JP2004075439A - Hydrogen generating apparatus - Google Patents

Hydrogen generating apparatus Download PDF

Info

Publication number
JP2004075439A
JP2004075439A JP2002236454A JP2002236454A JP2004075439A JP 2004075439 A JP2004075439 A JP 2004075439A JP 2002236454 A JP2002236454 A JP 2002236454A JP 2002236454 A JP2002236454 A JP 2002236454A JP 2004075439 A JP2004075439 A JP 2004075439A
Authority
JP
Japan
Prior art keywords
hydrogen
membrane
gas
containing gas
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002236454A
Other languages
Japanese (ja)
Inventor
Takenori Watabe
渡部 武憲
Yukitaka Hamada
濱田 行貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002236454A priority Critical patent/JP2004075439A/en
Publication of JP2004075439A publication Critical patent/JP2004075439A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generating apparatus in which high purity hydrogen with low CO concentration (for example, ≤10 ppm) and a small steam content can be produced at a low cost in a compact apparatus. <P>SOLUTION: The generating apparatus is equipped with a hydrogen membrane separation apparatus 12 which reforms a fuel and separates a hydrogen-containing gas by the membrane, a CO removing apparatus 14 which removes CO gas in the hydrogen-containing gas, and a drier 16 which removes steam in the hydrogen-containing gas. The hydrogen membrane separation apparatus 12 comprises a reformer 12a housing a reforming catalyst and reforming the fuel into a reformed gas and a shift reaction membrane separation apparatus 12b housing a shift reaction catalyst and separating the hydrogen-containing gas from the reformed gas by the membrane. The CO removing apparatus 14 is a CO selective oxidation apparatus 14a or a methanation apparatus 14b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を改質して水素を製造する水素製造装置に関する。
【0002】
【従来の技術】
図3は従来の水素製造装置の全体構成図である。この図に示すように、従来の水素製造装置は、改質器、CO変成器、ドレンセパレータ、PSA水素分離装置、バッファータンク等を備える。改質器は、改質触媒を用いた従来の燃料電池用改質器であり、例えば改質温度700〜750℃、スチーム/カーボン比(S/C)3程度において都市ガスを改質してH、CO、CO等を含有する改質ガスを製造する。CO変成器は、シフト反応触媒を内蔵しいわゆるシフト反応によりCOをHに変成する。PSA水素分離装置は、吸着塔内に導入した水素リッチなガスの不純成分を圧力下で吸着剤に吸着させ水素を分離精製する水素分離装置である。この吸着剤の再生は圧力を下げて行うため運転時と再生時に圧力の上下がありPSA(Pressure Swing Adsorption)方式と呼ばれる。このPSAは、吸着剤として、カーボンモレキュラーシーブ、合成ゼオライト等を分離対象ガスに応じて使用し、これら吸着剤に吸着するガスの性質が異なることを利用して目的のガス分離を行うものであり、圧力が高いほど単位吸着剤に対する吸着量が多く、逆に圧力が低いほど吸着量が少ない特徴を有している。
【0003】
【発明が解決しようとする課題】
