JP2006342014A - Method for producing high purity hydrogen - Google Patents

Method for producing high purity hydrogen Download PDF

Info

Publication number
JP2006342014A
JP2006342014A JP2005168540A JP2005168540A JP2006342014A JP 2006342014 A JP2006342014 A JP 2006342014A JP 2005168540 A JP2005168540 A JP 2005168540A JP 2005168540 A JP2005168540 A JP 2005168540A JP 2006342014 A JP2006342014 A JP 2006342014A
Authority
JP
Japan
Prior art keywords
hydrogen
adsorption
gas
adsorbent
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005168540A
Other languages
Japanese (ja)
Inventor
Takeshi Yamashita
岳史 山下
Keita Yura
慶太 由良
Noboru Nakao
昇 中尾
Akitoshi Fujisawa
彰利 藤澤
Masayoshi Ishida
政義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005168540A priority Critical patent/JP2006342014A/en
Publication of JP2006342014A publication Critical patent/JP2006342014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high purity hydrogen, by which high purity hydrogen can obtained at a high efficiency while realizing the reduction of cost by compacting a production apparatus. <P>SOLUTION: High purity hydrogen D is obtained by forming a hydrogen-enriched converted gas B by reforming and converting a hydrocarbon-containing fuel A with steam in a reforming converter 1, then adsorbing and removing CO by bringing the converted gas G into contact with a copper halide-supporting CO adsorbing agent filled in a CO remover 2, storing hydrogen in a hydrogen storing material in a hydrogen separation/recover unit 3, and discharging the stored hydrogen from the hydrogen storing material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リン酸形や固体高分子形等のプロトン伝導形燃料電池等に用いられる高純度水素の製造方法に関し、詳しくは、燃料電池のエネルギー(燃料)である水素を製造する際に副生する一酸化炭素や二酸化炭素、水や、未反応のメタンなどを除去し、高純度の水素を効率良く製造する方法に関する。   The present invention relates to a method for producing high-purity hydrogen used in proton-conducting fuel cells such as phosphoric acid type and solid polymer type, and more specifically, in the production of hydrogen which is energy (fuel) of a fuel cell. The present invention relates to a method for efficiently producing high-purity hydrogen by removing produced carbon monoxide, carbon dioxide, water, unreacted methane, and the like.

近年、地球環境の改善につながる燃料電池用の燃料として、水素への期待が高まっている。水素は、天然ガス、ナフサ、灯油、メタノールなどの炭化水素含有燃料と水蒸気を金属触媒の存在下で改質・変成した後、精製して得るのが一般的である。変成後のガス(変成ガス)には、水素以外に一酸化炭素(CO)、二酸化炭素(CO2)、メタン(CH4)、水(H2O)などが含まれており、とくにCOは固体高分子形燃料電池等の低温型燃料電池の電極に吸着して電圧出力を低下させるため、ppmレベルまで除去する必要がある。 In recent years, there is an increasing expectation for hydrogen as a fuel for fuel cells that leads to improvement of the global environment. In general, hydrogen is obtained by reforming and reforming a hydrocarbon-containing fuel such as natural gas, naphtha, kerosene, or methanol and steam in the presence of a metal catalyst. The modified gas (metamorphic gas) contains carbon monoxide (CO), carbon dioxide (CO 2 ), methane (CH 4 ), water (H 2 O), etc. in addition to hydrogen. In order to reduce the voltage output by adsorbing to the electrode of a low temperature fuel cell such as a polymer electrolyte fuel cell, it is necessary to remove it to the ppm level.

高純度水素を得る代表的な方法としては、水素PSA法が挙げられる。水素PSA法は吸着剤への各ガス成分の吸脱着挙動の違いを利用して分離する方法であり、高圧下で不純物であるCO、CO2、CH4、H2Oなどを吸着させ、これらのガスより吸着親和性の低いH2のみを回収する方法である。吸着した不純物ガス成分は減圧により脱着させて系外に放出される。本方法による水素PSA装置は複数の吸着塔から構成され、それぞれの吸着塔では吸着工程、均圧工程、減圧工程、パージ工程および昇圧工程を組み合わせた操作が繰り返され、装置全体では連続水素精製装置として機能する(例えば、非特許文献1参照)。上記吸着塔には、吸着剤として活性炭、ゼオライトおよび活性アルミナを単独または積層して充填しており、99.999容積%以上の高純度水素を製造することができる。しかしながら、これらの吸着剤でCOをppmレベルまで除去するためには大量の吸着剤が必要であり、そのために吸着塔が大型化し、さらにH2の収率が低下するという問題がある。 A typical method for obtaining high purity hydrogen is a hydrogen PSA method. The hydrogen PSA method is a method of separating by utilizing the difference in adsorption / desorption behavior of each gas component to the adsorbent, and adsorbs impurities such as CO, CO 2 , CH 4 , H 2 O under high pressure. This is a method for recovering only H 2 having a lower adsorption affinity than the above gas. The adsorbed impurity gas component is desorbed by reduced pressure and released out of the system. The hydrogen PSA apparatus according to this method is composed of a plurality of adsorption towers. In each adsorption tower, an operation combining the adsorption process, the pressure equalization process, the pressure reduction process, the purge process and the pressure increase process is repeated. (See, for example, Non-Patent Document 1). The adsorption tower is filled with activated carbon, zeolite and activated alumina as adsorbents alone or in layers, and can produce 99.999% by volume or more of high-purity hydrogen. However, in order to remove CO to the ppm level with these adsorbents, a large amount of adsorbent is required, which causes the problem that the adsorption tower becomes large and the yield of H 2 decreases.

また、燃料電池に適合した水素に富む燃料ガスを製造することを目的として、改質・変成後のガスをハロゲン化銅吸着剤に流通させてCOを除去する方法が開示されている(特許文献1参照)。しかしながら、本方法ではCOは除去できるものの、CO2等その他のガスを除去することができないため、燃料電池に燃料ガスを供給した場合に発電効率が低下する問題がある。また、長期に燃料ガスを供給した場合、H2およびCO以外のガスが燃料電池の電極に与える影響は現時点で不明であるという課題も残っている。 Further, for the purpose of producing a hydrogen-rich fuel gas suitable for a fuel cell, a method for removing CO by passing the reformed / modified gas through a copper halide adsorbent is disclosed (Patent Literature). 1). However, although this method can remove CO, but cannot remove other gases such as CO 2 , there is a problem that power generation efficiency decreases when fuel gas is supplied to the fuel cell. In addition, when fuel gas is supplied for a long period of time, there remains a problem that the influence of gases other than H 2 and CO on the electrodes of the fuel cell is unknown at this time.

また、COをCO選択酸化触媒にて除去した後に水素PSAを用いてCO2やCH4、H2Oを除去する方法も検討されている(非特許文献2参照)。本方法は、水素PSA法における吸着塔が大型化する主原因であるCOをあらかじめ除去するため、吸着塔の小型化につながるが、COを酸化させるために空気を導入する際、CO酸化の等量以上に酸素を供給する必要があるため、COと反応しない酸素はH2と反応してH2を消費してH2の回収効率を低下させるとともに、副次反応としてメタネーションが起こり、PSAで除去しにくいCH4が生成することや、同じくPSAで除去しにくい窒素(N2)が系内に混入するという問題がある。 Further, a method of removing CO 2 , CH 4 , and H 2 O using hydrogen PSA after removing CO with a CO selective oxidation catalyst has been studied (see Non-Patent Document 2). This method removes CO, which is the main cause of the increase in the size of the adsorption tower in the hydrogen PSA method, leading to downsizing of the adsorption tower. However, when introducing air to oxidize CO, CO oxidation, etc. since it is necessary to supply oxygen or the amount of oxygen which does not react with the CO together reduces the recovery efficiency of H 2 consumed and H 2 react with H 2, methanation occurs as a side reaction, PSA There is a problem that CH 4 that is difficult to remove by N2 is generated and nitrogen (N 2 ) that is also difficult to remove by PSA is mixed in the system.

また、燃料電池の燃料として高純度の水素を製造する方法として、ガス化炉にて生成したガスから、PSA法によりCO吸着剤でCOを除去した後、水素吸蔵合金によるH2の吸蔵・放出操作を組み合わせることにより高純度の水素を得る方法が開示されている(特許文献2参照)。本方法ではCOを除去した後の粗水素の精製を水素吸蔵合金を用いて行うことにより、粗水素の精製工程は大幅にコンパクト化できる。しかしながら、COの除去を、ゼオライトモレキュラーシーブス、カーボンモレキュラーシーブス、活性炭、または活性アルミナといった従来の吸着剤を用いて行うため、上述したように、COをppmレベルまで除去するためには大量の吸着剤が必要であり、そのために吸着塔が大型化するという問題点は解決されていない。
竹内雍監修、「最新吸着技術便覧」、株式会社エヌ・ティー・エス、1999年1月、p.86 NEDO平成13年度報告書、新PSA方式による水素製造技術開発、2002年 特開2002−201005号公報(特許請求の範囲など) 国際公開第00/59825号パンフレット(特許請求の範囲など)
As a method for producing high-purity hydrogen as fuel for fuel cells, after removing CO with a CO adsorbent from the gas generated in a gasification furnace by the PSA method, occlusion / release of H 2 by a hydrogen storage alloy A method for obtaining high-purity hydrogen by combining operations is disclosed (see Patent Document 2). In this method, the purification process of crude hydrogen after removing CO is performed using a hydrogen storage alloy, so that the purification process of crude hydrogen can be greatly reduced in size. However, since the removal of CO is performed using conventional adsorbents such as zeolite molecular sieves, carbon molecular sieves, activated carbon, or activated alumina, as described above, a large amount of adsorbent is required to remove CO to the ppm level. Therefore, the problem of increasing the size of the adsorption tower has not been solved.
Supervised by Atsushi Takeuchi, "Handbook of latest adsorption technology", NTS Corporation, January 1999, p. 86 NEDO 2001 Report, Development of Hydrogen Production Technology by New PSA Method, 2002 JP 2002-201005 (Claims etc.) WO00 / 59825 pamphlet (claims, etc.)

