the oxygen / hydrogen reaction from the hydrogen supply facility 15 through the pipe 16. After sufficient hydrogen has been added, the hydrogen is introduced into the catalyst cylinder 17. The catalyst cylinder 17 is filled with a catalyst that accelerates the oxygen-hydrogen reaction, and the temperature is raised to 300 ° C. to 400 ° C., so that the reaction proceeds. As a result, oxygen in the crude argon reacts rapidly with the added hydrogen to produce water. The crude argon gas (deoxygenated argon gas) containing the produced water is sent to the water separator 19 through the pipe 18 after being cooled, and is further introduced into the switchable dryer 21 through the pipe 20. In this drying step, the deoxygenated argon gas from which the generated water has been removed is guided to the heat exchanger 10 through the pipe 22, cooled, and introduced from the pipe 23 to the middle stage of the high purity argon column (denitrification column) 24. It

【0004】上記脱窒素塔24の下部には、前記複精留
塔1の下部塔から管25を介して供給される中圧窒素を
加熱源としたリボイラー26が設けられ、上部には凝縮
器31が設けられている。この凝縮器31には、前記リ
ボイラー26で凝縮液化した後、弁27で膨張して管2
8から供給される液化窒素と複精留塔1の下部塔から管
29,弁30を介して供給される液化窒素とが供給され
ている。この脱窒素塔24は、前記管23から導入され
た脱酸素アルゴンを精留し、塔頂部に窒素・水素の混合
ガスを分離して管32から排出するとともに、塔底部に
高純度液化アルゴンを分離するもので、該高純度液化ア
ルゴンは管33を介して採取される。なお、管34は、
凝縮器31で寒冷を与えた結果気化した窒素ガスの排出
管であり、複精留塔1の上部塔頂部から導出される窒素
ガスの管35と合流する。
A reboiler 26 using a medium-pressure nitrogen supplied from the lower column of the double rectification column 1 through a pipe 25 as a heating source is provided below the denitrification column 24, and a condenser is provided above the denitrification column 24. 31 is provided. The condenser 31 is condensed and liquefied by the reboiler 26, and then expanded by a valve 27 so that the tube 2
The liquefied nitrogen supplied from No. 8 and the liquefied nitrogen supplied from the lower column of the double rectification column 1 via the pipe 29 and the valve 30 are supplied. The denitrification tower 24 rectifies the deoxygenated argon introduced from the pipe 23, separates a mixed gas of nitrogen and hydrogen at the top of the tower and discharges it from the tube 32, and at the bottom of the tower, high-purity liquefied argon. The high-purity liquefied argon, which is to be separated, is collected through a pipe 33. The pipe 34 is
This is a discharge pipe for nitrogen gas that is vaporized as a result of being cooled by the condenser 31, and joins with a pipe 35 for nitrogen gas that is led out from the top of the upper column of the double rectification column 1.

【0005】このように従来の高純度アルゴン製造工程
は、非常に複雑かつ多数の工程を経て、高純度アルゴン
を得ていた。そこで上記の従来アルゴン精製法の不都合
点を改良した方法として粗アルゴン塔の段数を理論段数
150段以上設けて、粗アルゴン中の酸素を1ppm以
下まで精製することにより、前記触媒脱酸工程を省略す
る方法が提案されている。
As described above, in the conventional high-purity argon production process, high-purity argon has been obtained through a very complicated and numerous process. Therefore, as a method for improving the above disadvantages of the conventional argon purification method, the number of theoretical argon columns is set to 150 theoretical stages or more and the oxygen in the crude argon is purified to 1 ppm or less, thereby omitting the catalyst deoxidizing step. The method of doing is proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、銅又は
ニッケル触媒による水添脱酸工程を有する方法の場合
は、この水添脱酸工程が高価かつ危険な水素を使用する
こと、乾燥工程が必要なことなど、工程が複雑で操作が
煩雑になり、かつ、装置が高価になる上、該水添脱酸工
程の後に主として水素及び窒素をパージするための高純
アルゴン塔が必要である。
However, in the case of a method having a hydrodeoxidation step using a copper or nickel catalyst, this hydrodeoxidation step requires expensive and dangerous hydrogen, and a drying step is required. As a result, the process is complicated and the operation becomes complicated, and the apparatus becomes expensive, and a highly pure argon column mainly for purging hydrogen and nitrogen is required after the hydrodeoxidation step.

【0007】また、粗アルゴン塔の理論段数を150段
以上とすることにより、水添脱酸工程を省略した方法が
提案されているが、この方法も、窒素を除去するための
上記高純アルゴン塔が必要である。
[0007] Further, a method has been proposed in which the hydrodeoxidation step is omitted by increasing the number of theoretical plates of the crude argon column to 150 or more, but this method also has the above-mentioned high purity argon for removing nitrogen. I need a tower.

【0008】そこで本発明は、上記水添脱酸工程を省略
し、さらに高純度アルゴン塔をも用いることなく高純度
アルゴンを製造する方法を提供することを目的としてい
る。
[0008] Therefore, an object of the present invention is to provide a method for producing high-purity argon by omitting the hydrodeoxidation step and further without using a high-purity argon column.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の高純度アルゴンの製造方法は、空気を圧
縮,精製,冷却し、少なくとも1塔よりなる主精留塔に
導入して酸素及び/又は窒素を製出するとともに、該主
精留塔よりアルゴン原料ガスを導出し、理論段数100
段以上好ましくは160段以上のアルゴン精製塔に導入
して精留を行い、塔頂より窒素を含むアルゴンガスをそ
の量を調節して導出し、塔頂より数段乃至十数段下より
高純度の精製ガス又は液アルゴンを製出し、塔底より液
化酸素を導出することを特徴としている。
In order to achieve the above-mentioned object, the method for producing high-purity argon of the present invention comprises compressing, purifying and cooling air and introducing it into at least one main rectification column. While producing oxygen and / or nitrogen, an argon raw material gas is derived from the main rectification column, and the theoretical plate number is 100.
It is introduced into an argon purification column having at least 160 stages, preferably at least 160 stages, and rectification is performed, and an argon gas containing nitrogen is discharged from the top of the column by adjusting the amount thereof and higher than several to ten or more stages below the top of the column. Purified gas or liquid argon having a purity is produced, and liquefied oxygen is led out from the bottom of the column.