しかし、PSA水素分離装置は連続運転のできないバッチ処理のため、上述したPSAにより水素を分離精製する場合は、少なくとも3乃至4基の吸着塔を備え、これを順次切り換えて水素の分離と吸着剤の再生を行う必要がある。そのため、従来の水素供給製造装置は、複数の吸着塔およびバッファータンクを設置するため大きな設置面積が必要である。また、吸着剤の再生を行う際に製品水素をパージガスとして多量に消費するため、エネルギー効率が悪く、水素製造コストが高くなっている。したがって、コンパクトで安価に水素を製造することに難点がある。
【0004】
そこで、本発明の出願人は、先にコンパクトな構成で高純度の水素を製造することができる水素製造装置を創案し出願した(特開平10−265202号)。この水素製造装置は、図4に示すように、高温シフト触媒(8)を充填して改質ガスを流すようにしたシフト反応室(7)と伝熱促進用の充填物(5)を充填して冷却ガスを流すようにした冷却室(9)とを金属製隔壁(6)を介して積層したプレート型高温シフトコンバータ(II)の上記シフト反応室(7)に、水素ガスのみを透過する膜(3)を多孔質板(4)にコーティング又はメッキしてなるプレート型の隔壁(2)を介して水素ガス室(1)を配設し、改質ガスをシフト反応室でシフト反応して生成された水素のみを、上記水素透過膜を透過させて水素ガス室に流出させるようにしてなるものを、単層又は多層に積層した構成のものである。
【0005】
水素ガスを燃料電池の原料として用いる場合は、燃料電池の性能低下を防止するためCO濃度を10ppm以下にする必要がある。また、水素を貯蔵する水素吸蔵合金(MH)の劣化を防止するため水蒸気も除去する必要がある。しかしこのような燃料電池用の高純度水素燃料を水素分離膜を用いて製造するためには、以下の問題がある。
水素を透過するパラジウム膜は、極薄く柔らかいものであるため熱応力や触媒との接触により破損しやすく不純物ガスのリークを完全に防止することが困難であった。また不純物ガスのリークを無くすため、水素分離膜の厚さを非常に厚く(例えば100μm以上)にすると、水素分離膜は高価な貴金属であり、水素分離膜が厚くなると透過面積も比例して増えるので、高価な貴金属の使用量が加速的に多くなり、装置の製造コストが過大となる問題点があった。
【0006】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、CO濃度が低く(例えば10ppm以下)、水蒸気含有量が少ない高純度の水素を、コンパクトで安価に製造することができる水素製造装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、燃料を改質し水素含有ガスを膜分離する水素膜分離装置(12)と、前記水素含有ガス中のCOガスを除去するCO除去装置(14)と、水素含有ガス中の水蒸気を除去するドライヤー(16)とを備える、ことを特徴とする水素製造装置が提供される。
【0008】
上記本発明によれば、水素膜分離装置(12)の下流側に水素含有ガス中のCOガスを除去するCO除去装置(14)と、水素含有ガス中の水蒸気を除去するドライヤー(16)とを備えるので、水素膜分離装置(12)の水素分離膜の厚さを数μmまで薄くしても、水素分離膜を透過したCOガスと水蒸気を後処理で除去できる。
【0009】
また、水素分離膜を数μmまで薄くしても透過するCOガスと水蒸気は極微量(例えば0.1%前後)であり、CO除去装置(14)とドライヤー(16)の処理負荷は非常に少なく、小型の装置で長時間連続使用ができる。
【0010】
従って、高価な水素分離膜の厚さを数μm(従来の1/10以下)まで薄くすることができ、装置コストを大幅に減らすことができる。また、水素分離膜が薄くなることにより、水素分離性能が向上して小型化できる。また、水素分離膜の欠陥が発生したとしても、後処理工程があるため性能を保持でき信頼性の高い水素製造装置を提供できる。さらに、PSA吸着剤の再生時に消費する製品水素が不要なため、エネルギー効率が高く水素製造コストを安くすることができる。
【0011】
前記水素膜分離装置(12)は、改質触媒を内蔵し燃料を改質ガスに改質する改質器(12a)と、前記改質ガス中から水素含有ガスを膜分離するシフト膜分離装置(12b)とからなる。
【0012】
前記CO除去装置(14)は、CO選択酸化触媒を内蔵しCOを選択酸化させるCO選択酸化装置(14a)である。
この構成により、微量の空気を供給してCO選択酸化反応(CO+0.5O+2N→CO+2N)により、CO濃度を所望のレベル(例えば10ppm以下)まで低減できる。
【0013】
別の好ましい実施形態によれば、前記CO除去装置(14)は、メタネーション触媒を内蔵しCOをメタネーションするメタネーション装置(14b)である。
この構成により、空気を供給せずにメタネーション反応(CO+3H→CH+HO)により、CO濃度を所望のレベル(例えば10ppm以下)まで低減できる。
【0014】
前記ドライヤー(16)は、除湿剤で水蒸気を吸着する除湿装置である。
この構成により、水素分離膜を数μmまで薄くしても透過する水蒸気は極微量(例えば0.1%前後)であり、除湿剤(例えばモレキュラーシーブ)によるバッチ処理でも、小型の装置で長時間連続使用ができる。
【0015】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0016】
図1は、本発明の水素製造装置の第1実施形態図である。この図において、本発明の水素製造装置10は、水素膜分離装置12、CO除去装置14及びドライヤー16を備える。
【0017】
燃料はこの例では都市ガス(メタン)であり、脱硫器11で硫黄成分を除去した後に改質用の水蒸気を添加し水素膜分離装置12に供給される。なお、燃料は都市ガス以外の燃料ガス、またはナフサ、メタノール等の液体燃料でもよい。
【0018】
水素膜分離装置12は、燃料を改質し水素含有ガスを膜分離する装置である。
