JP3424100B2 - Method for purifying krypton and xenon - Google Patents
Method for purifying krypton and xenonInfo
- Publication number
- JP3424100B2 JP3424100B2 JP27992993A JP27992993A JP3424100B2 JP 3424100 B2 JP3424100 B2 JP 3424100B2 JP 27992993 A JP27992993 A JP 27992993A JP 27992993 A JP27992993 A JP 27992993A JP 3424100 B2 JP3424100 B2 JP 3424100B2
- Authority
- JP
- Japan
- Prior art keywords
- xenon
- krypton
- tower
- gas
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04745—Krypton and/or Xenon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04745—Krypton and/or Xenon
- F25J3/04751—Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
- F25J3/04757—Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/34—Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/82—Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、クリプトン及びキセノ
ンの精製方法に関し、詳しくは、空気液化分離装置の複
精留塔上部塔下部の液化酸素中に濃縮されるクリプトン
及びキセノンを精製する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying krypton and xenon, and more particularly to a method for purifying krypton and xenon concentrated in liquefied oxygen in the upper part and lower part of the double rectification column of an air liquefaction separation apparatus. .
【0002】[0002]
【従来の技術】従来から、空気液化分離装置の液化酸素
中に濃縮されるクリプトン及びキセノンをさらに濃縮
し、さらに濃縮後のクリプトン及びキセノンを精製後、
それぞれに分離して高純度製品を採取している。2. Description of the Related Art Conventionally, krypton and xenon which are concentrated in liquefied oxygen of an air liquefaction separation apparatus are further concentrated, and after the concentrated krypton and xenon are purified,
High-purity products are collected separately.
【0003】通常、これらの装置は、精留工程,触媒反
応工程,吸着工程を繰り返し、精留によりクリプトン9
0〜95%及びキセノン5〜10%の濃縮液を得た後、
最後にクリプトンとキセノンとを分離するようにしてい
る。すなわち、複精留塔主凝縮蒸発器を導出後の液化酸
素を濃縮工程,メタンパージ工程,第1触媒工程,第1
吸着工程,脱酸素工程,第2触媒工程,第2吸着工程,
分離工程を経て最終製品であるクリプトン及びキセノン
を得ていた。Usually, these apparatuses repeat a rectification step, a catalytic reaction step, and an adsorption step, and krypton 9 by rectification.
After obtaining a concentrated solution of 0-95% and xenon 5-10%,
Finally, krypton and xenon are separated. That is, the step of concentrating the liquefied oxygen after the main condenser / evaporator of the double rectification column is concentrated, the methane purge step, the first catalyst step, the first step
Adsorption step, deoxidation step, second catalyst step, second adsorption step,
The final products, krypton and xenon, were obtained through the separation process.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、大気中
に含まれるクリプトン及びキセノンは、それぞれ1.1
4ppm及び0.086ppmと極微量であるため、こ
れを濃縮して最終的に他の空気成分を1ppm以下まで
に除去する精製工程を連続して行うことができず、一貫
した精製工程を有する装置の製作が困難であった。However, the amount of krypton and xenon contained in the atmosphere is 1.1, respectively.
Since it is an extremely small amount of 4 ppm and 0.086 ppm, it is not possible to continuously perform a purification step of concentrating it and finally removing other air components to 1 ppm or less, and an apparatus having a consistent purification step. Was difficult to make.
【0005】そこで本発明は、従来法において、特に触
媒工程,吸着工程が繰り返し行われていることに注目
し、脱酸素塔の次の触媒・吸着工程を省略して全工程を
短縮し、かつ、含有不純物を1ppm以下まで精製する
ことが可能で、上記クリプトン及びキセノンを最小限の
工程で効率よく分離することができ、しかも、高純度に
精製したクリプトン及びキセノンを得ることができる精
製方法を提供することを目的としている。In view of the above, the present invention pays attention to the fact that the catalyst step and the adsorption step are repeatedly carried out in the conventional method, omitting the catalyst / adsorption step subsequent to the deoxygenation tower, and shortening all steps, and , A purification method capable of purifying contained impurities to 1 ppm or less, efficiently separating the above krypton and xenon with a minimum number of steps, and obtaining highly purified krypton and xenon. It is intended to be provided.
【0006】[0006]
【課題を解決するための手段】上記した目的を達成する
ため、本発明のクリプトン及びキセノンの精製方法は、
空気液化分離装置から導出されるクリプトン及びキセノ
ンを含む液化酸素からクリプトン及びキセノンを精製す
る方法において、前記液化酸素を濃縮塔に導入して塔底
液にクリプトン及びキセノンを濃縮する工程と、該濃縮
塔塔底液を気化して触媒反応筒に導入して含有する炭化
水素類と酸素とを反応させる触媒反応工程と、該触媒反
応筒導出後のガスを吸着器に導入して触媒反応工程で生
成した水,二酸化炭素を吸着除去する吸着工程と、該吸
着工程導出後のガスを再度冷却して脱酸素塔に導入して
濃縮部の気液比L/Vを0.1以上、回収部の気液比L
/Vを1.0以上として精留を行い、塔頂から酸素ガス
を導出除去する脱酸素工程と、脱酸素塔塔底液を導出し
て分離塔に導入し、該分離塔塔底部からキセノンを、塔
頂部からクリプトンを導出する分離工程とを順次行うこ
とを特徴としている。In order to achieve the above object, the method for purifying krypton and xenon of the present invention comprises:
In a method for purifying krypton and xenon from liquefied oxygen containing krypton and xenon derived from an air liquefaction separation device, a step of introducing the liquefied oxygen into a concentration column to concentrate krypton and xenon in a bottom liquid, and the concentration In the catalytic reaction step of vaporizing the tower bottom liquid and introducing it into the catalytic reaction tube to react the contained hydrocarbons with oxygen, and introducing the gas after the catalytic reaction tube is introduced into the adsorber into the catalytic reaction step. An adsorption step of adsorbing and removing the produced water and carbon dioxide, and cooling the gas after the derivation of the adsorption step again and introducing it into the deoxygenation tower so that the gas-liquid ratio L / V of the concentrating section is 0.1 or more and the recovering section. Gas-liquid ratio L
/ V is 1.0 or more and rectification is performed to deoxidize and remove oxygen gas from the top of the column, and deoxygenation column bottom liquid is derived and introduced into a separation column, and xenon is introduced from the bottom of the separation column. And a separation step of deriving krypton from the top of the tower are sequentially performed.
