JPH01126203A - Production of high-purity gaseous hydrogen - Google Patents

Production of high-purity gaseous hydrogen

Info

Publication number
JPH01126203A
JPH01126203A JP28393987A JP28393987A JPH01126203A JP H01126203 A JPH01126203 A JP H01126203A JP 28393987 A JP28393987 A JP 28393987A JP 28393987 A JP28393987 A JP 28393987A JP H01126203 A JPH01126203 A JP H01126203A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
gas
purity
gaseous hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28393987A
Other languages
Japanese (ja)
Inventor
Kazuo Sakashita
坂下 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP28393987A priority Critical patent/JPH01126203A/en
Publication of JPH01126203A publication Critical patent/JPH01126203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To easily and efficiently obtain high-purity gaseous hydrogen by successively introducing the raw gas into an adsorption tower packed with the adsorbent adsorbing the components other than hydrogen and a hydrogen occlusion tower packed with a hydrogen storage alloy, and desorbing the hydrogen. CONSTITUTION:The raw gas 1 (e.g., the steam-reformed gas of methanol) is passed through the adsorption towers 2, 2a, and 2b packed with the adsorbent (e.g., activated alumina and zeolite) adsorbing the components other than hydrogen to adsorb the CO, CO2, etc., other than hydrogen, and gaseous hydrogen is produced. The gaseous hydrogen is then introduced into the hydrogen occlusion towers 6 and 6a packed with a hydrogen storage alloy, occluded in the alloy, and separated from the components other than gaseous hydrogen. The hydrogen occlusion towers 6 and 6a are heated by the hot water at about 50 deg.C from lines 10 and 10a, hence gaseous hydrogen is desorbed, and high-purity gaseous hydrogen is discharged from a delivery line 11.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素を含む原料ガスから高純度の水素ガスを
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high-purity hydrogen gas from a raw material gas containing hydrogen.

[従来の技術] 水素を含む原料ガスから水素ガスを分離する方法であっ
て比較的高純度(99,9%〜99.999X程度)で
分離する方法としては古くは深冷分離法、ガス吸収法が
知られており、最近ではPSA法(Pressure 
Swing Adsorption)が多く用いられて
いる。
[Prior art] A method for separating hydrogen gas from a hydrogen-containing raw material gas with relatively high purity (approximately 99.9% to 99.999X) is the cryogenic separation method and gas absorption method. Recently, the PSA method (Pressure
Swing Adsorption) is often used.

このPSA法は、第2図に示すように活性炭、ゼオライ
ト等の吸着剤を充填した吸着塔O1に原料ガスライン0
2から原料ガスを流すと、吸着性の高い成分が吸着剤に
選択的に吸着され、吸着性の低い水素ガスのみが水素ガ
スライン03から前記純度で取り出せるものである。
In this PSA method, as shown in Fig. 2, a raw material gas line 0 is connected to an adsorption tower O1 filled with an adsorbent such as activated carbon or zeolite.
When the raw material gas is flowed from the hydrogen gas line 03, components with high adsorption properties are selectively adsorbed by the adsorbent, and only hydrogen gas with low adsorption properties can be taken out from the hydrogen gas line 03 with the above purity.

このPSA法の場合は、ある程度運転を行い、吸着剤に
不純成分が吸着されてくると、吸着性能が低下するので
、繰り返し吸着剤の再生を行う必要がある。そして、こ
の再生を上のに行うためには吸着塔O1を出来る限り減
圧すると共になるべく多量の高純度の水素ガスすなわち
高純度の製品ガスをパージライン04を経由して吸着塔
O1内に送ってパージを行う必要がある。
In the case of this PSA method, when impurity components are adsorbed by the adsorbent after a certain amount of operation, the adsorption performance deteriorates, so it is necessary to repeatedly regenerate the adsorbent. In order to perform this regeneration, the pressure in the adsorption tower O1 is reduced as much as possible, and as much as possible of high-purity hydrogen gas, that is, high-purity product gas, is sent into the adsorption tower O1 via the purge line 04. Need to purge.

[従来技術の問題点] このため、従来のPSA法においては脱着再生のために
多量の製品水素ガスをパージ用として使用しなければな
らないという問題があり、その量は原料ガス中の水素ガ
スの30z以上にも及んており生産性が悪い。
[Problems with the prior art] Therefore, in the conventional PSA method, there is a problem in that a large amount of product hydrogen gas must be used for purging for desorption and regeneration, and the amount is limited to the amount of hydrogen gas in the raw material gas. It extends to more than 30z and productivity is poor.