この例において、水素膜分離装置12は改質器12aとシフト反応膜分離装置12bとからなる。改質器12aは、改質触媒を内蔵した改質管を有し、燃料を燃焼させた燃焼ガスにより、改質管を加熱し、内部を通過する燃料を改質してH、CO、CO等を含有する改質ガスに改質する。
【0019】
改質器12aは、例えば改質温度700〜750℃、スチーム/カーボン比(S/C)3程度で運転され、改質反応は、式(1)(2)で示される。ただし、m>Lである。
CmHn+mHO→mCO+(m+0.5n)H...(1)
LCO+LHO→LCO+LH...(2)
【0020】
燃料として都市ガス(主成分メタン)を用いた場合、改質ガスの組成は例えば、H:56%,CO:10%,CO:7%前後となる。なお改質器を出た排気ガスは、図示しない熱交換器でエネルギー回収した後、大気中に排気する。
【0021】
シフト反応膜分離装置12bは、ポーラスな中空管の表面に水素分離膜が形成された多数の膜分離管を有し、この水素分離膜により改質した改質ガスから水素含有ガスを膜分離する。水素分離膜は、好ましくはパラジウム膜またはパラジウム合金膜であり、水素の透過率を高めるように、本発明では従来より薄い数μm(従来の1/10以下)に形成されている。
【0022】
シフト反応膜分離装置12bの性能は透過水素と不純物の比である分離係数で示され、例えば分離係数が200の場合、分離後の水素含有ガスの組成は、H:99.5%、CO:0.11%、CO:0.08%、HO:0.30%前後となる。なお改質反応膜分離装置12bで分離されない残留ガスは、改質器12aの燃料として使用する。
【0023】
CO除去装置14は、分離した水素含有ガス中のCOガスを除去する機能を有する。
この例で、CO除去装置14は、CO選択酸化触媒を内蔵しCOを選択酸化させるCO選択酸化装置14aであり、空気圧縮機15から供給される微量の空気とCOガスとのCO選択酸化反応(CO+0.5O+2N→CO+2N)により、CO濃度を所望のレベル(例えば10ppm以下)まで低減するようになっている。
【0024】
ドライヤー16は、水素含有ガス中の水蒸気を除去する機能を有し、この例では除湿剤(例えばモレキュラーシーブ)で水蒸気を吸着するバッチ式の除湿装置である。
ドライヤー16で水蒸気を除去した製品水素は、水素圧縮機17により、必要な圧力まで昇圧される。
【0025】
図2は、本発明の水素製造装置の第2実施形態図である。この図において、水素膜分離装置12は、改質反応膜分離装置12dからなる。
改質反応膜分離装置12dは、図1の改質器12aに水素分離膜を設けたもので、燃料を改質しながら同時に水素含有ガスを膜分離する。その他の構成は図1の水素膜分離装置12と同様である。
【0026】
この図において、CO除去装置14は、メタネーション触媒を内蔵しCOをメタネーションするメタネーション装置14bであり、空気を供給せずにメタネーション反応(CO+3H→CH+HO)により、CO濃度を所望のレベル(例えば10ppm以下)まで低減する。その他の構成は図1と同様である。
【0027】
上述した図1及び図2の水素製造装置10によれば、水素膜分離装置12の下流側に水素含有ガス中のCOガスを除去するCO除去装置14と、水素含有ガス中の水蒸気を除去するドライヤー16とを備えるので、水素膜分離装置12の水素分離膜の厚さを数μmまで薄くしても、水素分離膜を透過したCOガスと水蒸気を後処理で除去できる。
【0028】
また、水素分離膜を数μmまで薄くしても透過するCOガスと水蒸気は極微量(例えば0.1〜0.3%前後)であり、CO除去装置14とドライヤー16の処理負荷は非常に少なく、小型の装置で長時間連続使用ができる。
【0029】
従って、高価な水素分離膜の厚さを数μm(従来の1/10以下)まで薄くすることができ、装置コストを大幅に減らすことができる。また、水素分離膜が薄くなることにより、水素分離性能を向上して小型化できるばかりでなく、水素分離膜の欠陥が発生したとしても、後処理工程があるため性能を保持でき信頼性の高い水素製造装置を提供できる。さらに、PSA吸着剤の再生時に消費する製品水素が不要なため、エネルギー効率が高く水素製造コストを安くすることができる。
【0030】
なお、本発明は、上述した実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0031】
【発明の効果】
上述したように、本発明の水素製造装置は、CO濃度が低く(例えば10ppm以下)、水蒸気含有量が少ない高純度の水素を、コンパクトで安価に製造することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の水素製造装置の第1実施形態図である。
【図2】本発明の水素製造装置の第2実施形態図である。
【図3】従来の水素製造装置の全体構成図である。
【図4】従来の別の水素製造装置の全体構成図である。
【符号の説明】
1 水素ガス室、2 プレート型隔壁、3 水素透過膜、
4 多孔質板、5 充填物、6 隔壁、7 シフト反応室、
8 高温シフト触媒、9 冷却室
10 水素製造装置、11 脱硫器、12 水素膜分離装置、
12a 改質器、12b シフト反応膜分離装置、
12d 改質反応膜分離装置、
14 CO除去装置、14a CO選択酸化装置、
14b メタネーション装置、15 空気圧縮機、
16 ドライヤー(除湿装置)、17 水素圧縮機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen production apparatus for producing hydrogen by reforming a fuel.