【0007】さらに、本発明方法は、前記触媒反応筒に
導入して含有する炭化水素類と酸素とを反応させる触媒
反応工程は、該触媒に白金,パラジウム等の貴金属元素
を使用し、反応温度200〜650℃、好ましくは35
0〜400℃、空間速度500〜6000h-1で反応さ
せることを特徴としている。Further, in the method of the present invention, in the catalytic reaction step of reacting the hydrocarbons introduced into the catalytic reaction column and oxygen with each other, a precious metal element such as platinum or palladium is used for the catalyst, and the reaction temperature is 200-650 ° C, preferably 35
The feature is that the reaction is performed at 0 to 400 ° C. and a space velocity of 500 to 6000 h −1 .
【0008】前記反応温度の設定は、触媒反応筒前段の
熱交換器出口又は触媒反応筒出口に設けた温度検出器か
らの信号により温度調節器(TIC)を作動させ、これ
からの信号により調節弁を開閉して熱媒供給量を制御
し、触媒反応筒入口に設けた加温器の温度を調節して適
切温度に設定する。The reaction temperature is set by operating a temperature controller (TIC) in response to a signal from a temperature detector provided at the outlet of the heat exchanger in the front stage of the catalyst reaction tube or the outlet of the catalyst reaction tube, and the control valve is activated by the signal from this. The heat medium supply amount is controlled by opening and closing, and the temperature of the warmer provided at the inlet of the catalytic reaction tube is adjusted to set it to an appropriate temperature.
【0009】前記空間速度の設定は、流量検出器により
検出された流量と、これの信号を受信した流量調節計
(FIC)からの信号により、流量調節弁の開度を制御
することにより行う。The space velocity is set by controlling the opening of the flow rate control valve based on the flow rate detected by the flow rate detector and the signal from the flow rate controller (FIC) that receives the signal.
【0010】また、必要に応じて前記クリプトン,キセ
ノン含有ガス中の炭化水素の含有量を検出定量する分析
計を設け、該分析計で検出された該触媒反応工程後又は
前の点での炭化水素の含有量に基づき、該触媒反応筒の
反応条件を設定する。このときの触媒反応筒出口におけ
る炭化水素濃度は、0.05ppm以下とする。If necessary, an analyzer for detecting and quantifying the content of hydrocarbons in the krypton- and xenon-containing gas is provided, and carbonization after or before the catalytic reaction step detected by the analyzer is carried out. The reaction conditions of the catalytic reaction tube are set based on the hydrogen content. At this time, the hydrocarbon concentration at the outlet of the catalytic reaction tube is 0.05 ppm or less.
【0011】また、上記本発明方法を実施するための装
置構成としては、空気液化分離装置主凝縮器又は該部付
近から導出されるクリプトン及びキセノンを含む液化酸
素からクリプトン及びキセノンを精製する装置であっ
て、前記液化酸素を導入して塔底液にクリプトン及びキ
セノンを濃縮する濃縮塔と、該濃縮塔塔底液を気化後導
入して含有する炭化水素類と酸素とを反応させる触媒反
応筒と、該触媒反応筒導出後のガスを導入して触媒反応
筒で生成した水,二酸化炭素を吸着除去する吸着器と、
該吸着器導出後のガスを再度冷却して塔頂から酸素ガス
を導出除去し、塔底にクリプトン・キセノン混合液を分
離する、回収部の理論段数が5段相当以上、好ましくは
10〜16段の脱酸素塔と、該脱酸素塔塔底液を導入し
て精留分離し,塔底部からキセノンを、塔頂部からクリ
プトンを導出する分離塔とを備えたことを特徴としてい
る。The apparatus for carrying out the method of the present invention is an apparatus for purifying krypton and xenon from liquefied oxygen containing krypton and xenon derived from the main condenser of the air liquefaction separation device or the vicinity thereof. There, a concentration column for introducing the liquefied oxygen to concentrate krypton and xenon in the bottom liquid, and a catalyst reaction column for reacting the hydrocarbons and oxygen contained by introducing the bottom liquid of the concentration column after vaporization And an adsorber for introducing gas after the catalyst reaction tube is introduced to adsorb and remove water and carbon dioxide generated in the catalyst reaction tube,
The gas after being discharged from the adsorber is cooled again to remove and remove oxygen gas from the top of the column, and the krypton / xenon mixed liquid is separated at the bottom of the column. It is characterized by comprising a stage deoxygenation column and a separation column for introducing the bottom liquid of the deoxygenation column for rectification and separation, and for extracting xenon from the bottom of the column and krypton from the top of the column.