又、現在以上のパージ用ガスを使用しても純度アップ効
果はほとんどなく、更に高純度が必要な場合、液体窒素
により冷却された活性炭により精製するか、バラジュウ
ム金属膜を用いて精製しなければならない。しかし、前
者にあっては超低温を維持しなければならず、後者にあ
っては300℃〜500°Cという高温を維持しなけれ
ばならず、何れも取り扱いが大変難しいという問題があ
る。
Furthermore, even if more purge gas is used than the current one, there is almost no effect of increasing purity; if even higher purity is required, it must be purified using activated carbon cooled with liquid nitrogen or purified using a baradium metal membrane. It won't happen. However, in the former case, an extremely low temperature must be maintained, and in the latter case, a high temperature of 300°C to 500°C must be maintained, and both have the problem of being extremely difficult to handle.

本発明は斯かる点に鑑みて提案されるもので、従来のP
SA法では得られない高純度水素ガスを高効率で製造す
るための方法を提案するのが目的である。
The present invention has been proposed in view of the above points, and the present invention has been proposed in view of the above points.
The purpose of this study is to propose a method for producing highly purified hydrogen gas, which cannot be obtained by the SA method, with high efficiency.

[問題点を解決するための手段] 本発明は、上記問題点を解決する手段として、次の如き
方法を提案する。
[Means for Solving the Problems] The present invention proposes the following method as a means for solving the above problems.

原料ガスを水素以外の成分を吸着する吸着剤を充填した
吸着塔を通過せしめて水素ガスを製造し、更にこの水素
ガスを水素吸蔵合金を充填した水素吸蔵基に導き、ここ
で水素ガスを水素吸蔵合金に吸蔵させて水素ガス以外の
成分と分離し、然るのち脱蔵して高純度の水素ガスを製
造する方法。
Hydrogen gas is produced by passing the raw material gas through an adsorption tower filled with an adsorbent that adsorbs components other than hydrogen.The hydrogen gas is then guided to a hydrogen storage group filled with a hydrogen storage alloy, where the hydrogen gas is converted into hydrogen. A method of producing high-purity hydrogen gas by occluding it in a storage alloy, separating it from components other than hydrogen gas, and then devolatilizing it.

[実施例] 第1図は本発明を実施するための水素ガス製造装置を示
し、符号の1は原料となる原料ガス送入ライン、2.2
a、2bは吸着塔にして、この吸着塔2.2a、zb内
には下部から活性アルミナ、活性炭、SA型ゼオライト
が順々に充填されている。
[Example] Fig. 1 shows a hydrogen gas production apparatus for carrying out the present invention, and the reference numeral 1 indicates a raw material gas feed line serving as a raw material, and 2.2
2.a and 2b are adsorption towers, and activated alumina, activated carbon, and SA type zeolite are filled in this order from the bottom into the adsorption towers 2.2a and 2.2b.

3.3a、3bは吸着塔2.2a、2bで製造された水
素ガスの出ラインにして、この先はバルブ4.4a、4
bを経由して一旦合流された後分岐され、この分岐ライ
ン5.5aの先は水素吸蔵合金(例えばlaN is)
を充填した水素吸蔵基6.6aに夫々接続されている。
3.3a and 3b are the output lines for the hydrogen gas produced in the adsorption towers 2.2a and 2b, and beyond this are valves 4.4a and 4.
The branch line 5.5a is once joined via line 5.b and then branched off, and the end of this branch line 5.5a is a hydrogen storage alloy (e.g. laN is).
are respectively connected to hydrogen storage groups 6.6a filled with hydrogen storage groups 6.6a.

7.7aは水素吸蔵基6.6aで分離された成分及びこ
れらのガスとともに排出された水素ガスの取出ラインに
して、この先は貯蔵タンク8に接続されている。
7.7a is a take-out line for the components separated by the hydrogen storage group 6.6a and the hydrogen gas discharged together with these gases, and the end thereof is connected to the storage tank 8.