[0002]
[Prior art]
FIG. 3 is an overall configuration diagram of a conventional hydrogen production apparatus. As shown in this figure, the conventional hydrogen production device includes a reformer, a CO shift converter, a drain separator, a PSA hydrogen separation device, a buffer tank, and the like. The reformer is a conventional reformer for a fuel cell using a reforming catalyst. For example, the reformer reforms city gas at a reforming temperature of 700 to 750 ° C. and a steam / carbon ratio (S / C) of about 3. A reformed gas containing H 2 , CO, CO 2 and the like is produced. The CO converter incorporates a shift reaction catalyst and converts CO into H 2 by a so-called shift reaction. The PSA hydrogen separation device is a hydrogen separation device that separates and purifies hydrogen by adsorbing an impurity component of a hydrogen-rich gas introduced into an adsorption tower to an adsorbent under pressure. Since the regeneration of the adsorbent is carried out at a reduced pressure, the pressure may fluctuate during operation and during regeneration, and is called a PSA (Pressure Swing Adsorption) system. This PSA uses carbon molecular sieve, synthetic zeolite, or the like as an adsorbent according to the gas to be separated, and performs the desired gas separation by utilizing the fact that the properties of the gas adsorbed by these adsorbents are different. The higher the pressure, the larger the amount of adsorption to the unit adsorbent, and the lower the pressure, the smaller the amount of adsorption.
[0003]
[Problems to be solved by the invention]
However, the PSA hydrogen separator is a batch process that cannot be operated continuously. Therefore, when hydrogen is separated and purified by the above-mentioned PSA, at least three or four adsorption towers are provided, which are sequentially switched to separate hydrogen and adsorbent. Need to be played. Therefore, the conventional hydrogen supply / production apparatus requires a large installation area to install a plurality of adsorption towers and buffer tanks. Further, when the adsorbent is regenerated, a large amount of product hydrogen is consumed as a purge gas, so that energy efficiency is low and hydrogen production cost is high. Therefore, there is a problem in producing hydrogen compactly and inexpensively.
[0004]
Therefore, the applicant of the present invention has previously devised and applied for a hydrogen production apparatus capable of producing high-purity hydrogen with a compact configuration (Japanese Patent Application Laid-Open No. 10-265202). As shown in FIG. 4, this hydrogen production apparatus is filled with a shift reaction chamber (7) filled with a high-temperature shift catalyst (8) to allow a reformed gas to flow and a packing (5) for promoting heat transfer. Only the hydrogen gas permeates into the shift reaction chamber (7) of the plate-type high-temperature shift converter (II) in which the cooling chamber (9) through which the cooling gas flows is laminated via the metal partition (6). A hydrogen gas chamber (1) is provided through a plate-type partition (2) formed by coating or plating a film (3) to be formed on a porous plate (4), and the reformed gas is subjected to a shift reaction in a shift reaction chamber. In this case, only the hydrogen generated as a result is allowed to permeate through the hydrogen permeable membrane and flow out to the hydrogen gas chamber, and a single layer or a multi-layer is formed.
[0005]
When hydrogen gas is used as a raw material for a fuel cell, the CO concentration needs to be 10 ppm or less to prevent the performance of the fuel cell from deteriorating. Further, it is necessary to remove water vapor in order to prevent deterioration of the hydrogen storage alloy (MH) that stores hydrogen. However, producing such a high-purity hydrogen fuel for a fuel cell using a hydrogen separation membrane has the following problems.