【0012】[0012]
【作 用】上記構成によれば、空気液化分離装置から導
出した液化酸素中のクリプトン及びキセノンを一貫した
工程で効率よく高純度に精製することができる。[Operation] According to the above configuration, krypton and xenon in liquefied oxygen derived from the air liquefaction separation device can be efficiently purified to high purity in a consistent process.
【0013】[0013]
【実施例】以下、本発明を、図面に示す実施例に基づい
てさらに詳細に説明する。まず、空気液化分離装置の複
精留塔1の上部塔下部の主凝縮蒸発器1a部分から、ク
リプトン30〜600ppm及びキセノン5〜50pp
m、そして炭化水素(主としてメタン)20〜150p
pmが濃縮された液化酸素を導出し、主凝縮蒸発器1a
より下方に設置された濃縮塔2の中段に導入する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the embodiments shown in the drawings. First, 30 to 600 ppm of krypton and 5 to 50 pp of xenon from the main condenser evaporator 1a portion of the upper column lower part of the double rectification column 1 of the air liquefaction separation device.
m, and hydrocarbon (mainly methane) 20-150p
Liquefied oxygen enriched with pm is led out, and the main condenser evaporator 1a
It is introduced into the middle stage of the concentration tower 2 installed below.
【0014】上記濃縮塔2の底部には、管3から供給さ
れる窒素ガス,酸素ガス又はアルゴンガスを加熱源とす
るリボイラー4が設けられており、頂部には管5から供
給される液化酸素等を寒冷源とする凝縮器6が設けられ
ている。濃縮塔2内では塔頂からの下降液と上昇ガスと
が気液接触を行い精留が行われる。すなわち、前記リボ
イラー4は、塔底液を加熱して上昇ガスを生成し、前記
凝縮器6により冷却されて生成した還流液は、下降して
上昇ガスと気液接触して精留が行われる。A reboiler 4 using a nitrogen gas, an oxygen gas or an argon gas supplied from a pipe 3 as a heating source is provided at the bottom of the concentration tower 2, and liquefied oxygen supplied from a pipe 5 is provided at the top. A condenser 6 having a cold source such as the above is provided. In the concentration tower 2, the descending liquid from the top of the tower and the ascending gas come into gas-liquid contact to carry out rectification. That is, the reboiler 4 heats the bottom liquid to generate rising gas, and the reflux liquid cooled and generated by the condenser 6 descends to come into gas-liquid contact with the rising gas for rectification. .
【0015】これにより、前記複精留塔1から導入され
たクリプトン及びキセノンを含む液化酸素は、該濃縮塔
2塔底部にクリプトン及びキセノンを10〜100倍に
濃縮した濃縮液として得られ、塔頂部からは酸素ガスが
管7に導出される。As a result, the liquefied oxygen containing krypton and xenon introduced from the double rectification column 1 is obtained as a concentrated liquid obtained by concentrating krypton and xenon 10 to 100 times at the bottom of the concentration column 2. Oxygen gas is led to the pipe 7 from the top.
【0016】上記濃縮塔2塔底部の濃縮液には、クリプ
トン及びキセノンに加えて、原料である液化酸素中に含
まれている炭化水素(メタン)も濃縮され、メタン濃度
が高まると危険であるため、必要に応じてメタンパージ
塔を設け、このメタンパージ塔でストリッピングを行い
メタンをパージする。In the concentrated liquid at the bottom of the above-mentioned concentrating tower 2, in addition to krypton and xenon, hydrocarbons (methane) contained in liquefied oxygen as a raw material are also concentrated, which is dangerous when the methane concentration is increased. Therefore, a methane purge tower is provided as needed, and stripping is performed in this methane purge tower to purge methane.
【0017】濃縮塔2を管8により導出した塔底液は、
貯液槽9に導入されて、ここで一時貯留されて後記する
触媒反応工程での反応条件に適合した流量で導出され
る。すなわち、貯液槽9に導入され一時貯留された濃縮
液は管10から導出し、流量検出器35(図2参照)で
測定された流量により作動する流量調節計(FIC)3
6からの信号によって開閉弁する流量調節弁11により
流量調節されて加温器12に導入される。The bottom liquid derived from the concentration tower 2 through the pipe 8 is
The liquid is introduced into the liquid storage tank 9, temporarily stored therein, and is discharged at a flow rate suitable for the reaction condition in the catalytic reaction step described later. That is, the concentrated liquid introduced into the liquid storage tank 9 and temporarily stored is discharged from the pipe 10 and operated by the flow rate measured by the flow rate detector 35 (see FIG. 2).
The flow rate is adjusted by a flow rate control valve 11 that opens and closes in response to a signal from 6 and is introduced into the warmer 12.
【0018】上記貯液槽9での貯液は、濃縮塔2から導
出する塔底液の液量が少ない場合は、後工程で精留分離
が可能な量になるまでは以後の工程を休止して貯留し、
後工程で精留分離が可能な量になったときに管10から
加温器12に導出される。When the amount of the bottom liquid discharged from the concentrating column 2 is small, the subsequent liquid storage in the liquid storage tank 9 is stopped until the rectification separation is possible in the subsequent process. And store it,
When the amount of rectification separation becomes possible in the subsequent step, it is led from the pipe 10 to the warmer 12.
【0019】したがって、濃縮塔2から常時導出する塔
底液の液量が適量であれば、必ずしも貯液を必要としな
い。Therefore, if the amount of the bottom liquid constantly discharged from the concentration tower 2 is an appropriate amount, the liquid storage is not always necessary.