9.9aは取出ライン7.7aに夫々取り付けられた圧
力制御器にし゛乙水素吸蔵塔6.6a内の圧力を検出し
て水素吸蔵基6.6a内の圧力を制御する。
9.9a detects the pressure inside the hydrogen storage column 6.6a through a pressure controller attached to each take-out line 7.7a to control the pressure inside the hydrogen storage group 6.6a.

10jOaは水素吸蔵基6.6a内を吸蔵時には冷却、
脱蔵時には加熱するためのラインにして、実施例の場合
20°C前後の水、又は50°C前後の温水か供給され
るようになっている。
10jOa cools the hydrogen storage group 6.6a during storage,
During devolatilization, a heating line is used to supply water at around 20°C in the case of the embodiment, or hot water at around 50°C.

itは水素吸蔵基6.6aて脱蔵されて製造された高純
度水素ガスを送り出す高純度水素ガス送出ライン、12
.12a、12bは前記高純度水素ガス送出ライン11
から分岐され、バルブ13.13a%13bを経由して
前記吸着塔2.2a、2bに至るパージラインである。
It is a high-purity hydrogen gas delivery line 12 that sends out high-purity hydrogen gas produced by devolatilization using the hydrogen storage group 6.6a.
.. 12a and 12b are the high purity hydrogen gas delivery lines 11;
This is a purge line that is branched from the adsorption towers 2.2a and 2b via valves 13.13a and 13b.

14は前記貯蔵タンク8から各吸着塔2.2a、2bに
至る補助パージラインである。
14 is an auxiliary purge line extending from the storage tank 8 to each adsorption tower 2.2a, 2b.

次に、上記装置を使用しての本発明に係る高純度水素ガ
スの製造方法を説明する。
Next, a method for producing high-purity hydrogen gas according to the present invention using the above-mentioned apparatus will be explained.

原料ガスライン1からはメタノールの水蒸気改質ガス5
 N ’/ H(圧力6.5kg/cw”G、温度40
℃、成分If272.0$、C0,24,0X、 Co
 4.0!、水蒸気飽和)が供給される。この原料ガス
は吸着塔2.2a、2bの何れ1かに入れられてここで
水素ガスか分離され、CO□、COは吸着剤に吸着され
て残る。このようにしてCO,、COが分離された水素
ガス(純度99.999$ ’)は次に水素吸蔵基6又
は6aに送り込まれ、ここで水素吸蔵合金に吸蔵される
。吸蔵されないC01C02及びこれらのガスとともに
排出された水素ガスは貯蔵タンク8に貯蔵される。
From the raw material gas line 1, methanol steam reformed gas 5
N'/H (pressure 6.5 kg/cw"G, temperature 40
°C, component If272.0$, C0,24,0X, Co
4.0! , water vapor saturation) is supplied. This raw material gas is put into either one of the adsorption towers 2.2a and 2b, where it is separated into hydrogen gas, and CO□ and CO remain adsorbed by the adsorbent. The hydrogen gas (purity 99.999$') from which CO, . The unoccluded C01C02 and the hydrogen gas discharged together with these gases are stored in the storage tank 8.

水素吸蔵基6.6aにおいて吸蔵された水素ガスは、5
0°Cの温水の供給により脱蔵され高純度(純度99.
9999X以上)水素ガスとなって高純度水素ガス送出
ライン11から水素ガス貯蔵設備又は消費側へ送出され
る。
The hydrogen gas stored in the hydrogen storage group 6.6a is 5
It is devolatilized by supplying hot water at 0°C and becomes highly pure (purity 99.
9999X or more) becomes hydrogen gas and is sent out from the high-purity hydrogen gas delivery line 11 to the hydrogen gas storage facility or the consumption side.

吸着塔2.2a、2bのパージは、先ず貯蔵タンク8内
の水素ガスを利用して補助パージライン14から対象吸
着塔2又は2a又は2b内にパージし、続いて水素吸蔵
基6.6a内に吸蔵された水素ガスを脱蔵したものすな
わち高純度水素ガスによりパージライン12.12a、
+2bからパージする。
To purge the adsorption towers 2.2a and 2b, first, the hydrogen gas in the storage tank 8 is used to purge into the target adsorption tower 2 or 2a or 2b from the auxiliary purge line 14, and then the hydrogen storage group 6.6a is purged. The purge line 12.12a is filled with high-purity hydrogen gas obtained by devolatilizing the hydrogen gas occluded in
Purge from +2b.