Since a palladium membrane that is permeable to hydrogen is extremely thin and soft, it is easily damaged by thermal stress or contact with a catalyst, and it has been difficult to completely prevent leakage of impurity gas. Further, if the thickness of the hydrogen separation membrane is made very thick (for example, 100 μm or more) in order to eliminate the leak of impurity gas, the hydrogen separation membrane is an expensive noble metal. Therefore, there has been a problem that the amount of expensive precious metal used increases at an accelerating rate, and the manufacturing cost of the apparatus becomes excessive.
[0006]
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a hydrogen production apparatus capable of producing high-purity hydrogen with a low CO concentration (for example, 10 ppm or less) and a low water vapor content in a compact and inexpensive manner.
[0007]
[Means for Solving the Problems]
According to the present invention, a hydrogen membrane separation device (12) for reforming fuel and separating a hydrogen-containing gas by a membrane, a CO removal device (14) for removing a CO gas in the hydrogen-containing gas, And a dryer (16) for removing water vapor.
[0008]
According to the present invention, a CO removing device (14) for removing CO gas in a hydrogen-containing gas and a dryer (16) for removing water vapor in a hydrogen-containing gas are provided downstream of the hydrogen membrane separation device (12). Therefore, even if the thickness of the hydrogen separation membrane of the hydrogen membrane separation device (12) is reduced to several μm, the CO gas and water vapor that have passed through the hydrogen separation membrane can be removed by post-processing.
[0009]
Further, even if the hydrogen separation membrane is thinned down to several μm, the permeation of CO gas and water vapor is extremely small (for example, about 0.1%), and the processing load of the CO removal device (14) and the dryer (16) is extremely large. It can be used continuously for a long time with a small and small device.
[0010]
Therefore, the thickness of the expensive hydrogen separation membrane can be reduced to several μm (1/10 or less of the conventional), and the cost of the apparatus can be greatly reduced. In addition, since the hydrogen separation membrane is thinned, the hydrogen separation performance is improved and the size can be reduced. Further, even if a defect occurs in the hydrogen separation membrane, a post-processing step can be performed to maintain performance and provide a highly reliable hydrogen production apparatus. Further, since product hydrogen consumed during regeneration of the PSA adsorbent is not required, energy efficiency is high and hydrogen production cost can be reduced.
[0011]
The hydrogen membrane separator (12) includes a reformer (12a) that incorporates a reforming catalyst and reforms a fuel into a reformed gas, and a shift membrane separator that membrane-separates a hydrogen-containing gas from the reformed gas. (12b).
[0012]
The CO removal device (14) is a CO selective oxidation device (14a) that incorporates a CO selective oxidation catalyst and selectively oxidizes CO.
With this configuration, the CO concentration can be reduced to a desired level (for example, 10 ppm or less) by supplying a small amount of air and performing a CO selective oxidation reaction (CO + 0.5O 2 + 2N 2 → CO 2 + 2N 2 ).
[0013]
According to another preferred embodiment, the CO removal device (14) is a methanation device (14b) incorporating a methanation catalyst and methanating CO.
With this configuration, the CO concentration can be reduced to a desired level (for example, 10 ppm or less) by a methanation reaction (CO + 3H 2 → CH 4 + H 2 O) without supplying air.
[0014]
The dryer (16) is a dehumidifier that adsorbs water vapor with a dehumidifier.
With this configuration, even when the hydrogen separation membrane is thinned down to several μm, the amount of water vapor that permeates is extremely small (for example, about 0.1%). Can be used continuously.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0016]
FIG. 1 is a diagram showing a first embodiment of the hydrogen production apparatus of the present invention. In this figure, a hydrogen production device 10 of the present invention includes a hydrogen membrane separation device 12, a CO removal device 14, and a dryer 16.
[0017]
The fuel is city gas (methane) in this example. After removing the sulfur component in the desulfurizer 11, the fuel for reforming is added and supplied to the hydrogen membrane separator 12. The fuel may be a fuel gas other than city gas, or a liquid fuel such as naphtha or methanol.
[0018]
The hydrogen membrane separation device 12 is a device that reforms fuel and performs membrane separation of a hydrogen-containing gas.
In this example, the hydrogen membrane separator 12 includes a reformer 12a and a shift reaction membrane separator 12b. The reformer 12a has a reforming tube having a built-in reforming catalyst, and heats the reforming tube with the combustion gas obtained by burning the fuel, reforms the fuel passing through the reformer, and converts H 2 , CO, Reform to a reformed gas containing CO 2 and the like.