そこで本発明の目的は、製造装置をコンパクト化することにより低コスト化を実現しつつ、高純度水素を高効率で得ることができる高純度水素の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing high-purity hydrogen that can obtain high-purity hydrogen with high efficiency while realizing cost reduction by downsizing the production apparatus.

請求項1に記載の発明は、COを含有する水素リッチガスをCO吸着剤と接触させてCOを吸着除去しCO除去ガスを得るCO吸着除去工程と、前記CO除去ガスに含まれる水素を水素吸蔵材料に吸蔵させる水素吸蔵ステップとこの吸蔵された水素を前記吸蔵材料から放出させる水素放出ステップとを有する水素分離回収工程と、を備えた高純度水素の製造方法であって、前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/またはハロゲン化銅(II)を担持させた材料であることを特徴とする高純度水素製造方法である。   The invention described in claim 1 is a CO adsorption / removal step in which a CO-containing hydrogen rich gas is brought into contact with a CO adsorbent to adsorb and remove CO to obtain a CO removed gas, and hydrogen contained in the CO removed gas is stored in hydrogen. A high-purity hydrogen production method comprising: a hydrogen separation step having a hydrogen occlusion step in which a material is occluded and a hydrogen release step in which the occluded hydrogen is released from the occlusion material, wherein the CO adsorbent is A material in which copper (I) halide and / or copper (II) halide is supported on one or more supports selected from the group consisting of silica, alumina, activated carbon, graphite, and polystyrene resin. This is a high-purity hydrogen production method characterized.

請求項2に記載の発明は、COを含有する水素リッチガスに含まれる水素を水素吸蔵材料に吸蔵させる水素吸蔵ステップとこの吸蔵された水素を前記吸蔵材料から放出させる水素放出ステップとを有する水素分離回収工程と、前記放出された水素をCO吸着剤と接触させてCOを吸着除去するCO吸着除去工程と、を備えた高純度水素の製造方法であって、前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/またはハロゲン化銅(II)を担持させてなる材料であることを特徴とする高純度水素製造方法である。   According to a second aspect of the present invention, there is provided a hydrogen separation process comprising: a hydrogen storage step for storing hydrogen contained in a hydrogen rich gas containing CO into a hydrogen storage material; and a hydrogen release step for releasing the stored hydrogen from the storage material. A high-purity hydrogen production method comprising: a recovery step; and a CO adsorption / removal step of adsorbing and removing CO by bringing the released hydrogen into contact with a CO adsorbent, wherein the CO adsorbent is silica, alumina And a material obtained by supporting copper (I) halide and / or copper (II) halide on at least one carrier selected from the group consisting of activated carbon, graphite and polystyrene resin. This is a high-purity hydrogen production method.

請求項3に記載の発明は、前記COを含有する水素リッチガスが、以下の(a)〜(e)のいずれかのガスである請求項1または2に記載の高純度水素製造方法である。
(a)炭化水素含有燃料を水蒸気で改質したガス
(b)炭化水素含有燃料を部分酸化により改質したガス
(c)炭化水素含有燃料を部分酸化により改質させると同時に水蒸気で改質したガス
(d)前記(a)、(b)または(c)のガスをさらに変成させたガス
(e)前記(a)、(b)または(c)のガスをさらにセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めたガス
The invention according to claim 3 is the method for producing high-purity hydrogen according to claim 1 or 2, wherein the hydrogen-rich gas containing CO is any one of the following gases (a) to (e).
(A) Gas obtained by reforming hydrocarbon-containing fuel with steam (b) Gas obtained by reforming hydrocarbon-containing fuel by partial oxidation (c) Hydrocarbon-containing fuel is reformed by partial oxidation and simultaneously reformed with steam Gas (d) Gas obtained by further modifying the gas (a), (b) or (c) (e) The gas (a), (b) or (c) is further converted into a crude separation membrane such as a ceramic filter. Gas with increased hydrogen concentration

請求項4に記載の発明は、前記CO吸着除去工程が、COを吸着除去するCO吸着ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有する請求項1〜3のいずれか1項に記載の高純度水素製造方法である。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the CO adsorption removing step includes a CO adsorption step for adsorbing and removing CO and a CO adsorbent regeneration step for regenerating the CO adsorbent. The high-purity hydrogen production method described in the item.

請求項5に記載の発明は、前記CO吸着除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去器を用いて行うものであり、1つのCO吸着塔につき、前記CO吸着ステップと前記CO吸着剤再生ステップとを交互に行い、任意の時点において、少なくともいずれか1基のCO吸着塔にて前記CO吸着ステップを行う請求項4に記載の高純度水素製造方法である。   Invention of Claim 5 performs the said CO adsorption removal process using the CO removal device provided with two or more CO adsorption towers filled with the said CO adsorbent, About one CO adsorption tower, 5. The high-purity hydrogen production method according to claim 4, wherein the CO adsorption step and the CO adsorbent regeneration step are alternately performed, and the CO adsorption step is performed in at least one CO adsorption tower at an arbitrary time point. It is.

請求項6に記載の発明は、前記CO吸着除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去器を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項5に記載の高純度水素製造方法である。
(1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着ステップを行う工程
(2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
In the invention according to claim 6, the CO adsorption removal step is performed using a CO remover including three or more CO adsorption towers filled with the CO adsorbent. The following (1) and ( 6. The high purity hydrogen production method according to claim 5, wherein the step 2) is repeated.
(1) A step of performing the CO adsorption step by connecting the remaining CO adsorption towers in series while performing the CO adsorbent regeneration step in any one of the CO adsorption towers. (2) Next, connecting in series A step of separating the most upstream CO adsorption tower from the series connection among the CO adsorption towers, and connecting the CO adsorption tower having completed the CO adsorbent regeneration step to the most downstream side of the series connection.

請求項7に記載の発明は、前記水素吸蔵材料として、水素吸蔵合金、表面処理した水素吸蔵合金、ケミカルハイドライド、カーボンナノチューブ、またはこれらのいずれか2種以上を用いる請求項1〜6のいずれか1項に記載の高純度水素製造方法である。   The invention according to claim 7 uses any one of two or more of hydrogen storage alloy, surface-treated hydrogen storage alloy, chemical hydride, carbon nanotube, or any of these as the hydrogen storage material. 2. The high-purity hydrogen production method according to item 1.

請求項8に記載の発明は、前記CO吸着除去工程において、前記CO吸着剤でCOを吸着除去する際における、反応温度は80℃以下、雰囲気圧力は常圧以上とする請求項1〜7のいずれか1項に記載の高純度水素製造方法である。   According to an eighth aspect of the present invention, in the CO adsorption and removal step, the reaction temperature is 80 ° C. or lower and the atmospheric pressure is normal pressure or higher when CO is adsorbed and removed by the CO adsorbent. The high-purity hydrogen production method according to any one of the above items.

請求項9に記載の発明は、前記水素吸蔵ステップにおける、反応温度は80℃以下、雰囲気圧力は常圧以上とする請求項1〜8のいずれか1項に記載の高純度水素製造方法である。   The invention according to claim 9 is the high-purity hydrogen production method according to any one of claims 1 to 8, wherein the reaction temperature in the hydrogen storage step is 80 ° C. or lower and the atmospheric pressure is normal pressure or higher. .

請求項10に記載の発明は、前記CO吸着剤再生ステップにおいて、COを実質的に含まないガスを流通させつつ、反応温度は前記CO吸着ステップにおける反応温度以上で250℃以下、雰囲気圧力は前記CO吸着ステップにおける雰囲気圧力以下とする請求項4〜9のいずれか1項に記載の高純度水素製造方法である。   In the CO adsorbent regeneration step, the invention according to claim 10 is such that a gas substantially free of CO is circulated in the CO adsorbent regeneration step, the reaction temperature is equal to or higher than the reaction temperature in the CO adsorption step and 250 ° C. It is a high purity hydrogen manufacturing method of any one of Claims 4-9 made into the atmospheric pressure or less in a CO adsorption step.

請求項11に記載の発明は、前記COを実質的に含まないガスとして、前記水素吸蔵ステップで吸蔵されないオフガス、前記水素放出ステップで放出される高純度水素、前記改質を行う工程の加熱用燃料、またはこれらのうちいずれか2種以上の混合ガスを用いる請求項10に記載の高純度水素製造方法である。   The invention according to claim 11 is a gas that does not substantially contain CO, an off-gas that is not occluded in the hydrogen occlusion step, high-purity hydrogen that is released in the hydrogen desorption step, and heating for the step of performing the reforming. The method for producing high-purity hydrogen according to claim 10, wherein fuel or a mixed gas of any two or more of these is used.

請求項12に記載の発明は、前記水素放出ステップにおける、反応温度は250℃以下、雰囲気圧力は前記水素吸蔵ステップにおける雰囲気圧力以下とする請求項1〜11のいずれか1項に記載の高純度水素製造方法である。   The invention according to claim 12 is the high purity according to any one of claims 1 to 11, wherein the reaction temperature in the hydrogen releasing step is 250 ° C. or lower and the atmospheric pressure is lower than or equal to the atmospheric pressure in the hydrogen storage step. This is a hydrogen production method.