表1に吸着塔2.2a、2b及び水素吸蔵基6.6aか
ら出た水素ガスの分析結果を示す。
Table 1 shows the analysis results of hydrogen gas discharged from the adsorption towers 2.2a and 2b and the hydrogen storage group 6.6a.

第1表 水素ガス分析結果(単位PPM)分析法 1、C01CO2、CH4、全炭化水素二水素炎イオン
化検出器付ガスクロマトグラフ法 2、  N2:熱伝導度 検出器付ガスクロマトグラフ
法3.0□=黄リシリン式 [本発明の効果] 本発明は以上のように公知の水素ガス製造法(PSA法
)に更に水素吸蔵合金を使用して水素を分離する方法を
組み合せることにより、高純度水素ガス(99,999
9X以上)を製造することができる。
Table 1 Hydrogen gas analysis results (unit: PPM) Analysis method 1, CO1CO2, CH4, total hydrocarbon dihydrogen gas chromatography with flame ionization detector 2, N2: Thermal conductivity Gas chromatography with detector 3.0 = Yellow resilin type [Effects of the present invention] As described above, the present invention combines the known hydrogen gas production method (PSA method) with a method of separating hydrogen using a hydrogen storage alloy, thereby producing high-purity hydrogen gas. (99,999
9X or more).

又、この製造方法は従来のように低温或いは高温を必要
とせず常温で取り扱うことができるため、その取り扱い
は簡単である。
Further, this manufacturing method does not require low or high temperatures as in the conventional methods and can be handled at room temperature, so handling is easy.

次に本発明方法によると、吸着塔のパージ用ガスとして
先ず吸蔵されずに貯蔵タンク内に一旦貯蔵された水素ガ
スを利用し、仕上げとして高純度水素ガスを使用して再
生するため、再生率も高く、パージ用に消費される高純
度水素ガスの量も少なくて済み、高効率化が図れる。因
に、本発明を実施した場合の水素ガス回収率は70%程
度と、PSA法における回収率と同程度に止めることが
できる。
Next, according to the method of the present invention, hydrogen gas that has been stored in a storage tank without being occluded is first used as a purge gas for the adsorption tower, and then regenerated using high-purity hydrogen gas as a finish, so the regeneration rate is The amount of high-purity hydrogen gas consumed for purging is also low, and high efficiency can be achieved. Incidentally, the hydrogen gas recovery rate when implementing the present invention can be kept at about 70%, which is the same level as the recovery rate in the PSA method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための水素ガス製造装置の説
明図、第2図は吸着工程を終えた塔に残っている水素ガ
スを他塔へ移送する工程用のう、インを省略したPSA
法の説明図である。 1・・・・・・原料゛ガス送入ライン 2.2a、 2b・・・・・・吸着塔 6.6a・・・・・・水素吸蔵基 11・・・高純度水素ガス送出ライン 12.12a、 12b・・・パージライン14・・・
補助パージライン #’lI’P %、j1 1、ζ71 2づ;
Fig. 1 is an explanatory diagram of a hydrogen gas production apparatus for carrying out the present invention, and Fig. 2 is an explanatory diagram of a hydrogen gas production apparatus for carrying out the present invention, and Fig. 2 is a step for transferring hydrogen gas remaining in the tower after the adsorption step to another tower, omitting the pipe and inlet. P.S.A.
It is an explanatory diagram of the law. 1... Raw material gas feed lines 2.2a, 2b... Adsorption tower 6.6a... Hydrogen storage group 11... High purity hydrogen gas delivery line 12. 12a, 12b...purge line 14...
Auxiliary purge line #'lI'P%, j1 1, ζ71 2zu;

Claims (1)

【特許請求の範囲】[Claims] 原料ガスを水素以外の成分を吸着する吸着剤を充填した
吸着塔を通過せしめて水素ガスを製造し、更にこの水素
ガスを水素吸蔵合金を充填した水素吸蔵塔に導き、ここ
で水素ガスを水素吸蔵合金に吸蔵させて水素ガス以外の
成分と分離し、然るのち脱蔵して高純度の水素ガスを製
造する方法。
Hydrogen gas is produced by passing the raw material gas through an adsorption tower filled with an adsorbent that adsorbs components other than hydrogen.The hydrogen gas is then led to a hydrogen storage tower filled with a hydrogen storage alloy, where the hydrogen gas is converted into hydrogen. A method of producing high-purity hydrogen gas by occluding it in a storage alloy, separating it from components other than hydrogen gas, and then devolatilizing it.
JP28393987A 1987-11-10 1987-11-10 Production of high-purity gaseous hydrogen Pending JPH01126203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28393987A JPH01126203A (en) 1987-11-10 1987-11-10 Production of high-purity gaseous hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28393987A JPH01126203A (en) 1987-11-10 1987-11-10 Production of high-purity gaseous hydrogen

Publications (1)

Publication Number Publication Date
JPH01126203A true JPH01126203A (en) 1989-05-18

Family

ID=17672173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28393987A Pending JPH01126203A (en) 1987-11-10 1987-11-10 Production of high-purity gaseous hydrogen

Country Status (1)

Country Link
JP (1) JPH01126203A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442801A (en) * 1990-06-08 1992-02-13 Chugoku Electric Power Co Inc:The Separation of condensable gas and device therefor
JP2006342014A (en) * 2005-06-08 2006-12-21 Kobe Steel Ltd Method for producing high purity hydrogen
JP2010241657A (en) * 2009-04-09 2010-10-28 Kobe Steel Ltd Method for producing high purity hydrogen
JP2011148652A (en) * 2010-01-21 2011-08-04 Kobe Steel Ltd Method for manufacturing high purity hydrogen
JP2018035397A (en) * 2016-08-31 2018-03-08 株式会社神戸製鋼所 Hydrogen storage alloy and hydrogen purification device
CN111320137A (en) * 2018-12-14 2020-06-23 国家能源投资集团有限责任公司 Method and system for separating and purifying hydrogen from mixed gas
CN111841244A (en) * 2020-07-22 2020-10-30 山东津挚环保科技有限公司 Pressure swing adsorption hydrogen purification system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442801A (en) * 1990-06-08 1992-02-13 Chugoku Electric Power Co Inc:The Separation of condensable gas and device therefor
JP2006342014A (en) * 2005-06-08 2006-12-21 Kobe Steel Ltd Method for producing high purity hydrogen
JP2010241657A (en) * 2009-04-09 2010-10-28 Kobe Steel Ltd Method for producing high purity hydrogen
JP2011148652A (en) * 2010-01-21 2011-08-04 Kobe Steel Ltd Method for manufacturing high purity hydrogen
JP2018035397A (en) * 2016-08-31 2018-03-08 株式会社神戸製鋼所 Hydrogen storage alloy and hydrogen purification device
CN111320137A (en) * 2018-12-14 2020-06-23 国家能源投资集团有限责任公司 Method and system for separating and purifying hydrogen from mixed gas
CN111841244A (en) * 2020-07-22 2020-10-30 山东津挚环保科技有限公司 Pressure swing adsorption hydrogen purification system

Similar Documents

Publication Publication Date Title
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US7022159B2 (en) Process and apparatus for treating a feed gas
JP3279585B2 (en) Method for producing purified air
JP3351815B2 (en) Purification method of inert gas
JPH01127021A (en) Purification and recovery of methane from reclaimed garbage treatment gas
US4746332A (en) Process for producing high purity nitrogen
US3691779A (en) Hydrogen purification
JP2000233909A (en) Method for refining waste argon gas from single crystal producing furnace
JP5683390B2 (en) Helium gas purification method and purification apparatus
JPH01126203A (en) Production of high-purity gaseous hydrogen
JP5748272B2 (en) Helium gas purification method and purification apparatus
JP5729765B2 (en) Helium gas purification method and purification apparatus
JP5665120B2 (en) Argon gas purification method and purification apparatus
JPH04265104A (en) Pressure swing type adsorbing method
JPH04250815A (en) Method for purification of helium
JPH0243684B2 (en)
JPH02284618A (en) Method for reducing oxygen concentration
JPS6129768B2 (en)
JPH0531331A (en) Separation of hydrogen isotope
JP3424100B2 (en) Method for purifying krypton and xenon
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPH0230607A (en) Production of highly pure nitrogen
JP3742304B2 (en) Rare gas recovery method and apparatus
JP2002274811A (en) Hydrogen preparation process and device used for the same