[0019]
The reformer 12a is operated, for example, at a reforming temperature of 700 to 750 ° C. and a steam / carbon ratio (S / C) of about 3, and the reforming reaction is represented by equations (1) and (2). However, m> L.
CmHn + mH 2 O → mCO + (m + 0.5n) H 2. . . (1)
LCO + LH 2 O → LCO 2 + LH 2 . . . (2)
[0020]
When city gas (mainly methane) is used as the fuel, the composition of the reformed gas is, for example, about 56% for H 2 , 10% for CO, and about 7% for CO 2 . Exhaust gas exiting the reformer is exhausted to the atmosphere after energy recovery by a heat exchanger (not shown).
[0021]
The shift reaction membrane separation device 12b has a number of membrane separation tubes in which a hydrogen separation membrane is formed on the surface of a porous hollow tube, and separates a hydrogen-containing gas from a reformed gas reformed by the hydrogen separation membrane. I do. The hydrogen separation membrane is preferably a palladium membrane or a palladium alloy membrane. In the present invention, the hydrogen separation membrane is formed to be several μm thinner than the conventional one (1/10 or less of the conventional one) so as to increase the hydrogen permeability.
[0022]
The performance of the shift reaction membrane separation device 12b is represented by a separation coefficient which is a ratio of permeated hydrogen to impurities. For example, when the separation coefficient is 200, the composition of the hydrogen-containing gas after separation is H 2 : 99.5%, CO 2 : 0.11%, CO 2 : 0.08%, H 2 O: about 0.30%. The residual gas not separated by the reforming reaction membrane separation device 12b is used as fuel for the reformer 12a.
[0023]
The CO removing device 14 has a function of removing the CO gas in the separated hydrogen-containing gas.
In this example, the CO removing device 14 is a CO selective oxidizing device 14a that incorporates a CO selective oxidizing catalyst and selectively oxidizes CO, and performs a CO selective oxidizing reaction between a small amount of air supplied from the air compressor 15 and CO gas. (CO + 0.5O 2 + 2N 2 → CO 2 + 2N 2 ) reduces the CO concentration to a desired level (for example, 10 ppm or less).
[0024]
The dryer 16 has a function of removing water vapor in the hydrogen-containing gas. In this example, the dryer 16 is a batch type dehumidifier that adsorbs water vapor with a dehumidifier (eg, molecular sieve).
The product hydrogen from which steam has been removed by the dryer 16 is pressurized to a required pressure by the hydrogen compressor 17.
[0025]
FIG. 2 is a second embodiment of the hydrogen production apparatus of the present invention. In this figure, the hydrogen membrane separation device 12 includes a reforming reaction membrane separation device 12d.
The reforming reaction membrane separation device 12d is a device in which a hydrogen separation membrane is provided in the reformer 12a in FIG. 1, and performs the membrane separation of the hydrogen-containing gas while reforming the fuel. Other configurations are the same as those of the hydrogen membrane separator 12 of FIG.
[0026]
In this figure, a CO removal device 14 is a methanation device 14b that incorporates a methanation catalyst and methanates CO. The CO removal device 14 performs a methanation reaction (CO + 3H 2 → CH 4 + H 2 O) without supplying air. Reduce the concentration to the desired level (eg, 10 ppm or less). Other configurations are the same as those in FIG.
[0027]
According to the hydrogen production apparatus 10 of FIGS. 1 and 2 described above, a CO removal apparatus 14 for removing CO gas in a hydrogen-containing gas downstream of the hydrogen membrane separation apparatus 12 and a water vapor in the hydrogen-containing gas are removed. Since the dryer 16 is provided, even if the thickness of the hydrogen separation membrane of the hydrogen membrane separation device 12 is reduced to several μm, CO gas and water vapor that have passed through the hydrogen separation membrane can be removed by post-processing.
[0028]
Further, even if the hydrogen separation membrane is thinned to several μm, the permeation of CO gas and water vapor is extremely small (for example, about 0.1 to 0.3%), and the processing load of the CO removal device 14 and the dryer 16 is extremely large. It can be used continuously for a long time with a small and small device.