請求項13に記載の発明は、前記水素吸蔵ステップにおいて前記水素吸蔵材料が水素を吸蔵する際に発生する熱を、前記CO吸着剤再生ステップにおける前記CO吸着剤の昇温に用いる請求項4〜12のいずれか1項に記載の高純度水素製造方法である。   According to a thirteenth aspect of the present invention, the heat generated when the hydrogen storage material stores hydrogen in the hydrogen storage step is used to raise the temperature of the CO adsorbent in the CO adsorbent regeneration step. The high-purity hydrogen production method according to any one of 12 above.

請求項14に記載の発明は、前記水素吸蔵ステップにおいて前記水素吸蔵材料が水素を吸蔵する際に発生する熱を、前記水素吸蔵合金の昇温に用いる請求項1〜13のいずれか1項に記載の高純度水素製造方法である。   The invention described in claim 14 is any one of claims 1 to 13, wherein heat generated when the hydrogen storage material stores hydrogen in the hydrogen storage step is used to raise the temperature of the hydrogen storage alloy. The high-purity hydrogen production method described.

請求項15に記載の発明は、前記CO吸着除去工程において前記CO吸着剤がCOを吸着する際に発生する熱を、前記水素放出ステップにおける前記水素吸蔵材料の昇温に用いる請求項1〜14のいずれか1項に記載の高純度水素製造方法である。   According to a fifteenth aspect of the present invention, the heat generated when the CO adsorbent adsorbs CO in the CO adsorption removal step is used for raising the temperature of the hydrogen storage material in the hydrogen release step. The high-purity hydrogen production method according to any one of the above.

請求項16に記載の発明は、前記CO吸着ステップにおける反応温度を得るために、前記COを含有する水素リッチガスに含まれる水蒸気の潜熱、この水素リッチガスの顕熱、前記改質を行う工程からの燃焼排ガスに含まれる水蒸気の潜熱、この燃焼排ガスの顕熱、またはこれらのいずれか2種以上を用いて処理ガスおよび/または前記CO吸着剤を加熱する請求項8〜15のいずれか1項に記載の高純度水素製造方法である。   In order to obtain the reaction temperature in the CO adsorption step, the invention according to claim 16 includes the latent heat of water vapor contained in the hydrogen-rich gas containing CO, the sensible heat of the hydrogen-rich gas, and the step of performing the reforming. The process gas and / or the CO adsorbent is heated by using latent heat of water vapor contained in the combustion exhaust gas, sensible heat of the combustion exhaust gas, or any two or more thereof. The high-purity hydrogen production method described.

請求項17に記載の発明は、前記水素放出ステップにおける反応温度を得るために、前記水素放出ステップにおける反応温度を得るために、前記COを含有する水素リッチガスに含まれる水蒸気の潜熱、この水素リッチガスの顕熱、および前記改質を行う工程からの燃焼排ガスの顕熱、またはこれらのいずれか2種以上を用いて前記水素吸蔵材料を加熱する請求項12〜16のいずれか1項に記載の高純度水素製造方法である。   In order to obtain the reaction temperature in the hydrogen releasing step, the invention according to claim 17 is characterized in that in order to obtain the reaction temperature in the hydrogen releasing step, the latent heat of water vapor contained in the hydrogen rich gas containing CO, the hydrogen rich gas 17. The hydrogen storage material according to claim 12, wherein the hydrogen storage material is heated using sensible heat of sensible heat of the combustion exhaust gas from the step of performing the reforming, or any two or more thereof. This is a high-purity hydrogen production method.

本発明によれば、吸着性能が特異的に優れたハロゲン化銅を担持させたCO吸着剤と水素吸蔵材料との組合せにより、高純度の水素を高効率で得ることができるようになり、その結果、製造装置を大幅にコンパクト化でき、低コストで高純度水素が得られるようになった。   According to the present invention, high purity hydrogen can be obtained with high efficiency by combining a CO adsorbent carrying a copper halide with excellent adsorption performance and a hydrogen storage material. As a result, the manufacturing apparatus can be greatly downsized, and high-purity hydrogen can be obtained at low cost.

以下、本発明の実施の形態について図1〜4のフロー図を参照しつつ詳細に説明する。なお以下の実施形態においては、COを含有する水素リッチガス(以下、単に「水素リッチガス」ともいう。)として、炭化水素含有燃料を水蒸気で改質した後に変成させたガス(以下、「変成ガス」という。)を代表例に挙げて説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the flowcharts of FIGS. In the following embodiments, as a hydrogen-rich gas containing CO (hereinafter, also simply referred to as “hydrogen-rich gas”), a gas obtained by reforming a hydrocarbon-containing fuel after reforming with steam (hereinafter referred to as “modified gas”). Will be explained as a representative example.

〔実施形態1〕
実施形態の一例を図1のフロー図に示す。本実施形態では、CO吸着剤の吸着/再生および水素吸蔵材料の水素吸蔵/水素放出の切り替え操作を反応温度の昇降(すなわち、温度スイング)により行う例を示す。
Embodiment 1
An example of the embodiment is shown in the flowchart of FIG. In the present embodiment, an example is shown in which the switching operation between the adsorption / regeneration of the CO adsorbent and the hydrogen occlusion / hydrogen release of the hydrogen occlusion material is performed by raising and lowering the reaction temperature (that is, temperature swing).

(改質・変成工程)
COを含有する水素リッチガスとしての変成ガスを製造するための改質・変成工程には、例えば通常用いられる水蒸気改質器と変成器との組合せ(「改質・変成器1」と総称する。)を用いればよい。改質器において天然ガス等の炭化水素含有燃料Aを水蒸気で改質してH2およびCOを主成分とする改質ガスとした後、変成器においてこの改質ガスにさらに水蒸気を添加して変成しH2を主成分とする(水素リッチな)変成ガスBを生成する。この変成ガスB中には、H2の他、CO2、少量のCH4、H2Oなどとともに、0.5容積%(以下、単に「%」と表示する。)程度のCOが残留している。
(Reformation / transformation process)
In the reforming / transformation process for producing the shift gas as the hydrogen-rich gas containing CO, for example, a combination of a steam reformer and a shifter that are usually used (generically referred to as “reformer / transformer 1”). ) May be used. In the reformer, the hydrocarbon-containing fuel A such as natural gas is reformed with steam to form a reformed gas mainly composed of H 2 and CO, and then steam is further added to the reformed gas in the transformer. Alteration is performed to generate a (hydrogen-rich) modified gas B containing H 2 as a main component. In this metamorphic gas B, in addition to H 2 , together with CO 2 , a small amount of CH 4 , H 2 O, etc., about 0.5 volume% (hereinafter simply referred to as “%”) CO remains. ing.

(CO吸着除去工程)
本発明のCO吸着除去工程には、CO吸着剤を充填したCO吸着塔3基(2a,2b,2c)からなるCO除去器2を用いる。以下、CO吸着除去ステップとCO吸着剤再生ステップに分けて説明し、さらにそれらのステップの切り替え操作について説明を行う。
(CO adsorption removal process)
In the CO adsorption removal step of the present invention, a CO remover 2 comprising three CO adsorption towers (2a, 2b, 2c) filled with a CO adsorbent is used. Hereinafter, the CO adsorption removal step and the CO adsorbent regeneration step will be described separately, and the switching operation of those steps will be described.

[CO吸着除去ステップ]:変成ガスBをCO吸着剤を充填したCO除去器2を通過させ、変成ガスB中のCOを選択的に除去する。CO吸着剤としては、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)またはハロゲン化銅(II)を担持させた材料を用いる。このようなハロゲン化銅を担持させたCO吸着剤は、ゼオライトモレキュラーシーブス、カーボンモレキュラーシーブス、活性炭、または活性アルミナといった従来の吸着剤に比べ数倍の吸着性能を発揮するため、CO除去器2が大幅に小型化できる。CO吸着剤によるCO吸着反応は温度が低いほど促進されることから、高温の変成ガスBを冷却するためにCO除去器2の上流側に熱交換器4を設け、冷却後の変成ガスB’の温度を80℃以下、さらには60℃以下に低下させ、本ステップにおける反応温度をこれらの温度範囲とするのが好ましい。CO吸着除去後のCO除去ガスCのCO濃度は、次工程の水素吸蔵材料の被毒を抑制するため、100ppm以下、さらには10ppm以下とするのが好ましい。     [CO adsorption removal step]: The modified gas B is passed through the CO remover 2 filled with the CO adsorbent, and CO in the modified gas B is selectively removed. As the CO adsorbent, a material in which copper (I) halide or copper (II) halide is supported on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite, and polystyrene resin. Use. Such a CO adsorbent carrying copper halide exhibits adsorption performance several times that of conventional adsorbents such as zeolite molecular sieves, carbon molecular sieves, activated carbon, or activated alumina. The size can be greatly reduced. Since the CO adsorption reaction by the CO adsorbent is promoted as the temperature is lower, a heat exchanger 4 is provided on the upstream side of the CO remover 2 in order to cool the high temperature modified gas B, and the modified gas B ′ after cooling is provided. It is preferable to lower the temperature to 80 ° C. or lower, and further to 60 ° C. or lower, and set the reaction temperature in this step within these temperature ranges. The CO concentration of the CO removal gas C after CO adsorption removal is preferably 100 ppm or less, more preferably 10 ppm or less, in order to suppress poisoning of the hydrogen storage material in the next step.