【0020】前記濃縮液は、液媒が満たされ、スチーム
又はヒーターでこれを昇温する前記加温器12で気化昇
温して、管13より熱交換器14に導入されて、触媒反
応筒17から管18へ高温で導出する触媒反応後のガス
と熱交換して昇温し、さらに加温器16により加熱され
る熱交換器15に入って所定の触媒反応温度で導出し、
触媒反応筒17へ導入される。The concentrated liquid is filled with a liquid medium, vaporized and heated by the warmer 12 which heats the liquid medium with steam or a heater, and is introduced into the heat exchanger 14 through the pipe 13, and the catalyst reaction tube is introduced. The heat is exchanged with the gas after the catalytic reaction, which is discharged from 17 to the pipe 18 at a high temperature to raise the temperature, and further enters the heat exchanger 15 heated by the warmer 16 and is discharged at a predetermined catalytic reaction temperature,
It is introduced into the catalytic reaction cylinder 17.
【0021】触媒反応筒17では炭化水素を除去する工
程を行う。該触媒反応筒17には、白金(Pt)又はパ
ラジウム(Pd)の様な貴金属触媒が所定量充填されて
いて、前記濃縮塔(場合によりメタンパージ塔)の塔底
液の気化ガス中の炭化水素を酸素と反応させて二酸化炭
素及び水にする。前記触媒の所定量とは、導入して含有
する炭化水素類と酸素とを反応させ、二酸化炭素及び水
にした後の残存濃度が、例えば0.05ppm以下にな
るために充分な量である。In the catalytic reaction cylinder 17, a step of removing hydrocarbons is carried out. The catalytic reaction column 17 is filled with a predetermined amount of a noble metal catalyst such as platinum (Pt) or palladium (Pd), and hydrocarbons in the vaporized gas of the bottom liquid of the concentrating column (in some cases, methane purging column). Is reacted with oxygen to carbon dioxide and water. The predetermined amount of the catalyst is a sufficient amount so that the residual concentration after reacting the introduced hydrocarbons and oxygen with each other to form carbon dioxide and water is, for example, 0.05 ppm or less.
【0022】さらに、炭化水素除去工程では、反応が十
分に行われ、含有炭化水素が上記残存濃度になるよう
に、該触媒反応工程での反応条件を正確に設定する。Further, in the hydrocarbon removing step, the reaction conditions in the catalytic reaction step are accurately set so that the reaction is sufficiently carried out and the contained hydrocarbon has the above-mentioned residual concentration.
【0023】前記反応条件の設定は、反応温度と空間速
度の設定である。まず、反応温度は、触媒反応筒17の
入口に設けた加温器16の作動を調節して適切温度に設
定し、該触媒反応筒17出口における炭化水素濃度が、
例えば前記0.05ppm以下になるようにする。すな
わち、熱交換器15又は触媒反応筒17出口に設けた温
度検出器37からの信号により温度調節器(TIC)3
8が作動し、これからの信号により調節弁39が弁開閉
して熱媒供給量を制御することにより前記出口温度を制
御する。通常の温度範囲は200〜650℃であり、好
ましくは350〜400℃である。The reaction conditions are set by setting the reaction temperature and space velocity. First, the reaction temperature is set to an appropriate temperature by adjusting the operation of the warmer 16 provided at the inlet of the catalytic reaction tube 17, and the hydrocarbon concentration at the outlet of the catalytic reaction tube 17 is
For example, it is set to 0.05 ppm or less. That is, the temperature controller (TIC) 3 is generated by a signal from the temperature detector 37 provided at the outlet of the heat exchanger 15 or the catalytic reaction cylinder 17.
8 operates, and the control valve 39 opens and closes by a signal from this to control the heat medium supply amount, thereby controlling the outlet temperature. The usual temperature range is 200 to 650 ° C, preferably 350 to 400 ° C.
【0024】空間速度の設定は、前記流量調節弁11の
開度調節により行う。すなわち、流量検出器35により
検出された流量と、これを受信した流量調節計36から
の信号により、流量調節弁11の開度を制御することに
より行う。この調節による触媒反応筒17での空間速度
は500〜6000h-1の範囲である。The space velocity is set by adjusting the opening of the flow rate control valve 11. That is, the opening is controlled by the flow rate detected by the flow rate detector 35 and the signal from the flow rate controller 36 that receives the flow rate to control the opening of the flow rate adjustment valve 11. The space velocity in the catalytic reaction cylinder 17 by this adjustment is in the range of 500 to 6000 h -1 .
【0025】また,必要に応じてクリプトン,キセノン
含有ガス中の炭化水素の含有量を検出定量する分析計を
設け、該分析計で検出された該触媒反応工程後の点での
炭化水素の含有量に基づき,該触媒反応筒17の反応条
件を設定しても良い。If necessary, an analyzer for detecting and quantifying the content of hydrocarbons in the gas containing krypton and xenon is provided, and the content of hydrocarbons at the point after the catalytic reaction step detected by the analyzer is included. The reaction conditions of the catalytic reaction cylinder 17 may be set based on the amount.
【0026】触媒反応筒17を管18で導出したガス
は、前記熱交換器14で降温した後、切換え使用される
吸着器19の一方に導入され、触媒反応工程で生成した
二酸化炭素と水が吸着除去される。なお、前記吸着器1
9は、ここでの操作が連続的であるため、二基が切換え
使用され、一方が吸着工程にあるときに、他方は再生工
程が行われる。この吸着器19の再生工程は、該吸着器
内に加熱窒素ガスを導入して行う加熱再生過程と、常温
の窒素ガスを導入して行う冷却過程と、酸素ガスを導入
して行う洗浄過程とにより行われる。The gas discharged from the catalytic reaction cylinder 17 through the pipe 18 is cooled in the heat exchanger 14 and then introduced into one of the adsorbers 19 which are used for switching, so that carbon dioxide and water generated in the catalytic reaction step are generated. Adsorbed and removed. In addition, the adsorber 1
Since the operation of 9 is continuous, two groups are switched and used, and when one is in the adsorption step, the other is in the regeneration step. The regeneration process of the adsorber 19 includes a heating regeneration process performed by introducing heated nitrogen gas into the adsorber, a cooling process performed by introducing nitrogen gas at room temperature, and a cleaning process performed by introducing oxygen gas. Done by.