[0029]
Therefore, the thickness of the expensive hydrogen separation membrane can be reduced to several μm (1/10 or less of the conventional), and the cost of the apparatus can be greatly reduced. In addition, since the hydrogen separation membrane becomes thinner, not only the hydrogen separation performance can be improved and the size can be reduced, but even if a defect occurs in the hydrogen separation membrane, the performance can be maintained because of the post-processing step, and the reliability is high. A hydrogen production device can be provided. Further, since product hydrogen consumed during regeneration of the PSA adsorbent is not required, energy efficiency is high and hydrogen production cost can be reduced.
[0030]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the spirit of the present invention.
[0031]
【The invention's effect】
As described above, the hydrogen production apparatus of the present invention has excellent effects such as the ability to produce high-purity hydrogen having a low CO concentration (for example, 10 ppm or less) and a low water vapor content in a compact and inexpensive manner. Have.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a hydrogen production apparatus of the present invention.
FIG. 2 is a diagram showing a second embodiment of the hydrogen production apparatus of the present invention.
FIG. 3 is an overall configuration diagram of a conventional hydrogen production apparatus.
FIG. 4 is an overall configuration diagram of another conventional hydrogen production apparatus.
[Explanation of symbols]
1 hydrogen gas chamber, 2 plate type partition, 3 hydrogen permeable membrane,
4 porous plate, 5 packing, 6 partition, 7 shift reaction chamber,
8 High temperature shift catalyst, 9 Cooling room 10 Hydrogen production device, 11 Desulfurizer, 12 Hydrogen membrane separation device,
12a reformer, 12b shift reaction membrane separation device,
12d reforming reaction membrane separation device,
14 CO removal device, 14a CO selective oxidation device,
14b methanation device, 15 air compressor,
16 dryer (dehumidifier), 17 hydrogen compressor

Claims (6)

燃料を改質し水素含有ガスを膜分離する水素膜分離装置(12)と、前記水素含有ガス中のCOガスを除去するCO除去装置(14)と、水素含有ガス中の水蒸気を除去するドライヤー(16)とを備える、ことを特徴とする水素製造装置。A hydrogen membrane separation device (12) for reforming fuel and separating a hydrogen-containing gas by a membrane, a CO removal device (14) for removing a CO gas in the hydrogen-containing gas, and a dryer for removing water vapor in the hydrogen-containing gas (16) A hydrogen production apparatus, comprising: 前記水素膜分離装置(12)は、改質触媒を内蔵し燃料を改質ガスに改質する改質器(12a)と、シフト反応触媒を内蔵し前記改質ガス中から水素含有ガスを膜分離するシフト反応膜分離装置(12b)とからなる、ことを特徴とする請求項1に記載の水素製造装置。The hydrogen membrane separator (12) includes a reformer (12a) that incorporates a reforming catalyst and reforms fuel into a reformed gas, and a shift reaction catalyst that incorporates a hydrogen-containing gas from the reformed gas into a membrane. The hydrogen production apparatus according to claim 1, comprising a shift reaction membrane separation device (12b) for separation. 前記水素膜分離装置(12)は、改質触媒を内蔵し燃料を改質しながら水素含有ガスを膜分離する改質反応膜分離ユニット(12d)とからなる、ことを特徴とする請求項1に記載の水素製造装置。The said hydrogen membrane separation apparatus (12) comprises a reforming reaction membrane separation unit (12d) which incorporates a reforming catalyst and performs membrane separation of a hydrogen-containing gas while reforming a fuel. The hydrogen production apparatus according to item 1. 前記CO除去装置(14)は、CO選択酸化触媒を内蔵しCOを選択酸化させるCO選択酸化装置(14a)である、ことを特徴とする請求項1に記載の水素製造装置。The hydrogen production device according to claim 1, wherein the CO removal device (14) is a CO selective oxidation device (14a) incorporating a CO selective oxidation catalyst and selectively oxidizing CO. 前記CO除去装置(14)は、メタネーション触媒を内蔵しCOをメタネーションするメタネーション装置(14b)である、ことを特徴とする請求項1に記載の水素製造装置。The hydrogen production device according to claim 1, wherein the CO removal device (14) is a methanation device (14b) that contains a methanation catalyst and methanates CO. 前記ドライヤー(16)は、除湿剤で水蒸気を吸着する除湿装置である、ことを特徴とする請求項1に記載の水素製造装置。The hydrogen production device according to claim 1, wherein the dryer (16) is a dehumidifier that adsorbs water vapor with a dehumidifier.