[CO吸着剤再生ステップ]:CO吸着剤の吸着性能を維持するために、CO吸着除去ステップにおいて所定の時間経過後に、ないしはCO除去器2の出口側のCO濃度が所定の濃度まで上昇(破過)したときにCO吸着剤を再生する必要がある。CO吸着剤の再生は、吸着サイトに吸着したCOを脱離させ、この脱離したCOを再吸着させないで除去する必要があるため、キャリアガスとしてCOを実質的に含まないガスを流通させつつ行う。また、COの脱離反応は吸着反応とは逆に温度が高いほど促進されるため、CO吸着剤再生ステップにおける反応温度は、上記CO吸着除去ステップにおける反応温度より高くする。このような条件を満足させるため、上記キャリアガスとして用いるCOを実質的に含まないガスとしては、例えば、後述の水素分離回収装置で吸蔵されなかったオフガスEの一部E’を利用し、これを上述の熱交換器4で変成ガスBと熱交換し加熱して使用すればよい。ただし、250℃を超えて加熱すると、吸着剤に担持した活性種が不可逆的なダメージを受け、CO吸着剤の性能が低下するため250℃以下とする。とくに推奨される温度範囲は80〜150℃である。そして、このCO吸着剤を再生した後のガスE’’は、COを高濃度に含むため、例えば改質器の加熱用燃料Fの一部と代替して有効利用するとよい。     [CO adsorbent regeneration step]: In order to maintain the adsorption performance of the CO adsorbent, the CO concentration on the outlet side of the CO remover 2 rises to a predetermined concentration after elapse of a predetermined time in the CO adsorption removal step. It is necessary to regenerate the CO adsorbent. The regeneration of the CO adsorbent requires desorption of CO adsorbed on the adsorption site and removal of the desorbed CO without re-adsorption, so that a gas substantially free of CO is circulated as a carrier gas. Do. In addition, since the CO desorption reaction is accelerated as the temperature increases, the reaction temperature in the CO adsorbent regeneration step is set higher than the reaction temperature in the CO adsorption removal step. In order to satisfy such conditions, as the gas that does not substantially contain CO used as the carrier gas, for example, a part E ′ of the off-gas E that has not been occluded by the hydrogen separation and recovery device described later is used. May be used after exchanging heat with the modified gas B in the heat exchanger 4 described above. However, when heated above 250 ° C., the active species carried on the adsorbent is irreversibly damaged, and the performance of the CO adsorbent is lowered. A particularly recommended temperature range is 80-150 ° C. The gas E ″ after the regeneration of the CO adsorbent contains CO at a high concentration, so that it may be effectively used instead of, for example, part of the heating fuel F for the reformer.

[CO吸着除去ステップとCO吸着剤再生ステップとの切り替え操作]:それぞれのCO吸着塔につき、上記CO吸着除去ステップとCO吸着剤再生ステップとを交互に切り替える必要があるが、連続的に高純度水素を製造するためには(すなわち、連続的にCO除去ガスCを得るためには)、3塔のうち少なくとも1塔は常にCO吸着除去ステップとしておく必要がある。なお、CO吸着除去ステップにあったCO吸着塔をCO吸着剤再生ステップに移行させ再生を十分に行うには、CO吸着剤をCO脱離反応が活発化する温度まで昇温させるのに長時間を要することから、3塔のうち2塔をCO吸着除去ステップとしておき、残りの1塔のみをCO吸着剤再生ステップとするのが推奨される。そして、図2(a)に示すように、CO吸着除去ステップにある2塔(2a、2b)を直列に接続し、変成ガスB’を2塔に分配して通過させるのでなく、2塔を順次通過させてCOを吸着除去するようにする。そして、所定時間経過後、上流側のCO吸着塔2aのCO吸着容量が略満杯になったとき、この上流側のCO吸着塔2aを直列接続から切り離すとともに、吸着剤の再生が完了したCO吸着塔2cをCO吸着塔2bの下流側に接続する。そして、同図(b)に示すように、CO吸着塔2aの吸着剤を再生しつつ、CO吸着塔2b,2cからなる直列接続を用いてCOを吸着除去する。以下、同様の手順により、同図(c)さらには同図(a)の状態へと戻り、このような切り替え操作が繰り返される。このように、2塔を直列に接続し、その上流側から順次再生を行うことにより、下流側のCO吸着塔は常にCO吸着容量を残した状態にあるので、破過(CO濃度の上昇)が発生することなく、常にCOが十分に取り除かれたCO除去ガスCが得られる。また、上流側のCO吸着塔はその吸着容量をほぼ使い切った状態まで使用できるため、それぞれの吸着塔に吸着剤を過剰に充填する必要がなく、吸着剤コストの低減および設備の小型化を実現できる。   [Switching operation between CO adsorption removal step and CO adsorbent regeneration step]: For each CO adsorption tower, it is necessary to alternately switch the CO adsorption removal step and the CO adsorbent regeneration step. In order to produce hydrogen (that is, in order to obtain CO removal gas C continuously), at least one of the three towers must always be in the CO adsorption removal step. In order to perform the regeneration sufficiently by shifting the CO adsorption tower in the CO adsorption removal step to the CO adsorbent regeneration step, it takes a long time to raise the temperature of the CO adsorbent to a temperature at which the CO desorption reaction is activated. Therefore, it is recommended that two of the three columns be used as the CO adsorption removal step, and only the remaining one column be the CO adsorbent regeneration step. Then, as shown in FIG. 2 (a), the two towers (2a, 2b) in the CO adsorption removal step are connected in series, and the modified gas B ′ is not distributed to the two towers, but passed through the two towers. It is made to pass through in order to adsorb and remove CO. When the CO adsorption capacity of the upstream CO adsorption tower 2a is almost full after a predetermined time has elapsed, the upstream CO adsorption tower 2a is disconnected from the series connection, and the adsorbent regeneration is completed. The tower 2c is connected to the downstream side of the CO adsorption tower 2b. Then, as shown in FIG. 5B, CO is adsorbed and removed using a series connection composed of the CO adsorption towers 2b and 2c while regenerating the adsorbent of the CO adsorption tower 2a. Thereafter, the same procedure is followed to return to the state shown in FIG. 5C and further to the state shown in FIG. 5A, and such a switching operation is repeated. In this way, by connecting two towers in series and performing regeneration sequentially from the upstream side, the downstream CO adsorption tower is always in a state of leaving the CO adsorption capacity, so breakthrough (CO concentration increase) Thus, the CO removal gas C from which CO has been sufficiently removed is always obtained. In addition, the upstream CO adsorption towers can be used up to the state where their adsorption capacity is almost used up, so there is no need to fill each adsorption tower with an excessive amount of adsorbent, reducing the adsorbent cost and downsizing the equipment. it can.

(水素分離回収工程)
本発明の水素分離回収工程には、水素吸蔵材料を充填した水素吸蔵材料容器2個(3a,3b)からなる水素分離回収装置3を用いる。以下、水素吸蔵ステップと水素放出ステップに分けて説明し、それらのステップの切り替え操作について説明する。
(Hydrogen separation and recovery process)
In the hydrogen separation / recovery process of the present invention, a hydrogen separation / recovery device 3 comprising two hydrogen storage material containers (3a, 3b) filled with a hydrogen storage material is used. Hereinafter, the hydrogen storage step and the hydrogen release step will be described separately, and the switching operation of these steps will be described.

[水素吸蔵ステップ]:CO除去ガスCを水素吸蔵材料を充填した水素分離回収装置3を通過させ、CO除去ガスC中のH2を選択的に吸蔵する。水素吸蔵材料としては、水素吸蔵合金が適しており、さらに水素吸蔵合金に表面処理を施したものは、COによる被毒を十分に抑制しうるためより好ましい。水素吸蔵合金の表面処理としては、CO2やH2O、COに対して耐久性を有するものであれば特に限定されるものではないが、例えばフッ化処理が挙げられる。水素吸蔵材料による水素吸収反応は温度が低いほど促進されるため、前工程から排出されたCO除去ガスCを必要により水冷ジャケット等で冷却して導入し、本ステップにおける反応温度を、80℃以下、さらには60℃以下とするのが好ましい。そして、水素吸蔵材料に吸収されなかったH2以外のガス(CO2、CH4、H2Oなど)はオフガスEとして必要により洗浄したのち系外に排出すればよい。 [Hydrogen storage step]: The CO removal gas C is passed through the hydrogen separation and recovery device 3 filled with a hydrogen storage material, and H 2 in the CO removal gas C is selectively stored. As the hydrogen storage material, a hydrogen storage alloy is suitable, and a material obtained by subjecting the hydrogen storage alloy to surface treatment is more preferable because poisoning by CO can be sufficiently suppressed. The surface treatment of the hydrogen storage alloy is not particularly limited as long as it has durability against CO 2 , H 2 O, and CO, and examples thereof include fluorination treatment. Since the hydrogen absorption reaction by the hydrogen storage material is promoted as the temperature is lower, the CO removal gas C discharged from the previous process is introduced by cooling it with a water-cooling jacket if necessary, and the reaction temperature in this step is 80 ° C. or less. Further, it is preferable to set the temperature to 60 ° C. or lower. Gases other than H 2 (such as CO 2 , CH 4 , H 2 O, etc.) that have not been absorbed by the hydrogen storage material may be washed off-gas E as needed and then discharged out of the system.

[水素放出ステップ]:水素を吸蔵した水素吸蔵材料から水素を放出させる反応は、水素吸収反応とは逆に温度が高いほど促進されるため、水素放出ステップにおける反応温度は、上記水素吸蔵ステップにおける反応温度より高くする。このような条件を満足させるため、例えば改質器の燃焼排ガスGの顕熱を利用し、熱交換器5を用いて間接的に水素吸蔵材料を昇温するようにすればよい。なお、改質器の燃焼排ガスGの顕熱のみでは水素吸蔵材料を十分に昇温できない場合は、不足分を燃料電池の排熱(水素吸蔵材料が水素を吸蔵する際に発生する熱)や改質用燃料を活用することもできる。ただし、250℃を超えて加熱すると、吸蔵時との温度差が大きくなるため、サイクル熱応力によって水素吸蔵材料が微粉化する。また、加熱温度を高くすると熱損失が増大するなどの理由により水素吸蔵材料の性能が低下するため250℃以下とする。とくに推奨される温度範囲は常温〜200℃である。     [Hydrogen desorption step]: Since the reaction for desorbing hydrogen from the hydrogen occlusion material that occludes hydrogen is accelerated as the temperature increases, the reaction temperature in the hydrogen desorption step is the same as that in the hydrogen occlusion step. Above the reaction temperature. In order to satisfy such conditions, for example, the sensible heat of the combustion exhaust gas G of the reformer may be used to indirectly raise the temperature of the hydrogen storage material using the heat exchanger 5. In addition, when the temperature of the hydrogen storage material cannot be sufficiently raised only by the sensible heat of the combustion exhaust gas G of the reformer, the shortage is exhausted from the fuel cell (heat generated when the hydrogen storage material stores hydrogen) or Reforming fuel can also be used. However, if the temperature exceeds 250 ° C., the temperature difference from the time of occlusion increases, and the hydrogen occlusion material is pulverized by cycle thermal stress. Further, if the heating temperature is increased, the performance of the hydrogen storage material is lowered due to an increase in heat loss and the like. The particularly recommended temperature range is from room temperature to 200 ° C.

[水素吸蔵ステップと水素放出ステップとの切り替え操作]:それぞれの水素吸蔵材料容器につき、上記水素吸蔵ステップと水素放出ステップとを交互に切り替える必要があるが、常に1個の水素吸蔵材料容器(本例では3a)は水素吸蔵ステップとし、他の水素吸蔵材料容器(本例では3b)は水素放出ステップとするのがよい。これにより、高純度水素を後段の燃料電池等に連続して供給することが可能となるため、後述するような高純度水素をいったん貯蔵しておくためのバッファタンクを省略ないし小型化できる。     [Switching operation between hydrogen storage step and hydrogen release step]: For each hydrogen storage material container, it is necessary to alternately switch between the hydrogen storage step and the hydrogen release step. In the example, 3a) is a hydrogen storage step, and the other hydrogen storage material container (3b in this example) is a hydrogen release step. As a result, high-purity hydrogen can be continuously supplied to a subsequent fuel cell or the like, so that a buffer tank for temporarily storing high-purity hydrogen as described later can be omitted or downsized.

〔実施形態2〕
別の実施形態を図3に示す。上記実施形態1では、CO吸着剤の吸着/再生および水素吸蔵材料の水素吸蔵/水素放出の切り替え操作を反応温度の昇降(すなわち、温度スイング)により行う例を示したが、本実施形態は、これらの切り替え操作を雰囲気圧力の昇降(すなわち、圧力スイング)により行う例を示したものである。なお、上記実施形態1と共通の部分は説明を省略し、異なる部分のみを詳細に説明する。
[Embodiment 2]
Another embodiment is shown in FIG. In the first embodiment, the example in which the switching operation between the adsorption / regeneration of the CO adsorbent and the hydrogen storage / hydrogen release of the hydrogen storage material is performed by raising and lowering the reaction temperature (that is, temperature swing) is shown. An example in which these switching operations are performed by raising and lowering atmospheric pressure (that is, pressure swing) is shown. Note that description of parts common to the first embodiment is omitted, and only different parts are described in detail.

CO吸着剤によるCO吸着反応はCO分圧が高いほどCO吸着容量が増大すること、および水素吸蔵材料はH2分圧が高いほど水素吸蔵量が増大するため、CO吸着除去ステップおよび水素吸蔵ステップにおいては、雰囲気圧力を常圧より高めるのが好ましい。そこで図3に示すように、熱交換器4とCO除去器2の間に昇圧器6を設け、変成ガスB’を例えば0.9MPaに昇圧してCO除去器2を通過させてCOを除去し、CO除去ガスCをそのまま水素分離回収装置3に導入してH2を吸蔵させるようにするとよい。なお、変成ガスBを水素吸蔵反応に適した温度まで冷却するのに、同図に示すように、例えば熱交換器4の低温側ガスとして改質器加熱用燃料Fを用いればよい。これにより加熱用燃料Fが予熱されるので燃料節約の効果も得られる。 The CO adsorption reaction by the CO adsorbent increases the CO adsorption capacity as the CO partial pressure increases, and the hydrogen storage material increases the hydrogen storage amount as the H 2 partial pressure increases. In this case, it is preferable to increase the atmospheric pressure from the normal pressure. Therefore, as shown in FIG. 3, a booster 6 is provided between the heat exchanger 4 and the CO remover 2, and the transformed gas B ′ is boosted to 0.9 MPa, for example, and passed through the CO remover 2 to remove CO. Then, the CO removal gas C may be introduced as it is into the hydrogen separation / recovery device 3 to occlude H 2 . In order to cool the modified gas B to a temperature suitable for the hydrogen storage reaction, as shown in the figure, for example, the reformer heating fuel F may be used as the low temperature side gas of the heat exchanger 4. As a result, the heating fuel F is preheated, so that an effect of saving fuel can be obtained.

いっぽう、CO吸着剤の再生反応は、上記CO吸着時における雰囲気圧力より圧力を低くすることにより容易に進行することから、CO吸着剤再生ステップにおいては、同図に示すように、減圧器7でオフガスEを例えば常圧まで減圧してからCO吸着塔に導入するようにすればよい。   On the other hand, since the regeneration reaction of the CO adsorbent easily proceeds by making the pressure lower than the atmospheric pressure at the time of CO adsorption, in the CO adsorbent regeneration step, as shown in FIG. For example, the off-gas E may be reduced to normal pressure and then introduced into the CO adsorption tower.

また、水素吸蔵材料からの水素放出反応は、同じく上記水素吸蔵時における雰囲気圧力より低くすることにより容易に進行することから、水素放出ステップにおいては、同図に示すように、水素吸蔵材料容器内を減圧器8を用いて例えば常圧まで減圧すればよい。   In addition, since the hydrogen release reaction from the hydrogen storage material easily proceeds by lowering the atmospheric pressure at the time of the above hydrogen storage, in the hydrogen release step, as shown in FIG. For example, the pressure may be reduced to normal pressure using the pressure reducer 8.

〔実施形態3〕
図4に、上記実施形態1のCO除去工程と水素分離回収工程との順序を入れ替えた例を示す。なお、上記実施形態1と共通の部分は説明を省略し、異なる部分のみを詳細に説明する。
[Embodiment 3]
FIG. 4 shows an example in which the order of the CO removal process and the hydrogen separation / recovery process in the first embodiment is switched. Note that description of parts common to the first embodiment is omitted, and only different parts are described in detail.

水素吸蔵材料としては、上記各実施例と同様、水素吸蔵合金または表面処理(例えばフッ化処理)した水素吸蔵合金を用いることができるが、本実施形態では、COを含んだままの変成ガスB’を直接、水素分離回収装置3に導入するため、耐CO被毒性に優れた表面処理(例えばフッ化処理)した水素吸蔵合金がとくに好適である。   As the hydrogen storage material, a hydrogen storage alloy or a surface-treated (for example, fluorinated) hydrogen storage alloy can be used as in the above examples, but in this embodiment, the modified gas B containing CO remains. Since 'is directly introduced into the hydrogen separation and recovery device 3, a hydrogen storage alloy having a surface treatment excellent in CO poisoning resistance (for example, fluorination treatment) is particularly suitable.

本実施形態では、水素分離回収装置3の水素吸蔵材料で先に変成ガスB’中の水素を選択的に吸蔵し、残りのガスをオフガスEとして系外に排出する。この際、水素吸蔵材料の表面に一部のCOが吸着する。そして、水素吸蔵材料から水素を放出する際に上記表面に吸着したCOが脱着するため、水素中にCOが含まれる。このCO含有水素HをCO除去器2に導入し、COを吸着除去することにより高純度水素Dが得られる。   In this embodiment, hydrogen in the modified gas B ′ is first selectively stored by the hydrogen storage material of the hydrogen separation and recovery device 3, and the remaining gas is discharged out of the system as off-gas E. At this time, a part of CO is adsorbed on the surface of the hydrogen storage material. Since CO adsorbed on the surface is desorbed when hydrogen is released from the hydrogen storage material, CO is contained in the hydrogen. High purity hydrogen D is obtained by introducing this CO-containing hydrogen H into the CO remover 2 and adsorbing and removing CO.

なお、水素吸蔵材料の表面に吸着するCOは、変成ガスB’中のCOのごく一部であるため、CO除去器2のCO除去剤は、上記実施形態1,2ほど頻繁に再生せずとも長期間続けて使用できる。したがって、上記実施形態1,2のように複数のCO吸着塔を設けずとも、単一のCO吸着塔を用い、定期検査時などにCO吸着剤の再生ないし取替えを行うことによっても本発明の作用効果を得ることができる。なお、本実施形態では、熱交換器4で予熱した改質器加熱用燃料Fを用いて温度スイングにより再生を行う例を示す。   Note that the CO adsorbed on the surface of the hydrogen storage material is a small part of the CO in the modified gas B ′, and therefore the CO remover of the CO remover 2 is not regenerated as frequently as in the first and second embodiments. Both can be used for a long time. Therefore, even if a plurality of CO adsorption towers are not provided as in the first and second embodiments, a single CO adsorption tower is used and the CO adsorbent is regenerated or replaced at the time of periodic inspection or the like. An effect can be obtained. In the present embodiment, an example is shown in which regeneration is performed by temperature swing using the reformer heating fuel F preheated by the heat exchanger 4.

(変形例)
上記実施形態1,2では、CO吸着除去工程として3塔のCO吸着塔を順次切り替えて用いる例を示したが、2塔または4塔以上のCO吸着塔を順次切り替えて用いてもよい。また、CO吸着工程を水素分離回収工程より先に設ける場合でも、実施例3に例示したように単一のCO吸着塔を用い、定期検査時などに吸着剤の再生ないし取替えを行うようにしてもよい。また、上記と逆に、上記実施形態3ではCO吸着除去工程として単一のCO吸着塔を用いる例を示したが、CO吸着工程を水素分離回収工程より後に設ける場合でも、上記実施形態1と同様に複数のCO吸着塔を順次切り替えて用いてもよい。
(Modification)
In the first and second embodiments, an example in which three CO adsorption towers are sequentially switched as the CO adsorption removal step has been described. However, two or four or more CO adsorption towers may be sequentially switched and used. Even when the CO adsorption step is provided prior to the hydrogen separation and recovery step, as illustrated in Example 3, a single CO adsorption tower is used to regenerate or replace the adsorbent during periodic inspections. Also good. In contrast to the above, Embodiment 3 shows an example in which a single CO adsorption tower is used as the CO adsorption removal step. However, even when the CO adsorption step is provided after the hydrogen separation and recovery step, Similarly, a plurality of CO adsorption towers may be sequentially switched and used.

また、上記実施形態1〜3では、水素分離回収工程として2個の水素吸蔵材料容器を交互に切り替えて用いる例を示したが、3個以上の水素吸蔵材料容器を順次切り替えて用いてもよい。また、単一の水素吸蔵材料容器とバッファタンクを組み合わせ、バッファタンクから後段の燃料電池等に連続的に高純度水素を供給しつつ、単一の水素吸蔵材料容器中の水素吸蔵材料により水素の吸蔵と放出とを繰り返しながら、放出時のみバッファタンクに水素を溜めるようにしてもよい。   Moreover, in the said Embodiment 1-3, although the example which uses two hydrogen storage material containers by switching alternately as a hydrogen separation-and-recovery process was shown, you may use three or more hydrogen storage material containers switching sequentially. . In addition, a single hydrogen storage material container and a buffer tank are combined, and high purity hydrogen is continuously supplied from the buffer tank to the subsequent fuel cell, etc., while hydrogen is stored by the hydrogen storage material in the single hydrogen storage material container. Hydrogen may be stored in the buffer tank only during the discharge while repeating the occlusion and the discharge.

また、上記実施形態1〜3では、水素吸蔵材料として、水素吸蔵合金、表面処理した水素吸蔵合金を例示したが、ケミカルハイドライド、カーボンナノチューブ、またはこれらのいずれか2種以上を用いてもよい。   In the first to third embodiments, the hydrogen storage material and the surface-treated hydrogen storage alloy are exemplified as the hydrogen storage material. However, chemical hydride, carbon nanotube, or any two or more of these may be used.

また、上記実施形態1,3では、CO吸着剤の吸着/再生および水素吸蔵材料の水素吸蔵/水素放出の切り替え操作を反応温度の昇降(温度スイング)のみにより行う例を示し、上記実施形態2では、これらの切り替えを雰囲気圧力の昇降(圧力スイング)のみにより行う例を示したが、温度スイングと圧力スイングの両者を適宜組み合わせて行ってもよい。   In the first and third embodiments, an example in which the switching operation of adsorption / regeneration of the CO adsorbent and hydrogen storage / hydrogen release of the hydrogen storage material is performed only by raising and lowering the reaction temperature (temperature swing) is shown. In the above, an example in which the switching is performed only by raising and lowering the atmospheric pressure (pressure swing) has been described, but both the temperature swing and the pressure swing may be appropriately combined.

また、上記実施形態1〜3では、CO吸着剤の再生に用いるCOを実質的に含まないガスとして水素分離回収装置からのオフガスを例示したが、水素分離回収装置からの高純度水素、改質器の加熱用燃料、またはこれらのいずれか2種以上を混合して用いてもよい。   Further, in the first to third embodiments, the off-gas from the hydrogen separation / recovery device is exemplified as the gas that does not substantially contain CO used for the regeneration of the CO adsorbent. You may mix and use the fuel for a heater of a vessel, or any 2 or more types of these.

また、上記実施形態1,2では、CO吸着剤の再生および水素吸蔵材料からの水素放出を温度スイングで行う場合の熱源として変成ガスの顕熱を用いる例を示したが、変成ガスに含まれる水蒸気の潜熱、改質器の燃焼排ガスの顕熱、またはこれらのいずれか2種以上を用いてもよい。   In the first and second embodiments, the example in which the sensible heat of the modified gas is used as a heat source when the regeneration of the CO adsorbent and the release of hydrogen from the hydrogen storage material is performed by temperature swing has been described. You may use the latent heat of water vapor | steam, the sensible heat of the combustion exhaust gas of a reformer, or any 2 or more types of these.

あるいは、CO吸着剤の再生の熱源として水素吸蔵ステップで発生する熱を用いてもよく、水素吸蔵材料からの水素放出の熱源としてCO吸着除去ステップで発生する熱を用いてもよい。   Alternatively, the heat generated in the hydrogen storage step may be used as a heat source for regeneration of the CO adsorbent, and the heat generated in the CO adsorption removal step may be used as a heat source for hydrogen release from the hydrogen storage material.

また、上記実施形態1〜3では、水素分離回収装置からのオフガス中に未吸蔵のH2が含まれる場合があるので、このオフガスは改質器の加熱用燃料として活用することもできる。 In the first to third embodiments, since unoccluded H 2 may be contained in the off-gas from the hydrogen separation and recovery device, this off-gas can also be used as a heating fuel for the reformer.

また、上記実施形態2では、CO吸着剤の再生時および水素吸蔵材料からの水素放出時に減圧器を用いて常圧まで減圧する例を示したが、さらに効率を向上させるために真空ポンプ等を用いて負圧まで減圧してもよい。   In the second embodiment, the example in which the pressure is reduced to the normal pressure using the pressure reducer when the CO adsorbent is regenerated and when the hydrogen is released from the hydrogen storage material has been shown. In order to further improve the efficiency, a vacuum pump or the like is used. It may be used to reduce the pressure to a negative pressure.

また、上記実施形態1〜3では、温度スイングの熱源として改質器の燃焼排ガスの顕熱を用いる例を示したが、改質器出口ガスすなわち変成器入口ガスの顕熱を用いてもよい。   In the first to third embodiments, an example in which the sensible heat of the combustion exhaust gas from the reformer is used as the heat source of the temperature swing is shown. However, the sensible heat of the reformer outlet gas, that is, the transformer inlet gas may be used. .

また、上記実施形態1〜3では、COを含有する水素リッチガスの製造手段として改質器+変成器の組合せを例示したが、変成器に代えてセラミックフィルタ等の粗製分離膜を用いてもよい。すなわち、上記実施形態1〜3では、COを含有する水素リッチガスとして炭化水素含有燃料を水蒸気で改質した後に変成したガス(変成ガス)を例示したが、水蒸気で改質した後にセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めたガスも当然に適用できる。   In the first to third embodiments, the combination of the reformer and the transformer is illustrated as a means for producing the hydrogen-rich gas containing CO. However, a crude separation membrane such as a ceramic filter may be used instead of the transformer. . That is, in Embodiments 1 to 3 above, the gas (modified gas) modified after reforming the hydrocarbon-containing fuel with steam as the hydrogen-rich gas containing CO is exemplified. Naturally, a gas having a hydrogen concentration increased by circulating a crude separation membrane can also be applied.

さらには、CO吸着剤のCO吸着性能や水素吸蔵材料の耐CO被毒性によっては、変成器を省略して改質器のみのプロセスも成立しうる。すなわち、COを含有する水素リッチガスとして、水蒸気で改質したままのガスも適用可能であり、さらには水蒸気改質に代えて部分酸化により改質したガス、あるいは部分酸化により改質させると同時に水蒸気で改質したガスも適用しうるものである。   Furthermore, depending on the CO adsorption performance of the CO adsorbent and the CO poisoning resistance of the hydrogen storage material, a process using only the reformer can be realized by omitting the transformer. That is, as the hydrogen-rich gas containing CO, a gas that has been reformed with steam can also be applied. Further, instead of steam reforming, gas reformed by partial oxidation, or steam reformed simultaneously with partial oxidation. The gas modified with the above can also be applied.

また、CO吸着剤を再生する際に放出されるCOは、改質ガスとともに変成器に導入して変成反応に利用することもできる。   Further, CO released when the CO adsorbent is regenerated can be introduced into a shifter together with the reformed gas and used for the shift reaction.

実施形態1に係る高純度水素製造プロセスを示すフロー図である。1 is a flowchart showing a high-purity hydrogen production process according to Embodiment 1. FIG. 実施形態1における、CO除去器の切り替え操作を説明するフロー図である。FIG. 5 is a flowchart for explaining a CO remover switching operation in the first embodiment. 実施形態2に係る高純度水素製造プロセスを示すフロー図である。FIG. 5 is a flowchart showing a high-purity hydrogen production process according to Embodiment 2. 実施形態3に係る高純度水素製造プロセスを示すフロー図である。It is a flowchart which shows the high purity hydrogen manufacturing process which concerns on Embodiment 3.

符号の説明Explanation of symbols

1…改質・変成器
2…CO除去器
2a,2b,2c…CO吸着塔
3…水素分離回収装置
3a,3b…水素吸蔵材料容器
4,5…熱交換器
6…昇圧器
7,8…減圧器
A…炭化水素含有燃料
B…変成ガス(COを含有する水素リッチガス)
C…CO除去ガス
D…高純度水素
E…オフガス
F…改質器加熱用燃料
G…改質器の燃焼排ガス
H…CO含有水素

DESCRIPTION OF SYMBOLS 1 ... Reformer / transformer 2 ... CO remover 2a, 2b, 2c ... CO adsorption tower 3 ... Hydrogen separation and recovery device 3a, 3b ... Hydrogen storage material container 4, 5 ... Heat exchanger 6 ... Booster 7, 8 ... Pressure reducer A ... hydrocarbon-containing fuel B ... metamorphic gas (hydrogen rich gas containing CO)
C ... CO removal gas D ... High purity hydrogen E ... Off gas F ... Reformer heating fuel G ... Reformer combustion exhaust gas H ... CO-containing hydrogen

Claims (17)

COを含有する水素リッチガスをCO吸着剤と接触させてCOを吸着除去しCO除去ガスを得るCO吸着除去工程と、前記CO除去ガスに含まれる水素を水素吸蔵材料に吸蔵させる水素吸蔵ステップとこの吸蔵された水素を前記吸蔵材料から放出させる水素放出ステップとを有する水素分離回収工程と、を備えた高純度水素の製造方法であって、
前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/またはハロゲン化銅(II)を担持させた材料であることを特徴とする高純度水素製造方法。
A CO adsorption / removal step in which a hydrogen-rich gas containing CO is brought into contact with a CO adsorbent to adsorb and remove CO to obtain a CO removal gas; a hydrogen occlusion step in which hydrogen contained in the CO removal gas is occluded in a hydrogen occlusion material; and A hydrogen separation and recovery step having a hydrogen release step of releasing the stored hydrogen from the storage material, and a method for producing high-purity hydrogen comprising:
The CO adsorbent has copper (I) halide and / or copper (II) halide supported on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene resin. A high-purity hydrogen production method characterized by being a material.
COを含有する水素リッチガスに含まれる水素を水素吸蔵材料に吸蔵させる水素吸蔵ステップとこの吸蔵された水素を前記吸蔵材料から放出させる水素放出ステップとを有する水素分離回収工程と、前記放出された水素をCO吸着剤と接触させてCOを吸着除去するCO吸着除去工程と、を備えた高純度水素の製造方法であって、
前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/またはハロゲン化銅(II)を担持させてなる材料であることを特徴とする高純度水素製造方法。
A hydrogen separation and recovery process comprising a hydrogen storage step of storing hydrogen contained in a hydrogen-rich gas containing CO in a hydrogen storage material; and a hydrogen release step of releasing the stored hydrogen from the storage material; and the released hydrogen A method for producing high-purity hydrogen, comprising: a CO adsorption / removal step in which CO is adsorbed and removed by contacting with a CO adsorbent,
The CO adsorbent is made to carry copper (I) halide and / or copper (II) halide on one or more supports selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene resin. A method for producing high-purity hydrogen, characterized by comprising:
前記COを含有する水素リッチガスが、以下の(a)〜(e)のいずれかのガスである請求項1または2に記載の高純度水素製造方法。
(a)炭化水素含有燃料を水蒸気で改質したガス
(b)炭化水素含有燃料を部分酸化により改質したガス
(c)炭化水素含有燃料を部分酸化により改質させると同時に水蒸気で改質したガス
(d)前記(a)、(b)または(c)のガスをさらに変成させたガス
(e)前記(a)、(b)または(c)のガスをさらにセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めたガス
The method for producing high-purity hydrogen according to claim 1 or 2, wherein the hydrogen-rich gas containing CO is any one of the following gases (a) to (e).
(A) Gas obtained by reforming hydrocarbon-containing fuel with steam (b) Gas obtained by reforming hydrocarbon-containing fuel by partial oxidation (c) Hydrocarbon-containing fuel is reformed by partial oxidation and simultaneously reformed with steam Gas (d) Gas obtained by further modifying the gas (a), (b) or (c) (e) The gas (a), (b) or (c) is further converted into a crude separation membrane such as a ceramic filter. Gas with increased hydrogen concentration
前記CO吸着除去工程が、COを吸着除去するCO吸着ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有する請求項1〜3のいずれか1項に記載の高純度水素製造方法。   The high-purity hydrogen production method according to any one of claims 1 to 3, wherein the CO adsorption removal step includes a CO adsorption step for adsorbing and removing CO and a CO adsorbent regeneration step for regenerating the CO adsorbent. . 前記CO吸着除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去器を用いて行うものであり、
1つのCO吸着塔につき、前記CO吸着ステップと前記CO吸着剤再生ステップとを交互に行い、
任意の時点において、少なくともいずれか1基のCO吸着塔にて前記CO吸着ステップを行う請求項4に記載の高純度水素製造方法。
The CO adsorption removal step is performed using a CO remover provided with a plurality of CO adsorption towers filled with the CO adsorbent,
For one CO adsorption tower, the CO adsorption step and the CO adsorbent regeneration step are alternately performed,
The high-purity hydrogen production method according to claim 4, wherein the CO adsorption step is performed in at least one of the CO adsorption towers at an arbitrary time.
前記CO吸着除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO吸着除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項5に記載の高純度水素製造方法。
(1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着ステップを行う工程
(2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
The CO adsorption / removal step is performed using a CO adsorption / removal device including three or more CO adsorption towers filled with the CO adsorbent, and the following steps (1) and (2) are repeated. The high-purity hydrogen production method according to claim 5.
(1) A step of performing the CO adsorption step by connecting the remaining CO adsorption towers in series while performing the CO adsorbent regeneration step in any one of the CO adsorption towers. (2) Next, connecting in series A step of separating the most upstream CO adsorption tower from the series connection among the CO adsorption towers, and connecting the CO adsorption tower having completed the CO adsorbent regeneration step to the most downstream side of the series connection.
前記水素吸蔵材料として、水素吸蔵合金、表面処理した水素吸蔵合金、ケミカルハイドライド、カーボンナノチューブ、またはこれらのいずれか2種以上を用いる請求項1〜6のいずれか1項に記載の高純度水素製造方法。   The high-purity hydrogen production according to any one of claims 1 to 6, wherein a hydrogen storage alloy, a surface-treated hydrogen storage alloy, a chemical hydride, a carbon nanotube, or any two or more thereof is used as the hydrogen storage material. Method. 前記CO吸着除去工程において、前記CO吸着剤でCOを吸着除去する際における、反応温度は80℃以下、雰囲気圧力は常圧以上とする請求項1〜7のいずれか1項に記載の高純度水素製造方法。   8. The high purity according to claim 1, wherein in the CO adsorption removal step, the reaction temperature is 80 ° C. or less and the atmospheric pressure is normal pressure or more when CO is adsorbed and removed by the CO adsorbent. Hydrogen production method. 前記水素吸蔵ステップにおける、反応温度は80℃以下、雰囲気圧力は常圧以上とする請求項1〜8のいずれか1項に記載の高純度水素製造方法。   The method for producing high-purity hydrogen according to any one of claims 1 to 8, wherein in the hydrogen storage step, the reaction temperature is 80 ° C or lower and the atmospheric pressure is normal pressure or higher. 前記CO吸着剤再生ステップにおいて、COを実質的に含まないガスを流通させつつ、反応温度は前記CO吸着ステップにおける反応温度以上で250℃以下、雰囲気圧力は前記CO吸着ステップにおける雰囲気圧力以下とする請求項4〜9のいずれか1項に記載の高純度水素製造方法。   In the CO adsorbent regeneration step, while allowing a gas substantially free of CO to flow, the reaction temperature is not lower than the reaction temperature in the CO adsorption step and not higher than 250 ° C., and the atmospheric pressure is not higher than the atmospheric pressure in the CO adsorption step. The high-purity hydrogen production method according to any one of claims 4 to 9. 前記COを実質的に含まないガスとして、前記水素吸蔵ステップで吸蔵されないオフガス、前記水素放出ステップで放出される高純度水素、前記改質を行う工程の加熱用燃料、またはこれらのうちいずれか2種以上の混合ガスを用いる請求項10に記載の高純度水素製造方法。   As the gas that does not substantially contain CO, off-gas that is not stored in the hydrogen storage step, high-purity hydrogen that is released in the hydrogen release step, heating fuel for the reforming process, or any two of them The method for producing high-purity hydrogen according to claim 10, wherein a mixed gas of seeds or more is used. 前記水素放出ステップにおける、反応温度は250℃以下、雰囲気圧力は前記水素吸蔵ステップにおける雰囲気圧力以下とする請求項1〜11のいずれか1項に記載の高純度水素製造方法。   The method for producing high-purity hydrogen according to any one of claims 1 to 11, wherein a reaction temperature in the hydrogen releasing step is 250 ° C or lower and an atmospheric pressure is an atmospheric pressure or lower in the hydrogen storage step. 前記水素吸蔵ステップにおいて前記水素吸蔵材料が水素を吸蔵する際に発生する熱を、前記CO吸着剤再生ステップにおける前記CO吸着剤の昇温に用いる請求項4〜12のいずれか1項に記載の高純度水素製造方法。   The heat generated when the hydrogen storage material stores hydrogen in the hydrogen storage step is used for raising the temperature of the CO adsorbent in the CO adsorbent regeneration step. High purity hydrogen production method. 前記水素吸蔵ステップにおいて前記水素吸蔵材料が水素を吸蔵する際に発生する熱を、前記水素吸蔵合金の昇温に用いる請求項1〜13のいずれか1項に記載の高純度水素製造方法。   The method for producing high-purity hydrogen according to any one of claims 1 to 13, wherein heat generated when the hydrogen storage material stores hydrogen in the hydrogen storage step is used to raise the temperature of the hydrogen storage alloy. 前記CO吸着除去工程において前記CO吸着剤がCOを吸着する際に発生する熱を、前記水素放出ステップにおける前記水素吸蔵材料の昇温に用いる請求項1〜14のいずれか1項に記載の高純度水素製造方法。   The high heat according to any one of claims 1 to 14, wherein heat generated when the CO adsorbent adsorbs CO in the CO adsorption removal step is used for increasing the temperature of the hydrogen storage material in the hydrogen release step. Purity hydrogen production method. 前記CO吸着ステップにおける反応温度を得るために、前記COを含有する水素リッチガスに含まれる水蒸気の潜熱、この水素リッチガスの顕熱、前記改質を行う工程からの燃焼排ガスに含まれる水蒸気の潜熱、この燃焼排ガスの顕熱、またはこれらのいずれか2種以上を用いて処理ガスおよび/または前記CO吸着剤を加熱する請求項8〜15のいずれか1項に記載の高純度水素製造方法。   In order to obtain the reaction temperature in the CO adsorption step, the latent heat of water vapor contained in the hydrogen-rich gas containing CO, the sensible heat of the hydrogen-rich gas, the latent heat of water vapor contained in the combustion exhaust gas from the reforming step, The method for producing high-purity hydrogen according to any one of claims 8 to 15, wherein the sensible heat of the combustion exhaust gas or any two or more of these is used to heat the processing gas and / or the CO adsorbent. 前記水素放出ステップにおける反応温度を得るために、前記COを含有する水素リッチガスに含まれる水蒸気の潜熱、この水素リッチガスの顕熱、および前記改質を行う工程からの燃焼排ガスの顕熱、またはこれらのいずれか2種以上を用いて前記水素吸蔵材料を加熱する請求項12〜16のいずれか1項に記載の高純度水素製造方法。

In order to obtain the reaction temperature in the hydrogen releasing step, the latent heat of water vapor contained in the hydrogen-rich gas containing CO, the sensible heat of the hydrogen-rich gas, and the sensible heat of the combustion exhaust gas from the reforming process, or these The method for producing high-purity hydrogen according to any one of claims 12 to 16, wherein the hydrogen storage material is heated using any two or more of the above.

JP2005168540A 2005-06-08 2005-06-08 Method for producing high purity hydrogen Pending JP2006342014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168540A JP2006342014A (en) 2005-06-08 2005-06-08 Method for producing high purity hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168540A JP2006342014A (en) 2005-06-08 2005-06-08 Method for producing high purity hydrogen

Publications (1)

Publication Number Publication Date
JP2006342014A true JP2006342014A (en) 2006-12-21

Family

ID=37639255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168540A Pending JP2006342014A (en) 2005-06-08 2005-06-08 Method for producing high purity hydrogen

Country Status (1)

Country Link
JP (1) JP2006342014A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184901A (en) * 2008-01-10 2009-08-20 Kobe Steel Ltd Method of manufacturing hydrogen
WO2009110104A1 (en) * 2008-03-07 2009-09-11 Tomoaki Yoshioka A hydrogen extraction method
JP2010053003A (en) * 2008-08-29 2010-03-11 Kobe Steel Ltd Method for producing high purity hydrogen
JP2010241657A (en) * 2009-04-09 2010-10-28 Kobe Steel Ltd Method for producing high purity hydrogen
JP2011044390A (en) * 2009-08-24 2011-03-03 Kobe Steel Ltd Operation method of fuel cell system
JP2011148652A (en) * 2010-01-21 2011-08-04 Kobe Steel Ltd Method for manufacturing high purity hydrogen
JP2016530186A (en) * 2013-07-05 2016-09-29 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Station and method for filling a gas tank
CN110550606A (en) * 2018-06-04 2019-12-10 国家能源投资集团有限责任公司 device and method for preparing high-purity hydrogen from hydrogen-containing gas under unsteady state
CN114413174A (en) * 2022-03-01 2022-04-29 廊坊广惠气体设备有限公司 High-efficiency hydrogen recovery device and recovery method
WO2023212843A1 (en) * 2022-05-05 2023-11-09 大连大学 Device for selectively removing co and use method therefor
WO2023221070A1 (en) * 2022-05-20 2023-11-23 大连大学 Methanol hydrogen production apparatus with self-removal of co and method for using same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114101A (en) * 1984-06-29 1986-01-22 Nippon Sanso Kk Hydrogen purification apparatus
JPS6241701A (en) * 1985-08-13 1987-02-23 Mitsubishi Heavy Ind Ltd Pressure swing type gas separator in methanol decomposition apparatus
JPH01126203A (en) * 1987-11-10 1989-05-18 Tokyo Gas Co Ltd Production of high-purity gaseous hydrogen
JPH07286793A (en) * 1994-04-18 1995-10-31 Sanyo Electric Co Ltd Heat exchanging device
JPH10152303A (en) * 1996-11-18 1998-06-09 Japan Steel Works Ltd:The Removal of impurity from hydrogen gas and apparatus therefor
WO2000059825A1 (en) * 1999-04-02 2000-10-12 Ebara Corporation Method and apparatus for production of hydrogen by gasification of combusible material
JP2001300244A (en) * 2000-04-20 2001-10-30 Mitsubishi Kakoki Kaisha Ltd Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen
JP2002173305A (en) * 2000-12-05 2002-06-21 Tokyo Gas Co Ltd Apparatus for producing hydrogen
JP2002201005A (en) * 2000-11-13 2002-07-16 Air Products & Chemicals Inc Removing carbon monoxide/water in feeding gas to fuel cell
JP2003227598A (en) * 2002-02-04 2003-08-15 Japan Steel Works Ltd:The Hydrogen compressor device and operating method of the device
JP2004068896A (en) * 2002-08-05 2004-03-04 Denso Corp Hydrogen storing/supplying system
JP2005256899A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Hydrogen storage and/or derivation device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114101A (en) * 1984-06-29 1986-01-22 Nippon Sanso Kk Hydrogen purification apparatus
JPS6241701A (en) * 1985-08-13 1987-02-23 Mitsubishi Heavy Ind Ltd Pressure swing type gas separator in methanol decomposition apparatus
JPH01126203A (en) * 1987-11-10 1989-05-18 Tokyo Gas Co Ltd Production of high-purity gaseous hydrogen
JPH07286793A (en) * 1994-04-18 1995-10-31 Sanyo Electric Co Ltd Heat exchanging device
JPH10152303A (en) * 1996-11-18 1998-06-09 Japan Steel Works Ltd:The Removal of impurity from hydrogen gas and apparatus therefor
WO2000059825A1 (en) * 1999-04-02 2000-10-12 Ebara Corporation Method and apparatus for production of hydrogen by gasification of combusible material
JP2001300244A (en) * 2000-04-20 2001-10-30 Mitsubishi Kakoki Kaisha Ltd Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen
JP2002201005A (en) * 2000-11-13 2002-07-16 Air Products & Chemicals Inc Removing carbon monoxide/water in feeding gas to fuel cell
JP2002173305A (en) * 2000-12-05 2002-06-21 Tokyo Gas Co Ltd Apparatus for producing hydrogen
JP2003227598A (en) * 2002-02-04 2003-08-15 Japan Steel Works Ltd:The Hydrogen compressor device and operating method of the device
JP2004068896A (en) * 2002-08-05 2004-03-04 Denso Corp Hydrogen storing/supplying system
JP2005256899A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Hydrogen storage and/or derivation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184901A (en) * 2008-01-10 2009-08-20 Kobe Steel Ltd Method of manufacturing hydrogen
WO2009110104A1 (en) * 2008-03-07 2009-09-11 Tomoaki Yoshioka A hydrogen extraction method
JP2010053003A (en) * 2008-08-29 2010-03-11 Kobe Steel Ltd Method for producing high purity hydrogen
JP2010241657A (en) * 2009-04-09 2010-10-28 Kobe Steel Ltd Method for producing high purity hydrogen
JP2011044390A (en) * 2009-08-24 2011-03-03 Kobe Steel Ltd Operation method of fuel cell system
JP2011148652A (en) * 2010-01-21 2011-08-04 Kobe Steel Ltd Method for manufacturing high purity hydrogen
JP2016530186A (en) * 2013-07-05 2016-09-29 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Station and method for filling a gas tank
CN110550606A (en) * 2018-06-04 2019-12-10 国家能源投资集团有限责任公司 device and method for preparing high-purity hydrogen from hydrogen-containing gas under unsteady state
CN114413174A (en) * 2022-03-01 2022-04-29 廊坊广惠气体设备有限公司 High-efficiency hydrogen recovery device and recovery method
WO2023212843A1 (en) * 2022-05-05 2023-11-09 大连大学 Device for selectively removing co and use method therefor
WO2023221070A1 (en) * 2022-05-20 2023-11-23 大连大学 Methanol hydrogen production apparatus with self-removal of co and method for using same

Similar Documents

Publication Publication Date Title
JP2006342014A (en) Method for producing high purity hydrogen
JP5314408B2 (en) PSA equipment for high-purity hydrogen gas production
US6770390B2 (en) Carbon monoxide/water removal from fuel cell feed gas
JP5280824B2 (en) High purity hydrogen production equipment
JP3947752B2 (en) High purity hydrogen production method
JP3985006B2 (en) High purity hydrogen production method
JP2011167629A (en) Method and apparatus for separating hydrogen gas
JP5690165B2 (en) PSA high purity hydrogen production method
JP2018071894A (en) Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
WO2006132040A1 (en) Process for producing high-purity hydrogen
JP2007091498A (en) Method of producing hydrogen
JP5457854B2 (en) Production method of high purity hydrogen
TW200948458A (en) Method for separating blast furnace gas
JP5357465B2 (en) High purity hydrogen production method
JP4357756B2 (en) High purity hydrogen production system using membrane reformer
JP2004075439A (en) Hydrogen generating apparatus
JP5237870B2 (en) High purity hydrogen production method
JP2005256899A (en) Hydrogen storage and/or derivation device
JP5237873B2 (en) Hydrogen purification method and hydrogen storage alloy reaction vessel
JP2008288187A (en) Fuel cell system
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5255896B2 (en) Hydrogen production method
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
JP2004075440A (en) Hydrogen generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329