【0027】上記の炭化水素除去工程から管20に導出
したガスは、熱交換器21に導入され、向流する管21
aからの低温気体又は液体の酸素,窒素,アルゴンある
いは空気と熱交換して冷却又は液化して脱酸素塔22の
中段に導入される。熱交換器21の管21aから導入さ
れる液化ガスは、前記濃縮塔2のリボイラー4を導出し
た液化ガスでも良いことは勿論である。The gas led to the pipe 20 from the above hydrocarbon removing step is introduced into the heat exchanger 21 and flows countercurrently to the pipe 21.
It is cooled by heat exchange with oxygen, nitrogen, argon or air of low temperature gas or liquid from a, cooled or liquefied and introduced into the middle stage of the deoxygenation tower 22. It goes without saying that the liquefied gas introduced from the pipe 21a of the heat exchanger 21 may be the liquefied gas discharged from the reboiler 4 of the concentrating tower 2.
【0028】前記脱酸素塔22は、シーブトレイ等の段
塔の場合、濃縮部,回収部の合計実段数で10段以上,
好ましくは20〜40段の精留段を設ける。充填材等を
充填した充填塔でも上記段数に相当する塔長にすること
により、同様の精留効果が得られる。塔底部には酸素ガ
ス等を加熱源とするリボイラー23が設けられ、塔頂部
にはリボイラー23で液化した液化酸素等を寒冷源とす
る凝縮器24が設けられている。In the case of a stage column such as a sieve tray, the deoxygenation column 22 has a total number of actual stages of the concentration section and the recovery section of 10 or more,
Preferably, 20 to 40 rectification stages are provided. Even in a packed column filled with a packing material or the like, the same rectification effect can be obtained by setting the column length corresponding to the above number of stages. A reboiler 23 using oxygen gas or the like as a heating source is provided at the bottom of the tower, and a condenser 24 using the liquefied oxygen liquefied by the reboiler 23 as a cold source is provided at the top of the tower.
【0029】該脱酸素塔22の熱収支上、寒冷が不足す
る場合は、凝縮器24の寒冷源は、前記リボイラー23
からの液化ガスの他に前記濃縮塔2のリボイラー4等か
らの液化ガスも寒冷源として供給する。When the cold balance is insufficient due to the heat balance of the deoxygenation tower 22, the cold source of the condenser 24 is the reboiler 23.
In addition to the liquefied gas from the above, the liquefied gas from the reboiler 4 and the like of the concentration tower 2 is also supplied as a cold source.
【0030】上記脱酸素塔22のボイラー23の加熱源
としてのガスは、前記濃縮塔2と同様に、窒素,酸素、
アルゴン,空気等を適宜の圧力に加圧して用いることが
できる。The gas as the heating source of the boiler 23 of the deoxidizing tower 22 is the same as in the concentrating tower 2, and nitrogen, oxygen,
Argon, air or the like can be used after being pressurized to an appropriate pressure.
【0031】この脱酸素塔22における精留により、塔
頂部にはクリプトンを1〜5ppm含む酸素ガスが分離
して管25から導出されて除去され、塔底部には、クリ
プトン90〜95%及びキセノン5〜10%、極微量の
酸素からなる液化ガスが分離する。塔底液中に残存する
酸素量は、該脱酸素塔22の段数及び気液比L/Vによ
るが、回収部で5段以上とすることにより、残存酸素量
を1ppm以下とすることができる。したがって、後記
する分離塔27で分離後のクリプトン中の酸素含有量を
約1ppm以下とするためには、該脱酸素塔22は回収
部で6段以上必要であり、約11段で含有酸素量0.0
01ppm以下となる。By the rectification in the deoxygenation tower 22, oxygen gas containing 1 to 5 ppm of krypton is separated at the top of the tower and is removed from the pipe 25 and removed, and 90 to 95% of krypton and xenon are at the bottom of the tower. A liquefied gas consisting of 5 to 10% of an extremely small amount of oxygen is separated. The amount of oxygen remaining in the bottom liquid depends on the number of stages of the deoxygenation column 22 and the gas-liquid ratio L / V, but by setting the number of stages to 5 or more in the recovery section, the amount of residual oxygen can be 1 ppm or less. . Therefore, in order to reduce the oxygen content in the krypton after separation in the separation tower 27 to be described later to about 1 ppm or less, the deoxidation tower 22 needs 6 or more stages in the recovery section, and the oxygen content in about 11 stages. 0.0
It becomes less than 01 ppm.
【0032】この場合、濃縮部の気液比L/Vは0.1
以上である。好ましくは0.1〜1.1の範囲内であ
る。この理由を説明する。該脱酸素塔22は、図3に示
すようにフィード段20aより上部の濃縮部22aと下
部の回収部22bからなっている。脱酸素塔22塔底液
中に残存する酸素量は、回収部22bの段数及び気液比
L/Vによって決まる。In this case, the gas / liquid ratio L / V of the concentrating section is 0.1.