【0010】さらに、本発明方法は、前記主精留塔より
導出するアルゴン原料ガスの窒素含有量が100ppm
以下好ましくは50ppm以下さらに好ましくは5pp
m以下であること、前記アルゴン精製塔が規則充填材又
は不規則充填材を充填した充填塔であること、前記アル
ゴン精製塔の凝縮器に供給する寒冷量が精製アルゴン抜
出量の少なくとも30倍のガス量を液化し得る量である
こと、前記アルゴン精製塔の凝縮器に供給する寒冷源が
主精留塔下部塔より導出した酸素富化液化空気,液化窒
素又は付設液化サイクルからの液化ガスであること、前
記アルゴン精製塔より導出する精製アルゴンの酸素含有
量が10ppm以下好ましくは1ppm以下であるこ
と、前記アルゴン精製塔を導出した精製液アルゴン又は
ガスアルゴンを気化昇温後又は昇温後、更にゲッターと
の反応温度に昇温し、ゲッターと反応させることにより
精製して含有する微量の窒素及び酸素を除去すること、
前記アルゴン精製塔を導出した精製液アルゴンを液のま
ま又は気化後、吸着床を通すことにより更に精製を行っ
て含有する微量の窒素及び酸素を除去すること、前記ア
ルゴン精製塔を導出した精製ガスアルゴン又は前記気化
アルゴンを低温のまま又は常温に昇温後、吸着床を通す
ことにより更に精製を行って含有する微量の窒素及び酸
素を除去することを特徴としている。
Further, in the method of the present invention, the nitrogen content of the argon source gas discharged from the main rectification column is 100 ppm.
It is preferably 50 ppm or less, more preferably 5 pp or less.
m or less, the argon purification column is a packed column filled with a regular packing material or an irregular packing material, and the amount of cold supplied to the condenser of the argon purification column is at least 30 times the amount of purified argon withdrawn. The amount of gas that can be liquefied, the cold source supplied to the condenser of the argon purification column is oxygen-enriched liquefied air derived from the lower column of the main rectification column, liquefied nitrogen, or liquefied gas from the attached liquefaction cycle. The oxygen content of the purified argon derived from the argon purification column is 10 ppm or less, preferably 1 ppm or less, and the purified liquid argon or the gas argon derived from the argon purification column is vaporized or heated. , Further raising the reaction temperature with the getter, and purifying by reacting with the getter to remove a trace amount of nitrogen and oxygen contained,
Purified liquid derived from the argon purification column As a liquid or after vaporizing argon, further purifying by passing through an adsorption bed to remove a trace amount of nitrogen and oxygen contained, and a purified gas derived from the argon purification column. It is characterized in that the argon or the vaporized argon is kept at a low temperature or heated to a normal temperature, and then passed through an adsorption bed for further purification to remove a small amount of contained nitrogen and oxygen.

【0011】また、本発明の高純度アルゴンの製造装置
は、圧縮,精製,冷却した原料空気を導入して酸素及び
/又は窒素を製出する少なくとも1塔よりなる主精留
塔、該主精留塔よりアルゴン原料ガスを導出する経路、
アルゴン原料ガスを導入して精留を行う相当理論段数が
100段以上好ましくは160段以上の充填塔でなるア
ルゴン精製塔、該アルゴン精製塔塔頂より窒素を含むア
ルゴンガスを導出する経路、その窒素含有アルゴンガス
の導出量を調節する手段、該塔塔頂より相当理論段数で
数段乃至十数段下より高純度の精製ガス又は液アルゴン
を製出する経路、塔底より液化酸素を導出する経路を有
することを特徴としている。さらに、本発明装置は、前
記主精留塔よりアルゴン原料ガスを導出する経路が該ア
ルゴン原料ガス中の窒素含有量が50ppm以下好まし
くは5ppm以下である位置に設けられていること、前
記アルゴン精製塔の精製アルゴン導出経路に精製アルゴ
ン中の酸素濃度を検出する分析計と、該アルゴン精製塔
の精製アルゴン導出経路に該精製アルゴンの導出流量検
出及び調節手段とを設けるとともに、前記酸素濃度分析
計よりの信号により前記精製アルゴン導出流量調節手段
を制御する調節計を設けたこと、アルゴン精製塔より導
出する精製アルゴン中の酸素濃度を検出する分析計と、
該アルゴン精製塔凝縮器の寒冷用液化ガス量の検出調節
手段とを設けて、酸素濃度分析計よりの信号によりアル
ゴン精製塔凝縮器の寒冷用液化ガス量及び/又は圧力等
の寒冷量を制御する調節器を設けたことにより上記アル
ゴン精製塔を自動制御運転することを特徴とする。
The apparatus for producing high-purity argon according to the present invention comprises a main rectification column comprising at least one column for producing oxygen and / or nitrogen by introducing compressed, purified and cooled raw material air, and the main rectification column. A route for deriving the argon raw material gas from the distillation column,
An argon purification column comprising a packed column having an equivalent theoretical plate number of 100 stages or more, preferably 160 stages or more, in which an argon raw material gas is introduced to carry out rectification, and a route for deriving an argon gas containing nitrogen from the top of the argon purification column, Means for adjusting the amount of nitrogen-containing argon gas discharged, a route for producing purified gas or liquid argon of high purity from a few theoretical stages to a few dozen stages below the tower top, and liquefied oxygen from the bottom of the column It is characterized by having a route to. Further, in the apparatus of the present invention, a route for leading out the argon raw material gas from the main rectification column is provided at a position where the nitrogen content in the argon raw material gas is 50 ppm or less, preferably 5 ppm or less, and the argon purification An analyzer for detecting the oxygen concentration in the purified argon in the purified argon derivation path of the tower, and a means for detecting and adjusting the derivation flow rate of the purified argon in the purified argon derivation path of the argon purification tower are provided, and the oxygen concentration analyzer. A controller for controlling the purified argon derivation flow rate control means by a signal from is provided, and an analyzer for detecting the oxygen concentration in the purified argon derived from the argon purification column,
And a means for detecting and adjusting the amount of cold liquefied gas in the argon purification tower condenser, and controlling the amount of cold liquefied gas and / or the pressure such as pressure in the argon purification tower condenser by a signal from an oxygen concentration analyzer. It is characterized in that the argon purifying column is automatically controlled by providing a controller for controlling.

【0012】さらにまた、空気を圧縮,精製,冷却し、
少なくとも1塔よりなる主精留塔に導入して酸素及び/
又は窒素を製出するとともに、該主精留塔よりアルゴン
原料ガスを導出し、塔長が10m以上の充填塔でなるア
ルゴン精製塔に導入して精留を行い、塔頂より窒素を含
むアルゴンガスをその量を調節して導出し、塔頂より6
0cm乃至300cm下より高純度の精製アルゴンを製
出し、塔底より液化酸素を導出することを特徴とし、前
記主精留塔よりアルゴン原料ガスを導出する経路が該ア
ルゴン原料ガス中の窒素含有量が50ppm以下好まし
くは5ppm以下である位置に設けられていることをを
特徴としている。
Furthermore, the air is compressed, purified and cooled,
Oxygen and / or oxygen is introduced into the main rectification column consisting of at least one column.
Alternatively, while producing nitrogen, an argon raw material gas is discharged from the main rectification column and introduced into an argon purification column composed of a packed column having a column length of 10 m or more for rectification, and nitrogen containing argon is supplied from the top of the column. The gas was discharged by adjusting its amount, and was discharged from the top of the tower 6
Purified argon having a purity of 0 cm to 300 cm or less is produced, and liquefied oxygen is discharged from the bottom of the column. The route for discharging the argon raw material gas from the main rectification column has a nitrogen content in the argon raw material gas. Is 50 ppm or less, preferably 5 ppm or less.

【0013】[0013]

【作 用】上記構成により空気分離を行うことにより、
アルゴン精製塔を基本的に1塔設けるのみで高純度アル
ゴンを製造することがができる。さらに、該高純度アル
ゴンをゲッター反応筒又は吸着床を通すことにより前記
不純物の量を除去した超高純度精製アルゴンを製造する
ことができる。
[Operation] By performing air separation with the above configuration,
High-purity argon can be produced by basically providing only one argon purification column. Further, by passing the high-purity argon through a getter reaction column or an adsorption bed, it is possible to produce ultra-high-purity purified argon from which the amount of the impurities has been removed.