JP2002236454A 2002-08-14 2002-08-14 Hydrogen generating apparatus Pending JP2004075439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236454A JP2004075439A (en) 2002-08-14 2002-08-14 Hydrogen generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236454A JP2004075439A (en) 2002-08-14 2002-08-14 Hydrogen generating apparatus

Publications (1)

Publication Number Publication Date
JP2004075439A true JP2004075439A (en) 2004-03-11

Family

ID=32020617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236454A Pending JP2004075439A (en) 2002-08-14 2002-08-14 Hydrogen generating apparatus

Country Status (1)

Country Link
JP (1) JP2004075439A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021961A (en) * 2004-07-08 2006-01-26 Aqua Energy Kk Method and system for producing hydrogen
JP2006120626A (en) * 2004-09-24 2006-05-11 Toshiba Corp Hydrogen manufacturing device and fuel cell system
JP2007246333A (en) * 2006-03-15 2007-09-27 Ngk Insulators Ltd Permselective membrane-type reactor and hydrogen-producing method using the same
KR100795883B1 (en) 2006-06-26 2008-01-21 (주)에어레인 Fuel reforming apparatus using hydrogen separation membrane and fuel reforming apparatus using the same
JP2008044812A (en) * 2006-08-15 2008-02-28 Ngk Insulators Ltd Permselective membrane type reactor and method for producing hydrogen gas using the same
JP2008050211A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Permselective membrane reactor and method of manufacturing hydrogen gas
JP2008050210A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Permselective membrane reactor and method of manufacturing hydrogen gas
JP2014015341A (en) * 2012-07-06 2014-01-30 Mitsubishi Heavy Ind Ltd System for producing ammonia and methanol
JP2016188675A (en) * 2015-03-30 2016-11-04 株式会社フォーエス Hydrogen gas compression and storage device and hydrogen gas compression and storage method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021961A (en) * 2004-07-08 2006-01-26 Aqua Energy Kk Method and system for producing hydrogen
JP2006120626A (en) * 2004-09-24 2006-05-11 Toshiba Corp Hydrogen manufacturing device and fuel cell system
JP2007246333A (en) * 2006-03-15 2007-09-27 Ngk Insulators Ltd Permselective membrane-type reactor and hydrogen-producing method using the same
KR100795883B1 (en) 2006-06-26 2008-01-21 (주)에어레인 Fuel reforming apparatus using hydrogen separation membrane and fuel reforming apparatus using the same
JP2008044812A (en) * 2006-08-15 2008-02-28 Ngk Insulators Ltd Permselective membrane type reactor and method for producing hydrogen gas using the same
JP2008050211A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Permselective membrane reactor and method of manufacturing hydrogen gas
JP2008050210A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Permselective membrane reactor and method of manufacturing hydrogen gas
JP2014015341A (en) * 2012-07-06 2014-01-30 Mitsubishi Heavy Ind Ltd System for producing ammonia and methanol
JP2016188675A (en) * 2015-03-30 2016-11-04 株式会社フォーエス Hydrogen gas compression and storage device and hydrogen gas compression and storage method

Similar Documents

Publication Publication Date Title
US7892328B2 (en) PSA apparatus for producing high-purity hydrogen gas
US6770390B2 (en) Carbon monoxide/water removal from fuel cell feed gas
JP2002321905A (en) Fuel cell device equipped with carbon monoxide absorber to remove carbon monoxide
JPH04349103A (en) Consecutive method for individually separating large amount of carbon monoxide and high-nitrogen content gas from gas mixture
JP2006342014A (en) Method for producing high purity hydrogen
JP5280824B2 (en) High purity hydrogen production equipment
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP2005512771A (en) Shared use of pressure swing adsorption device (PSA)
JP3947752B2 (en) High purity hydrogen production method
JP2004075439A (en) Hydrogen generating apparatus
JPH09278403A (en) Production of high purity hydrogen
JP2007015909A (en) Method for production of high-purity hydrogen
JP4357756B2 (en) High purity hydrogen production system using membrane reformer
JP2007091498A (en) Method of producing hydrogen
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP7197374B2 (en) Hydrogen production system
WO2020100463A1 (en) Hydrogen production apparatus
JP2004075440A (en) Hydrogen generating device
JP2010053003A (en) Method for producing high purity hydrogen
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5237870B2 (en) High purity hydrogen production method
JP2004299994A (en) Hydrogen production apparatus
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JP2002166122A (en) Method for refining and storing hydrogen
JPH1121118A (en) Production of high purity carbon monoxide