That is all. It is preferably within the range of 0.1 to 1.1. The reason for this will be explained. As shown in FIG. 3, the deoxygenation tower 22 comprises a concentration section 22a above the feed stage 20a and a recovery section 22b below. The amount of oxygen remaining in the bottom liquid of the deoxygenation tower 22 is determined by the number of stages of the recovery section 22b and the gas-liquid ratio L / V.
【0033】いま、図3のカッコ内に記したように、各
部の導入導出量及び塔内のガス(V),液(L)の流量
を設定し、回収部22bの気液比L/V=1.1に設定
すると、濃縮部22aの気液比L/Vは0.1となる
(濃縮部22aの気液比L/Vが0.1以下の場合は、
クリプトンと酸素の精留分離は成立せず、ストリピング
となり脱酸素塔の機能を失う。)。Now, as shown in parentheses in FIG. 3, the amount of introduction and withdrawal of each part and the flow rates of gas (V) and liquid (L) in the tower are set, and the gas-liquid ratio L / V of the recovery part 22b is set. = 1.1, the gas-liquid ratio L / V of the concentrating section 22a becomes 0.1 (when the gas-liquid ratio L / V of the concentrating section 22a is 0.1 or less,
Fractional separation of krypton and oxygen is not established, and stripping occurs and the function of the deoxygenation tower is lost. ).
【0034】フィードガス中のクリプトンとキセノンの
含有量を1%とすると、上記条件で塔底液中の酸素濃度
を1ppm以下とするためには、回収部22bの理論段
数は少なくとも8段必要である。When the content of krypton and xenon in the feed gas is 1%, the number of theoretical plates in the recovery section 22b must be at least 8 in order to reduce the oxygen concentration in the bottom liquid to 1 ppm or less under the above conditions. is there.
【0035】また、同様にフィードガス中のクリプトン
とキセノンの含有量を1%とし、濃縮部22aの気液比
L/V=0.5、回収部22bの気液比L/V=1.0
1とすると、脱酸素塔塔底液中の酸素濃度を1ppm以
下とするためには、回収部22bの理論段数は少なくと
も6段必要となる。Similarly, the content of krypton and xenon in the feed gas is 1%, the gas-liquid ratio L / V of the concentrating section 22a is 0.5, and the gas-liquid ratio of the collecting section 22b is L / V = 1. 0
When it is set to 1, the number of theoretical plates in the recovery section 22b must be at least 6 in order to set the oxygen concentration in the bottom liquid of the deoxidizing column to 1 ppm or less.
【0036】したがって、濃縮部22aの気液比L/V
は0.1以上、回収部22bの理論段数8段、実段数で
10段は必要である。Therefore, the gas-liquid ratio L / V of the concentration section 22a is
Is 0.1 or more, the number of theoretical stages of the recovery unit 22b is 8, and the actual number of stages is 10.
【0037】上記気液比の調節は,上記リボイラー23
による加熱量、凝縮器24による寒冷供給量を調節する
ことにより行う。The gas-liquid ratio is adjusted by adjusting the reboiler 23.
It is carried out by adjusting the amount of heating by and the amount of cold supply by the condenser 24.
【0038】上記塔底部の液化ガスは、管26に導出さ
れた後、クリプトンとキセノンとを精留分離する分離塔
27の中段に導入される。該分離塔27には、その底部
に塔底液を蒸発させて上昇ガスとするリボイラー28が
設けられるとともに、頂部に液化酸素,液化窒素,液化
アルゴン,液化空気等を寒冷源として還流液を発生させ
る凝縮器29が設けられている。該分離塔27のリボイ
ラー28の熱源は、前記濃縮塔2、脱酸素塔22のリボ
イラーの熱源と同様、窒素ガス,酸素ガス又はアルゴン
ガスを所定の温度圧力に調整して導入すればよい。また
凝縮器29の寒冷源は、リボイラー28で液化した液化
ガスを用いるか、前記濃縮塔2のリボイラー4で液化し
た液化窒素又は液化アルゴン,液化空気等を用いること
もできる。The liquefied gas at the bottom of the column is introduced into the pipe 26 and then introduced into the middle stage of the separation column 27 for rectifying and separating krypton and xenon. The separating column 27 is provided with a reboiler 28 for evaporating the column bottom liquid into an ascending gas at the bottom thereof, and produces a reflux liquid with liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied air, etc. at the top as a cold source. A condenser 29 is provided to allow it. As the heat source of the reboiler 28 of the separation tower 27, nitrogen gas, oxygen gas or argon gas may be adjusted to a predetermined temperature and pressure and introduced like the heat sources of the reboiler of the concentration tower 2 and the deoxygenation tower 22. As the cold source of the condenser 29, liquefied gas liquefied by the reboiler 28 may be used, or liquefied nitrogen or liquefied argon, liquefied air, etc. liquefied by the reboiler 4 of the concentrating tower 2 may be used.
【0039】分離塔27の中段に導入されたクリプトン
及びキセノンからなる混合液化ガスは、該塔における精
留により、塔頂部に純度99.99%以上のクリプトン
が分離し、塔底部に純度99.99%以上のキセノンが
液状で分離する。不純物としての酸素は1ppm以下、
炭化水素も1ppm以下である。The mixed liquefied gas consisting of krypton and xenon introduced into the middle stage of the separation column 27 is rectified in the column to separate krypton having a purity of 99.99% or more at the column top and 99.99% at the column bottom. 99% or more of xenon is separated in liquid form. Oxygen as an impurity is 1 ppm or less,
Hydrocarbons are also below 1 ppm.