【0014】[0014]

【実施例】以下、本発明を、図面に示す実施例に基づい
てさらに詳細に説明する。図1は、本発明の一実施例を
示すものであって、主精留塔(複精留塔)51の低圧塔
(上部塔)51bの中段から実質的に酸素を主成分と
し、アルゴン含有量が5〜15%、窒素100ppm以
下、好ましくは50ppm以下、さらに好ましくは5p
pm以下であるアルゴン原料ガスが導管52に抜き出さ
れ、アルゴン精製塔53下部に導入される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the embodiments shown in the drawings. FIG. 1 shows an embodiment of the present invention, in which oxygen is mainly contained as a main component from the middle stage of the low-pressure column (upper column) 51b of the main rectification column (double rectification column) 51 and contains argon. 5 to 15%, nitrogen 100ppm or less, preferably 50ppm or less, more preferably 5p
Argon raw material gas of pm or less is extracted into the conduit 52 and introduced into the lower part of the argon purification tower 53.

【0015】この低圧塔51bより抜出されるアルゴン
原料ガスは、通常は、その組成が酸素を主成分とし、ア
ルゴン5〜15%、窒素1%以下の微量であるような、
アルゴン含有量が最高である位置から導出している。し
かし、本発明はアルゴン精製塔53を理論段数100段
以上で構成することにより、必ずしもこのアルゴン濃度
が最高の位置からアルゴン原料ガスを抜き出さなくても
充分にアルゴン/酸素を分離し得ることに着目したもの
である。
The argon source gas extracted from the low-pressure column 51b usually has a composition of oxygen as a main component and a minute amount of 5 to 15% argon and 1% or less nitrogen.
It is derived from the position where the argon content is the highest. However, according to the present invention, by configuring the argon purification column 53 with 100 or more theoretical plates, it is possible to sufficiently separate argon / oxygen without necessarily extracting the argon source gas from the position where the argon concentration is the highest. This is the focus.

【0016】したがって、主精留塔より導出するアルゴ
ン原料ガスは、窒素濃度が可能な限り微量で、かつ、ア
ルゴン濃度が理論段数100段以上で構成されたアルゴ
ン精製塔で精留により酸素濃度数ppm以下まで分離可
能であるような組成を選択して導出し、該アルゴン精製
塔53へ供給する。
Therefore, the argon raw material gas discharged from the main rectification column has a nitrogen concentration as small as possible, and an argon concentration column formed by rectification in an argon purification column having an argon concentration of 100 theoretical plates or more. A composition that allows separation down to ppm or less is selected and derived, and is supplied to the argon purification column 53.

【0017】この場合、アルゴン精製塔53を理論段数
100段以上の充填塔で構成することにより、酸素濃度
10ppm以下まで分離可能であり、160段以上とす
ることにより、精製アルゴン中の酸素含有量を1ppm
以下にすることができる。
In this case, by constructing the argon refining column 53 with a packed column having a theoretical plate number of 100 or more, it is possible to separate up to an oxygen concentration of 10 ppm or less, and by setting it to 160 plates or more, the oxygen content in the purified argon. 1 ppm
It can be:

【0018】したがって、該アルゴン精製塔53は、理
論段数100段以上、好ましくは160段以上の規則充
填材あるいは不規則充填材が充填される。
Therefore, the argon refining column 53 is filled with an ordered packing material or an irregular packing material having a theoretical plate number of 100 or more, preferably 160 or more.

【0019】そこで、低圧塔51bより抜出されるアル
ゴン原料ガスは、その組成が酸素を主成分とし、アルゴ
ン5〜10%、窒素5ppm以下、好ましくは1ppm
程度の微量含有するような個所から抜き出すことが望ま
しい。また低圧塔51bを充填塔にすることにより、上
記構成がより選択し易くなる。
Therefore, the argon source gas extracted from the low-pressure column 51b has a composition of oxygen as a main component, argon is 5 to 10%, and nitrogen is 5 ppm or less, preferably 1 ppm.
It is desirable to extract it from the place where it contains a trace amount. Further, by using the low pressure column 51b as a packed column, the above configuration can be more easily selected.

【0020】このような組成のアルゴン原料ガスを抜出
すと、抜出量が従来法と同量の場合はアルゴン収率が低
下するので、該ガス中のアルゴン濃度に応じて抜出量を
増加しなければならない。したがって、これがアルゴン
精製塔53の上昇ガスとなるので、これに見合う量の凝
縮器54の寒冷量が必要になる。すなわち、通常の粗ア
ルゴン塔に於けるアルゴン原料ガス量より多量の原料ガ
ス量を必要とし、その分還流液量も多量に必要となり、
寒冷量を増加させる必要がある。
When the argon source gas having such a composition is taken out, the yield of argon is lowered when the amount taken out is the same as that in the conventional method. Therefore, the amount taken out is increased in accordance with the argon concentration in the gas. Must. Therefore, since this becomes the rising gas of the argon refining tower 53, an amount of cold of the condenser 54 that corresponds to this is required. That is, a larger amount of raw material gas is required than the amount of argon raw material gas in a normal crude argon column, and a large amount of reflux liquid is required accordingly.
It is necessary to increase the amount of cold.

【0021】該アルゴン精製塔53の上部には、凝縮器
54が設けられており、前記複精留塔51の中圧塔(下
部塔)51a下部から抜き出され、膨張弁75で低圧と
なった酸素富化液体空気が導管59から寒冷源として導
入されている。また、このアルゴン精製塔53の凝縮器
54に供給する寒冷源は、主精留塔51の下部塔51a
より導出した酸素富化液化空気の他、液化窒素又は付設
液化サイクルからの液化ガスでも良い。
A condenser 54 is provided above the argon refining tower 53. The condenser 54 is withdrawn from the lower part of the middle pressure tower (lower tower) 51a of the double rectification tower 51, and the expansion valve 75 lowers the pressure. Oxygen-enriched liquid air is introduced as a cold source from conduit 59. The cold source supplied to the condenser 54 of the argon refining tower 53 is the lower tower 51a of the main rectification tower 51.
In addition to the oxygen-enriched liquefied air derived from the above, liquefied nitrogen or liquefied gas from the attached liquefaction cycle may be used.

【0022】こうしてアルゴン精製塔53を上昇した原
料ガスは、管55を経、前記凝縮器54で液化して還流
液となって管56を経て再びアルゴン精製塔53に入り
該塔53内を降下し、該塔53内を上昇する前記原料ガ
スとで液化精留が行われ、該塔53頂部から数%程度の
窒素を含むアルゴンガスを管60より導出し、調節弁6
1でその量を調節して導出し、塔頂より数段乃至十数段
下の段より管57を経て、アルゴン99. 95%以上、
酸素1ppm以下、好ましくは0. 1ppm以下、窒素
含有量が100ppm以下、好ましくは50ppm以
下、さらに好ましくは5ppm以下である精製アルゴン
が、製品アルゴンガス又は製品液アルゴンとして導出さ
れる。なお、前記数%程度の窒素を含むアルゴンガス
は、極微量の水素等低沸点成分をも含む。
The raw material gas thus rising in the argon purifying tower 53 is liquefied in the condenser 54 into a reflux liquid through the pipe 55 and again enters the argon purifying tower 53 through the pipe 56 and descends in the tower 53. Then, liquefaction rectification is performed with the raw material gas rising in the tower 53, and argon gas containing nitrogen of about several% is led out from the top of the tower 53 through a pipe 60, and a control valve 6
The amount is adjusted by 1 and is led out, through a pipe 57 from a stage several stages to a dozen or more stages lower than the top of the column, 99.95% or more of argon,
Purified argon having oxygen of 1 ppm or less, preferably 0.1 ppm or less, and nitrogen content of 100 ppm or less, preferably 50 ppm or less, more preferably 5 ppm or less is discharged as product argon gas or product liquid argon. The argon gas containing a few percent of nitrogen also contains a trace amount of low boiling point components such as hydrogen.

【0023】また、塔底より液化酸素を導出し、管58
により上部塔51bへ戻す。
Further, liquefied oxygen is discharged from the bottom of the column, and a pipe 58
To return to the upper tower 51b.

【0024】一方、凝縮器54で酸素富化液体空気が気
化したガスは、管59aにより上部塔の相当するガス組
成の個所に導入される。寒冷源としての液化ガスが液体
窒素等の場合は、製品として導出されるか、またはサイ
クルガスとして循環する。
On the other hand, the gas obtained by vaporizing the oxygen-enriched liquid air in the condenser 54 is introduced into a portion of the upper tower having a corresponding gas composition through the pipe 59a. When the liquefied gas as the cold source is liquid nitrogen or the like, it is discharged as a product or circulated as a cycle gas.

【0025】図2に,アルゴン精製塔53におけるアル
ゴン,酸素,窒素の各段における濃度分布を求めたグラ
フを示す。塔頂部に窒素等の低沸点ガスが濃縮してお
り、塔頂より相当理論段数段乃至十数段における液中の
窒素濃度が数ppm又はそれ以下であるのが明瞭であ
る。この濃度分布は、アルゴン精製塔における還流量,
精製アルゴンの抜出量等の運転条件により変動する。
FIG. 2 is a graph showing the concentration distribution of each stage of argon, oxygen and nitrogen in the argon refining tower 53. It is clear that the low boiling point gas such as nitrogen is concentrated at the top of the column, and the nitrogen concentration in the liquid is several ppm or less at a number of theoretical plates to a dozen or more stages from the top of the column. This concentration distribution shows the amount of reflux in the argon purification tower,
It varies depending on operating conditions such as the amount of purified argon extracted.

【0026】そこで前記高純度の精製アルゴンを製出す
る経路57に、該高純度精製アルゴン中の酸素濃度を検
出する分析計71を設け、該分析計71により検出され
た分析値により、前記高純度の精製アルゴンを導出する
経路57に設けた該精製アルゴンの導出量を調節する手
段63及びそれを制御する調節器62を設ける。
Therefore, an analyzer 71 for detecting the oxygen concentration in the high-purity purified argon is provided in the path 57 for producing the high-purity purified argon, and the high-purity purified argon is obtained by the analysis value detected by the analyzer 71. A means 63 for adjusting the amount of the purified argon discharged and a controller 62 for controlling the same are provided in the path 57 for discharging the purified argon of the purity.

【0027】さらに、該アルゴン精製塔53の凝縮器5
4の寒冷用液化ガス量等の検出調節手段73,74,7
5とを設けて、前記酸素濃度分析計71よりの信号によ
りこれらの手段73,74,75でアルゴン精製塔凝縮
器54の寒冷用液化ガス量又は凝縮器54内圧等を制御
する調節計62を設ける。寒冷量を制御する手段は、圧
力調節弁74,流量調節弁75等である。これらの分析
計71,流量検出器73,圧力調節弁74,流量調節弁
63,75等の制御手段、これらを制御する調節計62
等を設けたことにより、上記アルゴン精製塔53を自動
制御運転することができる。
Further, the condenser 5 of the argon refining tower 53
4. Detection / adjustment means 73, 74, 7 for the cold liquefied gas amount, etc.
5 and a controller 62 for controlling the amount of cold liquefied gas in the argon refining tower condenser 54 or the internal pressure of the condenser 54 by these means 73, 74, 75 according to the signal from the oxygen concentration analyzer 71. Set up. The means for controlling the amount of cold is a pressure control valve 74, a flow rate control valve 75, and the like. Control means such as the analyzer 71, the flow rate detector 73, the pressure control valve 74, the flow rate control valves 63 and 75, and the controller 62 for controlling these.
By providing the etc., the argon refining tower 53 can be automatically controlled.

【0028】なお、前記高純度の精製アルゴンを製出す
る経路57に設けた該高純度精製アルゴン中の酸素濃度
を検出する分析計71よりの信号により、又は前記経路
57に設けた窒素分析計72からの信号の双方により、
アルゴン精製塔53塔頂より主として窒素よりなる低沸
点成分を導出する経路60に設けた窒素を含むアルゴン
ガスの導出量を調節する弁61等の調節手段を制御する
ように前記調節計62を設定してもよい。
It should be noted that a nitrogen analyzer provided in the path 57 or a signal from an analyzer 71 provided in the path 57 for producing the high-purity purified argon for detecting the oxygen concentration in the high-purity purified argon. Both of the signals from 72
The controller 62 is set so as to control adjusting means such as a valve 61 for adjusting the amount of the argon gas containing nitrogen, which is provided in the path 60 for discharging the low boiling point component mainly composed of nitrogen from the top of the argon refining tower 53. You may.

【0029】次に、上記アルゴン精製塔53塔頂より数
段乃至十数段下より抜出す高純度の精製アルゴンガス
は、製品仕様等必要に応じて更に次工程のゲッター又は
吸着による精製工程で精製する。
Next, the high-purity purified argon gas extracted from the top of the above-mentioned argon refining tower 53 from several stages to several tens of stages is subjected to a getter or a purification process by adsorption in the next step as required according to product specifications. Purify.

【0030】前記アルゴン精製塔53の理論段数が10
0段の場合は、精製アルゴン中の窒素含有量は、低圧塔
からの抜き出し位置により100乃至5ppm程度、含
有酸素量は約数ppm程度まで低減し得るので、製品仕
様が含有酸素量,含有窒素量ともに1.0ppm程度の
場合は、アルゴン精製塔53で製出した精製ガスを吸着
工程により更に精製して、酸素含有量及び窒素含有量を
1ppm以下まで低減させるか、ゲッター精製工程で精
製して酸素、窒素双方を除去する。
The number of theoretical plates of the argon refining tower 53 is 10
In the case of the 0th stage, the nitrogen content in the purified argon can be reduced to about 100 to 5 ppm and the oxygen content can be reduced to about several ppm depending on the extraction position from the low pressure column. When both the amounts are about 1.0 ppm, the purified gas produced in the argon purification column 53 is further purified by the adsorption step to reduce the oxygen content and the nitrogen content to 1 ppm or less, or the getter purification step. To remove both oxygen and nitrogen.

【0031】前記アルゴン精製塔の理論段数が160段
の場合は,含有酸素量は約1. 0ppm以下まで低減し
得るので、製品仕様が含有酸素量,含有窒素量ともに
1. 0ppm程度の場合は、160段程度のアルゴン精
製塔で製出した精製ガスをゲッター精製工程で精製して
酸素含有量及び窒素含有量を1ppm以下まで低減させ
るか、吸着工程により窒素を除去する。
When the theoretical plate number of the argon refining tower is 160 plates, the oxygen content can be reduced to about 1.0 ppm or less. Therefore, when the product specifications are about 1.0 ppm for both oxygen content and nitrogen content. The purified gas produced in an argon purification tower of about 160 stages is purified in a getter purification process to reduce the oxygen content and the nitrogen content to 1 ppm or less, or the adsorption process removes nitrogen.

【0032】図3に吸着精製を行う場合の例を示す。ア
ルゴン精製塔53を管57で導出した精製液アルゴン
を、液柱圧を利用した加圧器80により吸着装置89に
必要な圧を付与し、次いで気化器81で気化して熱交換
器84で常温まで昇温した後、吸着塔89a又は89b
に導入し、吸着により窒素含有量及び/又は酸素含有量
を0.1ppm以下まで低減させ精製し、製品ガスとし
て取り出す。除去対象不純物が窒素のみの場合は、吸着
剤はゼオライトを使用する。除去対象不純物が窒素及び
酸素の場合は、吸着剤は酸素を吸着する吸着剤として分
子篩炭素、窒素を吸着する吸着剤としてゼオライトを使
用する。ゼオライトはMS4A又はMS5Aを用いる。
これらの吸着剤は、それぞれ別の塔に充填しても良い
が、再生方式により一塔に二層充填しても良い。いずれ
の場合も切換使用する少なくとも2塔よりなる吸着塔で
構成する。
FIG. 3 shows an example of carrying out adsorption purification. The purified liquid argon drawn out from the argon purification tower 53 through the pipe 57 is applied with a necessary pressure to the adsorption device 89 by the pressurizer 80 using the liquid column pressure, then vaporized by the vaporizer 81 and kept at the normal temperature by the heat exchanger 84. After being heated up to, the adsorption tower 89a or 89b
Nitrogen gas and / or oxygen content is reduced to 0.1 ppm or less by adsorption for purification, and the product gas is taken out. When the impurities to be removed are only nitrogen, zeolite is used as the adsorbent. When the impurities to be removed are nitrogen and oxygen, the adsorbent uses molecular sieve carbon as an adsorbent that adsorbs oxygen and zeolite as an adsorbent that adsorbs nitrogen. As the zeolite, MS4A or MS5A is used.
These adsorbents may be packed in separate columns, but may be packed in two layers in one column by a regeneration method. In each case, the adsorption tower is composed of at least two towers that are switched and used.

【0033】常温吸着法で所要濃度以下まで不純物酸
素、窒素を除去出来ない場合は、同じ吸着剤を用いて低
温吸着法により精製する。また、製品が液アルゴンの場
合は、図4の如く前記アルゴン精製塔より取り出した液
体精製アルゴンを、加圧器80で与圧後、液状で吸着装
置89′に導入して吸着精製しても良い。
When the impurities and oxygen and nitrogen cannot be removed by the room temperature adsorption method to the required concentrations or less, the same adsorbent is used to purify by the low temperature adsorption method. When the product is liquid argon, liquid purified argon taken out from the argon purification tower as shown in FIG. 4 may be pressurized by the pressurizer 80 and then introduced into the adsorption device 89 'in a liquid state for adsorption purification. .

【0034】前記アルゴン精製塔53の理論段数が20
0段の場合は、含有酸素量は約0.1ppm程度まで低
減し得るので、製品仕様が含有酸素量、含有窒素量とも
に0.1ppm程度の場合は、200段以上のアルゴン
精製塔で製出した精製アルゴンガスをゲッター精製工程
で精製して窒素含有量を0. 1ppm以下まで低減させ
れば良い。
The number of theoretical plates of the argon refining tower 53 is 20.
In the case of 0 stage, the oxygen content can be reduced to about 0.1 ppm, so if the product specifications are both oxygen content and nitrogen content of about 0.1 ppm, the product is produced in an argon purification tower of 200 stages or more. The purified argon gas may be purified in a getter refining step to reduce the nitrogen content to 0.1 ppm or less.

【0035】図5にゲッターによる精製工程を示す。ア
ルゴン精製塔53を管57で導出した精製液アルゴン
を、液柱圧を利用した加圧器80によりゲッター精製装
置に必要な圧を付与し、次いで気化器81で気化し、熱
交換器84で昇温し、さらにヒーター装置85,86に
よりゲッター材との反応温度まで昇温した後、ゲッター
筒91に導入し、ゲッターと主として窒素との反応によ
り窒素含有量を0.1ppm以下まで低減させ精製し、
前記熱交換器84で熱回収を行い製品ガスとして取り出
す。
FIG. 5 shows the purification process by the getter. The purified liquid argon drawn out from the argon purification tower 53 through the pipe 57 is applied with a pressure device 80 using a liquid column pressure to a pressure required for the getter purification device, then vaporized by a vaporizer 81, and risen by a heat exchanger 84. After heating and further raising the temperature to the reaction temperature with the getter material by the heater devices 85 and 86, it is introduced into the getter cylinder 91 and purified by reducing the nitrogen content to 0.1 ppm or less by the reaction between the getter and mainly nitrogen. ,
Heat is recovered by the heat exchanger 84 and taken out as a product gas.

【0036】アルゴン精製塔53を管57で導出した精
製ガスがゲッター筒91を通過するに充分な圧を有する
時は、加圧器80,気化器81を経ず想像線で示す管6
7を経て熱交換器84,ゲッター筒91へ供給する。
When the purified gas discharged from the argon purification column 53 through the pipe 57 has a sufficient pressure to pass through the getter cylinder 91, the pipe 6 indicated by an imaginary line does not pass through the pressurizer 80 and the vaporizer 81.
It is supplied to the heat exchanger 84 and the getter cylinder 91 via 7.

【0037】ゲッター筒91は単筒でも良いが、除去す
るべき精製アルゴン中の窒素濃度及び期間によって切換
使用する2筒で構成した方が良い。また後記するように
酸素及び窒素両方を除去する場合は異なる2種以上のゲ
ッター材を充填した2個のゲッター筒を直列に接続して
使用する。勿論1筒内に2種以上のゲッター材を層状に
充填しても良い。
The getter cylinder 91 may be a single cylinder, but it is preferable that the getter cylinder 91 is composed of two cylinders which are switched and used depending on the nitrogen concentration in the purified argon to be removed and the period. Further, as will be described later, when removing both oxygen and nitrogen, two getter cylinders filled with two or more different getter materials are connected in series and used. Of course, one cylinder may be filled with two or more kinds of getter materials in layers.

【0038】ゲッターは、上記のように酸素をアルゴン
精製塔で充分に除去した場合は、ジルコニウム又はジル
コニウムと鉄、ジルコニウムと鉄とバナジウム、ジルコ
ニウムとアルミニウムとニッケル、ジルコニウムとチタ
ンとニッケルの合金を600℃乃至800℃に昇温し
て、主として窒素と反応させこれを除去する。
When the oxygen is sufficiently removed in the argon refining tower as described above, the getter is made of 600 alloys of zirconium or zirconium and iron, zirconium and iron and vanadium, zirconium and aluminum and nickel, and zirconium and titanium and nickel. C. to 800.degree. C. are raised to mainly react with nitrogen to remove it.