【0040】上記クリプトン及びキセノンは、それぞれ
管31及び管32より導出され、図示しない充填工程に
送られ、所定のガス容器に充填される。The above krypton and xenon are led out from a pipe 31 and a pipe 32, respectively, sent to a filling process (not shown), and filled in a predetermined gas container.
【0041】本発明では、上記実施例に示すようにして
必要最小限の最短工程で液化酸素中から高純度のクリプ
トン及びキセノンを分離するので、連続一貫した工程で
煩雑な操作無しで高純度に精製したクリプトン及びキセ
ノンを得ることが可能である。In the present invention, high-purity krypton and xenon are separated from liquefied oxygen in the minimum necessary and shortest steps as shown in the above-mentioned embodiment. It is possible to obtain purified krypton and xenon.
【0042】[0042]
【発明の効果】以上説明したように、本発明によれば、
空気液化分離装置から導出した液化酸素中のクリプトン
及びキセノンを連続一貫した工程で効率よく精製し、酸
素,窒素,炭化水素等の不純物を1ppm以下に除去し
て99. 99%以上の高純度に精製することができ、ま
た,これらのガスの製造コストを大幅に低減することが
可能である。As described above, according to the present invention,
Efficiently purify krypton and xenon in liquefied oxygen derived from the air liquefaction separation device in a continuous and consistent process, and remove impurities such as oxygen, nitrogen, and hydrocarbons to less than 1 ppm to achieve a high purity of 99.99% or more. It is possible to purify, and it is possible to significantly reduce the production cost of these gases.
【図1】 本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing an embodiment of the present invention.
【図2】 同じく制御系の一例を示す系統図。FIG. 2 is a system diagram showing an example of a control system.
【図3】 同じく分離塔における気液比を示す説明図。FIG. 3 is an explanatory view showing a gas-liquid ratio in the separation column.
1…複精留塔、2…濃縮塔、4…濃縮塔リボイラー、6
…濃縮塔凝縮器、9…貯液槽、11…流量調節弁、12
…加温器、14…熱交換器、15…熱交換器、16…加
温器、17…触媒反応筒、19…吸着器、21…熱交換
器、22…脱酸素塔、23…脱酸素塔リボイラー、24
…脱酸素塔凝縮器、27…分離塔、28…分離塔リボイ
ラー、29…分離塔凝縮器1 ... Double rectification tower, 2 ... Concentration tower, 4 ... Concentration tower reboiler, 6
… Condensation tower condenser, 9… Liquid storage tank, 11… Flow control valve, 12
... heater, 14 ... heat exchanger, 15 ... heat exchanger, 16 ... warmer, 17 ... catalytic reaction column, 19 ... adsorber, 21 ... heat exchanger, 22 ... deoxidation tower, 23 ... deoxidation Tower reboiler, 24
... Deoxidizer tower condenser, 27 ... Separation tower, 28 ... Separation tower reboiler, 29 ... Separation tower condenser
フロントページの続き (56)参考文献 特開 昭57−43186(JP,A) 特開 平5−79756(JP,A) 特開 平5−280863(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25J 3/04 104 Continuation of the front page (56) Reference JP-A-57-43186 (JP, A) JP-A-5-79756 (JP, A) JP-A-5-280863 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) F25J 3/04 104
Claims (3)
トン及びキセノンを含む液化酸素からクリプトン及びキ
セノンを精製する方法において、前記液化酸素を濃縮塔
に導入して塔底液にクリプトン及びキセノンを濃縮する
工程と、該濃縮塔塔底液を気化して触媒反応筒に導入し
て含有する炭化水素類と酸素とを反応させる触媒反応工
程と、該触媒反応筒導出後のガスを吸着器に導入して触
媒反応工程で生成した水,二酸化炭素を吸着除去する吸
着工程と、該吸着工程導出後のガスを再度冷却して脱酸
素塔に導入して濃縮部の気液比を0. 1以上として精留
を行い、塔頂から酸素ガスを導出除去する脱酸素工程
と、脱酸素塔塔底液を導出して分離塔に導入し、該分離
塔塔底部からキセノンを、塔頂部からクリプトンを導出
する分離工程とを順次行うことを特徴とするクリプトン
及びキセノンの精製方法。1. A method for purifying krypton and xenon from liquefied oxygen containing krypton and xenon, which is discharged from an air liquefaction separation apparatus, wherein the liquefied oxygen is introduced into a concentration column to concentrate krypton and xenon in a bottom liquid. A step, a catalytic reaction step of vaporizing the bottom liquid of the concentrating column and introducing it into the catalytic reaction tube to react the contained hydrocarbons with oxygen, and introducing the gas after the catalytic reaction tube is introduced into the adsorber. The adsorption step of adsorbing and removing water and carbon dioxide produced in the catalytic reaction step, and the gas after the adsorption step is cooled again and introduced into the deoxidizing tower to adjust the gas-liquid ratio of the concentrating section to 0.1 or more. Performing rectification, deoxygenation step of removing and removing oxygen gas from the top of the tower, derivation of bottom liquid of the deoxygenation tower and introduction into a separation tower, xenon from the bottom of the separation tower, and krypton from the top of the tower. And the separation process Krypton and purification methods xenon characterized by Ukoto.
水素類と酸素とを反応させる触媒反応工程は、該触媒に
貴金属元素を使用し、反応温度200〜650℃、空間
速度500〜6000h-1で反応させることを特徴とす
る請求項1記載のクリプトン及びキセノンの精製方法。2. In the catalytic reaction step of reacting the hydrocarbons contained in the catalytic reaction tower with oxygen, the precious metal element is used as the catalyst, the reaction temperature is 200 to 650 ° C., and the space velocity is 500 to 6000 h. The method for purifying krypton and xenon according to claim 1 , wherein the reaction is carried out at -1 .