【0039】精製アルゴンが酸素共存の場合は、先ずニ
ッケルか銅又はこれらの複合ゲッター材を用いて300
℃乃至400℃で酸素を除去し、次いで上記のジルコニ
ウム又はジルコニウム合金、その他の複合ゲッターを6
00℃以上に昇温した状態で窒素と反応させてこれを除
去する。
When purified argon coexists with oxygen, nickel or copper or a composite getter material thereof is used to obtain 300
Remove oxygen at ℃ -400 ℃, then remove zirconium or zirconium alloy and other composite getters
This is removed by reacting with nitrogen in a state where the temperature is raised to 00 ° C or higher.

【0040】このように本発明によれば、空気を少なく
とも1塔よりなる主精留塔51に導入してアルゴン数%
乃至10数%,窒素数10ppm以下、残り酸素よりな
るアルゴン原料ガスを導出し、理論段数100段以上好
ましくは160段以上のアルゴン精製塔53に導入して
精留を行い、塔頂より窒素を含むアルゴンガスをその量
を調節して導出し、塔頂より数段乃至十数段下より高純
度の精製ガス又は液アルゴンを製出し、塔底より液化酸
素を導出することにより、アルゴン精製塔一塔のみで高
純度製品アルゴンを製造できる。
As described above, according to the present invention, air is introduced into the main rectification column 51 consisting of at least one column to supply several% of argon.
To 10% by number, 10 ppm or less of nitrogen, and an argon source gas consisting of residual oxygen are introduced and introduced into an argon refining column 53 having 100 or more theoretical plates, preferably 160 or more theoretical plates, and rectification is performed. By adjusting the amount of the argon gas contained and discharging it, a purified gas or liquid argon of high purity is produced from several columns to several tens of columns from the top of the column, and liquefied oxygen is derived from the bottom of the column. High-purity product argon can be produced with only one tower.

【0041】また、前記アルゴン精製塔53を導出した
精製液アルゴンを液のまま、又は常温に昇温後、又はガ
スアルゴンを低温のまま、あるいは昇温して吸着床89
を通すことにより、更に精製を行い含有する微量の窒素
及び酸素を除去して不純物窒素及び酸素が1ppm以下
の高純度アルゴンを製造することができる。
Further, the purified liquid argon discharged from the argon purification tower 53 is kept as a liquid or after being heated to room temperature, or the gas argon is kept at a low temperature or is heated to raise the adsorption bed 89.
By passing through it, it is possible to further purify and remove a small amount of contained nitrogen and oxygen to produce high-purity argon having impurity nitrogen and oxygen of 1 ppm or less.

【0042】また、前記アルゴン精製塔53を導出した
精製液アルゴン又はガスアルゴンを気化昇温後、又は昇
温後、更にゲッターとの反応温度に昇温し、ゲッターと
反応させるることにより精製を行い含有する微量の窒素
及び酸素を除去することにより、これら0.1ppm以
下の超高純度のアルゴンを製造できる。
Further, the purified liquid argon or the gaseous argon discharged from the argon refining tower 53 is vaporized and heated, or after the temperature is raised, the reaction temperature with the getter is further raised to react with the getter for purification. By removing the traces of nitrogen and oxygen contained therein, ultrapure argon of 0.1 ppm or less can be produced.

【0043】さらに、前記高純度の精製アルゴンを製出
する経路57に、該高純度精製アルゴン中の酸素濃度を
検出する分析計71を設け、該分析計により検出された
分析値により、精製アルゴンを導出する経路57に設け
た精製アルゴン導出量調節手段63及びこれを調節する
調節計62を設けたことにより、また、アルゴン精製塔
53より導出する精製アルゴン中の酸素濃度を検出する
分析計71と、該アルゴン精製塔凝縮器54の寒冷用液
化ガス量を検出し調節する手段73,75,圧力調節手
段74を設けて、酸素濃度分析計71よりの信号により
アルゴン精製塔凝縮器54の液化ガス量等寒冷量を調節
する調節計62を設け、前記調節手段73,74,75
を制御することにより、上記アルゴン精製塔53を自動
制御運転することができる。
Further, an analyzer 71 for detecting the oxygen concentration in the high-purity purified argon is provided in the path 57 for producing the high-purity purified argon, and the purified argon is obtained according to the analysis value detected by the analyzer. By providing the purified argon derivation amount control means 63 and the controller 62 for controlling this, which are provided in the path 57 for derivation of the oxygen, the analyzer 71 for detecting the oxygen concentration in the purified argon derived from the argon refining tower 53. And means 73 and 75 for detecting and adjusting the amount of cold liquefied gas in the argon refining tower condenser 54 and a pressure adjusting means 74, and liquefying the argon refining tower condenser 54 by a signal from the oxygen concentration analyzer 71. A controller 62 for adjusting the amount of cold such as the amount of gas is provided, and the adjusting means 73, 74, 75 are provided.
The argon refining tower 53 can be automatically controlled by controlling the above.

【0044】[0044]

【発明の効果】以上説明したように、本発明の高純度ア
ルゴン製造方法によれば、アルゴン精製塔を1塔設ける
だけで、従来触媒による水添脱酸工程及び高純アルゴン
塔により精製を行って製造していた高純度アルゴンを製
造できる。本発明のアルゴン精製塔の塔長及び高純度ア
ルゴンの導出部を塔頂より下の任意の最適位置に設定す
ることにより、精製アルゴン中の不純物である微量の酸
素の量を1ppm以下まで、及び窒素の量を5ppm以
下までにすることが可能である。さらに、必要に応じて
該精製アルゴンをゲッター反応筒又は吸着床を通すこと
により、前記不純物の量が0.1ppm以下の超高純度
精製アルゴンを製造することができる。
As described above, according to the method for producing high-purity argon of the present invention, the purification by the conventional catalyst hydrodeoxidation step and the high-purity argon column can be performed by providing only one argon purification column. The high-purity argon produced by By setting the tower length of the argon refining tower of the present invention and the derivation part of high-purity argon at any optimum position below the top of the tower, the amount of trace oxygen as impurities in the purified argon is reduced to 1 ppm or less, and It is possible to reduce the amount of nitrogen to 5 ppm or less. Further, if necessary, the purified argon is passed through a getter reaction column or an adsorption bed to produce ultrahigh-purity purified argon in which the amount of impurities is 0.1 ppm or less.

【0045】さらに、精製アルゴン中の不純物である微
量の酸素の量を検出する分析計を設け、この分析計より
の信号によりアルゴン精製塔より導出する精製アルゴン
導出量及び該アルゴン精製塔凝縮器の寒冷量を制御する
ことによって該アルゴン精製塔の自動制御運転を行うこ
とができる。
Furthermore, an analyzer for detecting the amount of a trace amount of oxygen, which is an impurity in the purified argon, is provided, and the amount of purified argon derived from the argon purification column and the amount of purified argon derived from the argon purification column condenser of the argon purifying column based on the signal from the analyzer. The argon refining tower can be automatically controlled by controlling the amount of cold.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】精製アルゴン塔内のアルゴン,酸素,窒素の各
濃度分布を示す図。
FIG. 2 is a diagram showing each concentration distribution of argon, oxygen, and nitrogen in a purified argon column.

【図3】精製アルゴン塔よりの精製ガスアルゴンを更に
吸着器で精製する場合の系統図。
FIG. 3 is a system diagram when purified gas argon from a purified argon column is further purified by an adsorber.

【図4】精製アルゴン塔よりの精製液アルゴンを更に吸
着器で精製する場合の系統図。
FIG. 4 is a system diagram in the case where purified liquid argon from a purified argon column is further purified by an adsorber.

【図5】精製アルゴン塔よりの精製アルゴンを更にゲッ
ター装置で精製する場合の系統図。
FIG. 5 is a system diagram in the case where purified argon from the purified argon column is further purified by a getter device.

【図6】従来の空気深冷分離法による高純度アルゴン採
取方法の一例を示す系統図。
FIG. 6 is a system diagram showing an example of a high-purity argon sampling method by a conventional air cryogenic separation method.

【符号の説明】[Explanation of symbols]

51…複精留塔,51a…複(主)精留塔下部塔(中圧
塔),51b…主精留塔上部塔(低圧塔),53…アル
ゴン精製塔,54…凝縮器,61…窒素含有アルゴンガ
ス導出量調節弁,62…自動制御用調節計,63…精製
アルゴン導出量調節弁,71…精製アルゴン中の酸素濃
度分析計,72…精製アルゴン中の窒素濃度分析計,7
3…凝縮器54の寒冷用液化ガスの流量計,74…凝縮
器54の寒冷用液化ガスの圧力調節弁,75…凝縮器5
4の寒冷用液化ガスの流量調節弁,80…加圧器,81
…気化器,84…熱交換器,85,86…ヒーター、8
9,89a,89b…吸着器、91…ゲッター筒
51 ... Double rectification column, 51a ... Double (main) rectification column lower column (medium pressure column), 51b ... Main rectification column upper column (low pressure column), 53 ... Argon purification column, 54 ... Condenser, 61 ... Nitrogen-containing argon gas discharge control valve, 62 ... Automatic control controller, 63 ... Purified argon discharge control valve, 71 ... Oxygen concentration analyzer in purified argon, 72 ... Nitrogen concentration analyzer in purified argon, 7
3 ... Flowmeter for cold liquefied gas in condenser 54, 74 ... Pressure control valve for cold liquefied gas in condenser 54, 75 ... Condenser 5
4. Refrigerating liquefied gas flow control valve of 4, 80 ... Pressurizer, 81
... vaporizer, 84 ... heat exchanger, 85, 86 ... heater, 8
9, 89a, 89b ... Adsorber, 91 ... Getter cylinder

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 空気を圧縮,精製,冷却し、少なくとも
1塔よりなる主精留塔に導入して酸素及び/又は窒素を
製出するとともに、該主精留塔よりアルゴン原料ガスを
導出し、理論段数100段以上好ましくは160段以上
のアルゴン精製塔に導入して精留を行い、塔頂より窒素
を含むアルゴンをその量を調節して導出し、塔頂より数
段乃至十数段下より高純度の精製アルゴンを製出し、塔
底より液化酸素を導出することを特徴とする高純度アル
ゴンの製造方法。
1. Air is compressed, purified and cooled, and is introduced into a main rectification column consisting of at least one column to produce oxygen and / or nitrogen, and an argon source gas is led out from the main rectification column. The rectification is carried out by introducing into an argon purification column having 100 or more theoretical plates, preferably 160 or more theoretical plates, and argon containing nitrogen is discharged from the top of the tower by adjusting the amount thereof and from several to ten or more trays from the top of the tower. A method for producing high-purity argon, which comprises producing highly pure purified argon from below and discharging liquefied oxygen from the bottom of the column.
【請求項2】 前記主精留塔より導出するアルゴン原料
ガスは、窒素含有量が50ppm以下好ましくは5pp
m以下であることを特徴とする請求項1項記載の高純度
アルゴンの製造方法。
2. The argon raw material gas discharged from the main rectification column has a nitrogen content of 50 ppm or less, preferably 5 pp.
The method for producing high-purity argon according to claim 1, characterized in that it is m or less.
【請求項3】 前記アルゴン精製塔が、規則充填材又は
不規則充填材を充填した充填塔であることを特徴とする
請求項1記載の高純度アルゴンの製造方法。
3. The method for producing high-purity argon according to claim 1, wherein the argon refining tower is a packed tower packed with an ordered packing material or an irregular packing material.
【請求項4】 前記アルゴン精製塔の凝縮器に供給する
寒冷源が、主精留塔下部塔より導出した酸素富化液化空
気あるいは液化窒素又は付設液化サイクルからの液化ガ
スであることを特徴とする請求項1記載の高純度アルゴ
ンの製造方法。
4. The cold source supplied to the condenser of the argon purification column is oxygen-enriched liquefied air or liquefied nitrogen derived from the lower column of the main rectification column, or liquefied gas from an attached liquefaction cycle. The method for producing high-purity argon according to claim 1.
【請求項5】 前記アルゴン精製塔を導出した精製液ア
ルゴン又はガスアルゴンを気化昇温後又は昇温後、更に
ゲッターとの反応温度に昇温し、ゲッターと反応させる
ことにより精製を行い、含有する微量の窒素及び酸素を
除去することを特徴とする請求項1記載の高純度アルゴ
ンの製造方法。
5. The purified liquid argon or gas argon, which is discharged from the argon purification tower, is vaporized and heated, or further heated to a reaction temperature with a getter and purified by reacting with a getter. The method for producing high-purity argon according to claim 1, characterized in that a trace amount of nitrogen and oxygen are removed.
【請求項6】 前記アルゴン精製塔を導出した精製液ア
ルゴンを、液のまま又は気化後、吸着床を通すことによ
り更に精製を行い、含有する微量の窒素及び酸素を除去
することを特徴とする請求項1記載の高純度アルゴンの
製造方法。
6. The purified liquid argon, which is discharged from the argon purification column, is further purified by passing it through the adsorption bed as a liquid or after vaporization to remove a trace amount of nitrogen and oxygen contained therein. The method for producing high-purity argon according to claim 1.
【請求項7】 前記アルゴン精製塔を導出した精製ガス
アルゴン又は前記気化アルゴンを低温のまま又は常温に
昇温後、吸着床を通すことにより更に精製を行い、含有
する微量の窒素及び酸素を除去することを特徴とする請
求項1記載の高純度アルゴンの製造方法。
7. The purified gas argon or the vaporized argon discharged from the argon purification tower is kept at a low temperature or after the temperature is raised to room temperature, and further purified by passing through an adsorption bed to remove a trace amount of nitrogen and oxygen contained therein. The method for producing high-purity argon according to claim 1, wherein
【請求項8】 圧縮,精製,冷却した原料空気を導入し
て酸素及び/又は窒素を製出する少なくとも1塔よりな
る主精留塔、該主精留塔よりアルゴン原料ガスを導出す
る経路、アルゴン原料ガスを導入して精留を行う相当理
論段数が100段以上の充填塔でなるアルゴン精製塔、
該アルゴン精製塔塔頂より窒素を含むアルゴンを導出す
る経路、その窒素含有アルゴンの導出量を調節する手
段、該塔塔頂より相当理論段数で数段乃至十数段下より
高純度の精製アルゴンを製出する経路、塔底より液化酸
素を導出する経路を有することを特徴とする高純度アル
ゴンの製造装置。
8. A main rectification column comprising at least one column for producing oxygen and / or nitrogen by introducing compressed, purified and cooled raw material air, and a route for deriving an argon raw material gas from the main rectification column, An argon refining tower which is a packed tower having 100 or more theoretical plates for introducing rectification by introducing an argon raw material gas,
A route for deriving argon containing nitrogen from the top of the argon purifying column, a means for adjusting the amount of the nitrogen-containing argon deriving, and a purified argon having a higher theoretical purity than the theoretical top of the column from several to ten or more stages. An apparatus for producing high-purity argon, characterized in that it has a path for producing liquefied oxygen and a path for discharging liquefied oxygen from the bottom of the column.
【請求項9】 前記アルゴン精製塔の精製アルゴン導出
経路に、精製アルゴン中の酸素濃度を検出する分析計
と、該精製アルゴンの導出流量検出及び調節手段とを設
けるとともに、前記酸素濃度分析計よりの信号により前
記精製アルゴン導出流量調節手段を制御する調節計を設
けたことを特徴とする請求項8記載の高純度アルゴンの
製造装置。
9. An analyzer for detecting the oxygen concentration in the purified argon and a means for detecting and adjusting the derivation flow rate of the purified argon are provided in the purified argon derivation path of the argon refining tower, and the oxygen concentration analyzer 9. The apparatus for producing high-purity argon according to claim 8, further comprising a controller for controlling the purified argon derivation flow rate adjusting means according to the signal of FIG.
【請求項10】 前記アルゴン精製塔より導出する精製
アルゴン中の酸素濃度を検出する分析計と、該アルゴン
精製塔凝縮器の寒冷用液化ガスの流量及び/又は圧力の
検出調節手段とを設けるとともに、前記酸素濃度分析計
よりの信号によりアルゴン精製塔凝縮器の寒冷用液化ガ
ス量等の寒冷量を制御する調節計を設けたことを特徴と
する請求項8記載の高純度アルゴンの製造装置。
10. An analyzer for detecting the oxygen concentration in the purified argon derived from the argon purification tower, and means for detecting and adjusting the flow rate and / or pressure of the liquefied gas for cooling of the condenser of the argon purification tower are provided. 9. The apparatus for producing high-purity argon according to claim 8, further comprising a controller for controlling a refrigerating amount such as a refrigerating liquefied gas amount in the refining tower condenser in response to a signal from the oxygen concentration analyzer.
JP5279952A 1993-11-09 1993-11-09 Method and apparatus for preparing high purity argon Pending JPH07133982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5279952A JPH07133982A (en) 1993-11-09 1993-11-09 Method and apparatus for preparing high purity argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5279952A JPH07133982A (en) 1993-11-09 1993-11-09 Method and apparatus for preparing high purity argon

Publications (1)

Publication Number Publication Date
JPH07133982A true JPH07133982A (en) 1995-05-23

Family

ID=17618217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5279952A Pending JPH07133982A (en) 1993-11-09 1993-11-09 Method and apparatus for preparing high purity argon

Country Status (1)

Country Link
JP (1) JPH07133982A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828122A1 (en) * 1996-09-06 1998-03-11 Linde Aktiengesellschaft Process and apparatus for the recovery of argon by low temperature air separation
US5970743A (en) * 1998-06-10 1999-10-26 Air Products And Chemicals, Inc. Production of argon from a cryogenic air separation process
JP2005114349A (en) * 2003-10-06 2005-04-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method and system for optimizing argon recovery in air separation unit
JP2012083058A (en) * 2010-10-14 2012-04-26 Taiyo Nippon Sanso Corp Air liquefied separation method and device
WO2015167699A3 (en) * 2014-05-01 2015-12-30 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
WO2016004144A1 (en) * 2014-07-02 2016-01-07 Praxair Technology, Inc. Argon condensation system and method
KR20190075507A (en) * 2017-12-21 2019-07-01 주식회사 포스코 Air seperation apparatus having device for preventing fluctuation of flow
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
EP3889530A1 (en) * 2020-04-02 2021-10-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting an argon separation column of an air separation device by cryogenic distillation and unit for implementing said method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828122A1 (en) * 1996-09-06 1998-03-11 Linde Aktiengesellschaft Process and apparatus for the recovery of argon by low temperature air separation
US5970743A (en) * 1998-06-10 1999-10-26 Air Products And Chemicals, Inc. Production of argon from a cryogenic air separation process
JP2005114349A (en) * 2003-10-06 2005-04-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method and system for optimizing argon recovery in air separation unit
JP2012083058A (en) * 2010-10-14 2012-04-26 Taiyo Nippon Sanso Corp Air liquefied separation method and device
CN105934642A (en) * 2014-05-01 2016-09-07 普莱克斯技术有限公司 System and method for production of argon by cryogenic rectification of air
US9599396B2 (en) 2014-05-01 2017-03-21 Praxair Technology, Inc. System and method for production of crude argon by cryogenic rectification of air
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US9291389B2 (en) 2014-05-01 2016-03-22 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
WO2015167699A3 (en) * 2014-05-01 2015-12-30 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US10082333B2 (en) 2014-07-02 2018-09-25 Praxair Technology, Inc. Argon condensation system and method
US10060673B2 (en) 2014-07-02 2018-08-28 Praxair Technology, Inc. Argon condensation system and method
WO2016004144A1 (en) * 2014-07-02 2016-01-07 Praxair Technology, Inc. Argon condensation system and method
US10190819B2 (en) 2014-07-02 2019-01-29 Praxair Technology, Inc. Argon condensation system and method
US10247471B2 (en) 2014-07-02 2019-04-02 Praxair Technology, Inc. Argon condensation system and method
WO2016004145A1 (en) * 2014-07-02 2016-01-07 Praxair Technology, Inc. Argon condensation system and method
KR20190075507A (en) * 2017-12-21 2019-07-01 주식회사 포스코 Air seperation apparatus having device for preventing fluctuation of flow
EP3889530A1 (en) * 2020-04-02 2021-10-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting an argon separation column of an air separation device by cryogenic distillation and unit for implementing said method
FR3108970A1 (en) * 2020-04-02 2021-10-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for starting an argon separation column of an air separation apparatus by cryogenic distillation and unit for carrying out the process

Similar Documents

Publication Publication Date Title
US5159816A (en) Method of purifying argon through cryogenic adsorption
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US4566886A (en) Process and apparatus for obtaining pure CO
EP0444422A1 (en) Production of high purity argon
JPH0376167B2 (en)
JPH0140271B2 (en)
US4934147A (en) Cryogenic gas purification process and apparatus
JP2597521B2 (en) Air separation by cryogenic distillation for crude argon product production
US5783162A (en) Argon purification process
CA2058779C (en) Crude neon production system
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH07133982A (en) Method and apparatus for preparing high purity argon
JPH02225994A (en) Method and device of refining nitrogen
JP3306517B2 (en) Air liquefaction separation apparatus and method
JP2636949B2 (en) Improved nitrogen generator
JPH07139876A (en) Refining method for krypton and xenon
JP3364724B2 (en) Method and apparatus for separating high purity argon
JPH02223786A (en) Manufacture of ultra high purity oxygen
JP3424101B2 (en) High purity argon separation equipment
US3805537A (en) Helium-enriched helium-hydrogen mixture using methane to scrub out residual nitrogen
JPH07127971A (en) Argon separator
JP4024347B2 (en) Argon recovery method and apparatus
JP3256811B2 (en) Method for purifying krypton and xenon
JP3297935B2 (en) Method and apparatus for separating high purity argon
JP3424100B2 (en) Method for purifying krypton and xenon