トン及びキセノンを含む液化酸素からクリプトン及びキ
セノンを精製する装置において、前記液化酸素を導入し
て塔底液にクリプトン及びキセノンを濃縮する濃縮塔
と、該濃縮塔塔底液を気化後導入して含有する炭化水素
類と酸素とを反応させる触媒反応筒と、該触媒反応筒導
出後のガスを導入して触媒反応筒で生成した水,二酸化
炭素を吸着除去する吸着器と、該吸着器導出後のガスを
再度冷却して導入して精留を行い、塔頂から酸素ガスを
導出除去し、塔底にクリプトン・キセノン混合液を分離
する、回収部の理論段数が5段相当以上である脱酸素塔
と、該脱酸素塔塔底液を導入して精留分離し塔底部から
キセノンを、塔頂部からクリプトンを導出する分離塔と
を備えたことを特徴とするクリプトン及びキセノンの精
製装置。3. An apparatus for purifying krypton and xenon from liquefied oxygen containing krypton and xenon derived from an air liquefaction separation apparatus, wherein the liquefied oxygen is introduced to concentrate krypton and xenon in a bottom liquid. A catalyst reaction tube for reacting the contained hydrocarbons with oxygen after vaporizing the bottom liquid of the concentrating column; and water and dioxide produced in the catalyst reaction tube by introducing the gas after derivation of the catalyst reaction tube. An adsorber that adsorbs and removes carbon, and a gas that has been discharged from the adsorber is cooled and introduced again to carry out rectification, oxygen gas is discharged and removed from the top of the tower, and a krypton-xenon mixture is separated at the bottom of the tower. A deoxygenation column in which the number of theoretical plates in the recovery section is equal to or greater than 5 and a separation column in which the bottom liquid of the deoxygenation column is introduced to carry out rectification to separate xenon from the column bottom and krypton from the column top. Characterized by having A krypton and xenon refining device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27992993A JP3424100B2 (en) | 1993-11-09 | 1993-11-09 | Method for purifying krypton and xenon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27992993A JP3424100B2 (en) | 1993-11-09 | 1993-11-09 | Method for purifying krypton and xenon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07133981A JPH07133981A (en) | 1995-05-23 |
JP3424100B2 true JP3424100B2 (en) | 2003-07-07 |
Family
ID=17617885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27992993A Expired - Fee Related JP3424100B2 (en) | 1993-11-09 | 1993-11-09 | Method for purifying krypton and xenon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3424100B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2950685B1 (en) * | 2009-12-17 | 2014-10-03 | Air Liquide | APPARATUS AND METHOD FOR EXTRACTING KRYPTON AND XENON FROM AN AIR GAS SEPARATION UNIT |
CN108031138A (en) * | 2017-12-14 | 2018-05-15 | 浙江新锐空分设备有限公司 | A kind of krypton xenon concentration tower bottom heat of evaporation source system |
CN111692838A (en) * | 2020-07-16 | 2020-09-22 | 河南心连心深冷能源股份有限公司 | Rare gas krypton-xenon refining and ultrapure oxygen production device and production process |
CN112432429B (en) * | 2020-11-02 | 2024-02-20 | 杭氧集团股份有限公司 | Device and method for extracting krypton and xenon in liquid oxygen through low-temperature rectification |
CN117029381B (en) * | 2023-08-28 | 2024-05-07 | 宁夏大学 | System and method for extracting krypton and xenon in process of capturing liquid carbon dioxide |
-
1993
- 1993-11-09 JP JP27992993A patent/JP3424100B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07133981A (en) | 1995-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100355330B1 (en) | Method of Purifying Fluids by Adsorption | |
US5425240A (en) | Purification of oxygen by cryogenic adsorption | |
US6658894B2 (en) | Process and adsorbent for the recovery of krypton and xenon from a gas or liquid stream | |
JPH05147912A (en) | Method for refining inert gas | |
US11650010B2 (en) | Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature | |
CS145292A3 (en) | Process for preparing extremely pure argon | |
JPS62223587A (en) | Method and device for recovering argon from purge gas of ammonia plant using combination of low-temperature separation means and non-low temperature separation means | |
KR100501423B1 (en) | Process and adsorbent for the recovery of krypton and xenon from a gas or liquid stream | |
JP2000233909A (en) | Method for refining waste argon gas from single crystal producing furnace | |
JPH07194918A (en) | Method of refining mixture of specific fluid component and at least one kind of impurity | |
JPH0787887B2 (en) | Improved membrane / deoxidation method and apparatus | |
JPH04295587A (en) | Production system of rough neon | |
JP3424100B2 (en) | Method for purifying krypton and xenon | |
JPH08152262A (en) | Circulating and adsorbing apparatus for rare gas separating process | |
JP4070399B2 (en) | Helium gas purification method | |
JPH0624962B2 (en) | Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace | |
JPH07139876A (en) | Refining method for krypton and xenon | |
GB2160439A (en) | Purification of gases | |
JPH07133982A (en) | Method and apparatus for preparing high purity argon | |
JP3639087B2 (en) | Helium recovery method | |
JP3294067B2 (en) | Krypton manufacturing method | |
JP3256811B2 (en) | Method for purifying krypton and xenon | |
JPH01126203A (en) | Production of high-purity gaseous hydrogen | |
JP2000072404A (en) | Production of hydrogen-nitrogen gaseous mixture and device therefor | |
KR19990014226A (en) | Method and apparatus for producing high purity inert gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |