JP2007246333A - Permselective membrane-type reactor and hydrogen-producing method using the same - Google Patents

Permselective membrane-type reactor and hydrogen-producing method using the same Download PDF

Info

Publication number
JP2007246333A
JP2007246333A JP2006071808A JP2006071808A JP2007246333A JP 2007246333 A JP2007246333 A JP 2007246333A JP 2006071808 A JP2006071808 A JP 2006071808A JP 2006071808 A JP2006071808 A JP 2006071808A JP 2007246333 A JP2007246333 A JP 2007246333A
Authority
JP
Japan
Prior art keywords
carbon dioxide
reaction
hydrogen
catalyst
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006071808A
Other languages
Japanese (ja)
Other versions
JP4819537B2 (en
Inventor
Toshiyuki Nakamura
俊之 中村
Nobuhiko Mori
伸彦 森
Naoyuki Ogawa
尚之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006071808A priority Critical patent/JP4819537B2/en
Publication of JP2007246333A publication Critical patent/JP2007246333A/en
Application granted granted Critical
Publication of JP4819537B2 publication Critical patent/JP4819537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permselective membrane-type reactor, with which high purity hydrogen can be produced even if a defect such as a pinhole is formed in a permselective membrane and in particular, hydrogen wherein the concentration of carbon monoxide as an impurity is low can be obtained; and to provide a hydrogen-producing method using the same. <P>SOLUTION: The permselective membrane-type reactor has: a reaction tube 1 having a gas inlet 9 at one end part thereof and a gas outlet 10 at the other end part thereof; a separation tube 4 which is inserted in the reaction tube 1 and has a permselective membrane 5 for selectively permeating hydrogen at the surface thereof and a discharge port 11 being an outlet of separated gas permeated through the permselective membrane 5; and a reforming reaction catalyst 6 which is arranged between the reaction tube 1 and the separation tube 4 and promotes a reforming reaction of a hydrocarbon. Further, in the reactor, a carbon dioxide removing means, a methanation catalyst for promoting methanation of carbon monoxide and/or a shift reaction catalyst for promoting a shift reaction are arranged at the inside of the separation tube 4 or at a post-stage part of the discharge port 11 of the separation tube 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、メタン、ブタン、灯油等の炭化水素やメタノール、エタノール、ジメチルエーテル等の含酸素炭化水素を主たる原料ガスとし、改質反応等を利用して、水素を生成させ、分離して取り出すために使用される選択透過膜型反応器と、それを用いた水素の製造方法に関する。   The present invention uses hydrocarbons such as methane, butane, and kerosene and oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether as the main raw material gas, and uses a reforming reaction or the like to generate hydrogen and separate and take it out. The present invention relates to a permselective membrane reactor used in the present invention and a method for producing hydrogen using the reactor.

水素は石油化学の基本素材ガスとして大量に使用され、特に近年、燃料電池等の分野において、クリーンなエネルギー源として水素が注目されていることとも相俟って、利用の拡大が期待されている。このような目的に使用される水素は、メタン、ブタン、灯油等の炭化水素やメタノール、エタノール、ジメチルエーテル等の含酸素炭化水素を主たる原料ガスとして、水蒸気や二酸化炭素の改質反応、あるいは部分酸化反応、分解反応等を利用して生成され、それをパラジウム合金膜等の水素を選択的に透過させることのできる選択透過膜にて分離して取り出すことにより得られる。   Hydrogen is used in large quantities as a basic raw material gas for petrochemicals, and in recent years, especially in the field of fuel cells and the like, hydrogen is attracting attention as a clean energy source. . Hydrogen used for this purpose is mainly composed of hydrocarbons such as methane, butane, and kerosene, and oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether. It is produced using a reaction, decomposition reaction, etc., and is obtained by separating it with a permselective membrane that can selectively permeate hydrogen, such as a palladium alloy membrane.

近年、この水素の製造には、前記のような反応と分離とを同時に行うことのできる選択透過膜型反応器(メンブレンリアクタ)が使用される(例えば、特許文献1参照)。従来一般的に使用されている選択透過膜型反応器は、一端部がガスの入口で、他端部がガスの出口である反応管と、当該反応管内に挿入された、表面に水素を選択的に透過させる選択透過膜を有する基材部分が多孔質の分離管と、反応管と分離管との間に配置された、炭化水素の改質反応を促進する改質反応触媒とを有する。   In recent years, for this hydrogen production, a selectively permeable membrane reactor (membrane reactor) capable of performing the above-described reaction and separation at the same time is used (for example, see Patent Document 1). Conventionally used permselective membrane reactors generally have a reaction tube with one end serving as a gas inlet and the other end serving as a gas outlet, and hydrogen is selected on the surface inserted into the reaction tube. The base material portion having a selectively permeable membrane for permeation has a porous separation tube, and a reforming reaction catalyst for promoting a reforming reaction of hydrocarbons disposed between the reaction tube and the separation tube.

通常、改質反応触媒はペレット形状で、反応管と分離管との間の空隙にパックドベッド(Packed Bed)状等の状態で充填されており、反応管の入口から供給された水蒸気を含む原料ガスが、この改質反応触媒に接触し、水蒸気改質反応等により水素ガス等に分解される。例えば、メタンの水蒸気改質では、下記式(1)に示す改質反応、及び下記式(2)に示すシフト反応が促進されることによって、炭化水素(メタン)が水素、一酸化炭素、二酸化炭素等の反応生成物に分解され、これらの反応生成物を含む混合ガス(生成ガス)が得られる。
CH4+H2O → CO+3H2 …(1)
CO+H2O → CO2+H2 …(2)
The reforming reaction catalyst is usually in the form of a pellet, and the gap between the reaction tube and the separation tube is filled in a packed bed or the like, and the raw material contains water vapor supplied from the inlet of the reaction tube. The gas comes into contact with the reforming reaction catalyst and is decomposed into hydrogen gas or the like by a steam reforming reaction or the like. For example, in the steam reforming of methane, the reforming reaction shown in the following formula (1) and the shift reaction shown in the following formula (2) are promoted, so that the hydrocarbon (methane) is converted into hydrogen, carbon monoxide, It is decomposed into a reaction product such as carbon, and a mixed gas (product gas) containing these reaction products is obtained.
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)

こうして得られた生成ガスのうち、水素は選択透過膜を透過して分離管内に選択的に引き抜かれ、他のガス成分と分離されて取り出される。また、選択透過膜を透過しない一酸化炭素や二酸化炭素等の他のガス成分は、反応管の出口より反応器の外部へ排出される。   Of the product gas thus obtained, hydrogen passes through the permselective membrane and is selectively extracted into the separation tube, and separated from other gas components and taken out. In addition, other gas components such as carbon monoxide and carbon dioxide that do not pass through the permselective membrane are discharged to the outside of the reactor from the outlet of the reaction tube.

このような選択透過膜型反応器は、前記のように反応と分離とを同時に行えることによる装置上のコンパクト化のメリットに加え、水素ガスを引き抜くことにより前記反応の平衡を生成側にシフトさせて、反応温度を低下させることができ、これによって作動温度の低下、金属部材の劣化抑制、省エネルギー化といった効果が期待できる。   Such a selectively permeable membrane reactor, in addition to the merit of downsizing the apparatus by simultaneously performing the reaction and separation as described above, shifts the equilibrium of the reaction to the production side by extracting hydrogen gas. Thus, the reaction temperature can be lowered, and as a result, effects such as a reduction in operating temperature, suppression of deterioration of metal members, and energy saving can be expected.

特開平6−40703号公報JP-A-6-40703

ところで、このような選択透過膜型反応器においては、選択透過膜が膜厚数μmの薄膜であるため、ピンホール等の欠陥が発生しやすく、本来であれば反応管の出口より外部へ排出される一酸化炭素や二酸化炭素といった選択膜を透過しないガス成分の一部が、当該欠陥部分から選択透過膜を通過し、選択透過膜で分離した水素に不純物として混入してしまうため、水素の濃度が低下する。また、特に欠陥部分から混入した一酸化炭素は、燃料電池の電極を劣化させるという問題がある。   By the way, in such a permselective membrane reactor, since the permselective membrane is a thin film having a thickness of several μm, defects such as pinholes are likely to occur, and if it is originally discharged from the outlet of the reaction tube Some of the gas components that do not permeate the selective membrane, such as carbon monoxide and carbon dioxide, pass through the permselective membrane from the defective portion and are mixed as impurities in the hydrogen separated by the permselective membrane. The concentration decreases. In particular, carbon monoxide mixed from a defective portion has a problem of deteriorating the electrode of the fuel cell.

選択透過膜の欠陥部分を通じて水素に混入した一酸化炭素を除去する方法として、一般に用いられる選択酸化法では、空気を用いるためポンプ等の補機が必要になるとともに、水素にN2が混入してしまうため水素の濃度が低下するといった問題がある。また、下記式(3)に示す一酸化炭素メタネーションで一酸化炭素を除去する方法もあるが、一酸化炭素メタネーションには副反応として、下記式(4)に示す二酸化炭素メタネーションが伴うため、当該二酸化炭素メタネーションにより多くの水素が費やされ、水素濃度が低下するという問題がある。
CO+3H2 → CH4+H2O …(3)
CO2+4H2 → CH4+2H2O …(4)
As a method for removing carbon monoxide mixed in hydrogen through the defective portion of the selectively permeable membrane, the commonly used selective oxidation method requires an auxiliary machine such as a pump because air is used, and N 2 is mixed in hydrogen. Therefore, there is a problem that the concentration of hydrogen decreases. There is also a method of removing carbon monoxide with carbon monoxide methanation represented by the following formula (3), but carbon monoxide methanation is accompanied by carbon dioxide methanation represented by the following formula (4) as a side reaction. Therefore, there is a problem that a large amount of hydrogen is consumed by the carbon dioxide methanation and the hydrogen concentration is lowered.
CO + 3H 2 → CH 4 + H 2 O (3)
CO 2 + 4H 2 → CH 4 + 2H 2 O (4)

本発明は、上述のような従来技術の問題点に鑑みてなされたものであって、その目的とするところは、選択透過膜にピンホール等の欠陥があっても高純度の水素を製造でき、特に不純物としての一酸化炭素の濃度が低い水素が得られるような選択透過膜型反応器と、それを用いた水素製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to produce high-purity hydrogen even if the permselective membrane has defects such as pinholes. It is another object of the present invention to provide a selectively permeable membrane reactor capable of obtaining hydrogen having a low concentration of carbon monoxide as an impurity, and a hydrogen production method using the same.

上記目的を達成するため、本発明によれば、以下の選択透過膜型反応器及び水素製造方法が提供される。   In order to achieve the above object, according to the present invention, the following selectively permeable membrane reactor and hydrogen production method are provided.

[1] 一端部がガスの入口で、他端部がガスの出口である反応管と、当該反応管内に挿入された、表面に水素を選択的に透過させる選択透過膜を有し、前記選択透過膜を透過した分離ガスの出口である排出口を有する分離管と、前記反応管と前記分離管との間に配置された、炭化水素の改質反応を促進する改質反応触媒とを有する選択透過膜型反応器であって、前記分離管の内部又は前記分離管の排出口の後段部に、二酸化炭素除去手段と、一酸化炭素メタネーションを促進するメタネーション触媒及び/又はシフト反応を促進するシフト反応触媒とが配置された選択透過膜型反応器。 [1] A reaction tube having one end portion serving as a gas inlet and the other end serving as a gas outlet, and a permselective membrane inserted into the reaction tube and selectively permeating hydrogen to the surface. A separation pipe having a discharge port that is an outlet for separation gas that has permeated through the permeable membrane; and a reforming reaction catalyst that is disposed between the reaction pipe and the separation pipe and that promotes a hydrocarbon reforming reaction. A permselective membrane reactor, wherein a carbon dioxide removing means, a methanation catalyst for promoting carbon monoxide methanation and / or a shift reaction are provided in the inside of the separation tube or at the rear stage of the discharge port of the separation tube. A selectively permeable membrane reactor in which a shift reaction catalyst to be promoted is arranged.

[2] 前記二酸化炭素除去手段が、二酸化炭素吸収剤である前記[1]に記載の選択透過膜型反応器。 [2] The permselective membrane reactor according to [1], wherein the carbon dioxide removing means is a carbon dioxide absorbent.

[3] 前記二酸化炭素除去手段が、二酸化炭素分離膜である前記[1]に記載の選択透過膜型反応器。 [3] The permselective membrane reactor according to [1], wherein the carbon dioxide removing unit is a carbon dioxide separation membrane.

[4] 前記二酸化炭素吸着剤、前記メタネーション触媒及び前記シフト反応触媒うちの少なくとも何れか1つが、ハニカム構造体に担持された状態で、前記分離管の内部又は前記分離管の排出口の後段部に配置された前記[2]に記載の選択透過膜型反応器。 [4] In the state where at least one of the carbon dioxide adsorbent, the methanation catalyst, and the shift reaction catalyst is supported on the honeycomb structure, the inside of the separation tube or the subsequent stage of the discharge port of the separation tube. The permselective membrane reactor according to [2], which is disposed in a section.

[5] 前記[1]〜[4]の何れかに記載の選択透過膜型反応器を使用した水素製造方法。 [5] A method for producing hydrogen using the selectively permeable membrane reactor according to any one of [1] to [4].

本発明の選択透過膜型反応器及び水素製造方法によれば、選択透過膜にピンホール等の欠陥があっても高純度の水素を製造でき、特に不純物としての一酸化炭素の濃度が低い水素が得られる。   According to the permselective membrane reactor and the hydrogen production method of the present invention, high purity hydrogen can be produced even if the permselective membrane has defects such as pinholes, and particularly hydrogen with a low concentration of carbon monoxide as an impurity. Is obtained.

以下、本発明の代表的な実施形態を図面を参照しながら具体的に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Hereinafter, typical embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and those skilled in the art can depart from the scope of the present invention. It should be understood that design changes, improvements, and the like can be made as appropriate based on general knowledge of the above.

図1は、本発明に係る選択透過膜型反応器の基本構造を示す概略断面図である。この選択透過膜型反応器は、一端部がガスの入口9で、他端部がガスの出口10である反応管1と、反応管1内に挿入された、表面に水素を選択的に透過させる選択透過膜5を有し、選択透過膜5を透過した分離ガスの出口である排出口11を有する有底筒状で基材部分が多孔質の分離管4と、反応管1と分離管4との間に配置された、炭化水素の改質反応を促進する改質反応触媒6とを有する。   FIG. 1 is a schematic cross-sectional view showing the basic structure of a selectively permeable membrane reactor according to the present invention. This selectively permeable membrane type reactor has a gas inlet 9 at one end and a gas outlet 10 at the other end, and a gas inserted into the reaction tube 1 and selectively permeate hydrogen into the surface. A separation tube 4 having a bottomed cylindrical shape with a porous base material, and a reaction tube 1 and a separation tube. 4 and a reforming reaction catalyst 6 that promotes a reforming reaction of hydrocarbons.

改質反応触媒6には、例えば、ニッケル−アルミナ触媒やルテニウム−アルミナ触媒が使用でき、それをペレット形状やビーズ形状に成形したり、ペレット状の基体に被覆したりして、図のように反応管1と分離管4との間の空隙に充填するなどして配置する。反応管1の材質としては、SUSやインコロイ等の高耐熱性で熱伝導性の良い金属を主成分とするものが好ましい。表面に選択透過膜5を形成する多孔質の分離管4の基材には、チタニアやアルミナ等のセラミック多孔体、あるいはステンレススティール等の金属多孔体を用いることが好ましい。選択透過膜5は、水素に対する選択的透過能を有するものであり、例えば、パラジウムやパラジウム−銀合金をはじめとするパラジウム合金からなるものが好適に使用できる。なお、選択透過膜5は分離管4の外側でなく、場合によっては分離管4の内側にあってもよいし、分離管4の両側に被覆されていてもよい。   As the reforming reaction catalyst 6, for example, a nickel-alumina catalyst or a ruthenium-alumina catalyst can be used, which is formed into a pellet shape or a bead shape, or coated on a pellet-shaped substrate, as shown in the figure. It arrange | positions by filling the space | gap between the reaction tube 1 and the separation tube 4, etc. The material of the reaction tube 1 is preferably a material mainly composed of a metal having high heat resistance and good thermal conductivity such as SUS or incoloy. It is preferable to use a porous ceramic body such as titania or alumina or a porous metal body such as stainless steel as the base material of the porous separation tube 4 that forms the permselective membrane 5 on the surface. The selectively permeable membrane 5 has a selective permeability to hydrogen, and for example, a material made of palladium alloy such as palladium or palladium-silver alloy can be suitably used. The permselective membrane 5 may not be outside the separation tube 4 but may be inside the separation tube 4 depending on the case, or may be covered on both sides of the separation tube 4.

本発明に係る選択透過膜型反応器は、このような基本構造に加え、その特徴的な構造として、分離管4の内部又は分離管4の排出口11の後段部に、二酸化炭素除去手段と、一酸化炭素メタネーションを促進するメタネーション触媒及び/又はシフト反応を促進するシフト反応触媒とが配置されている。   In addition to such a basic structure, the selectively permeable membrane reactor according to the present invention has, as its characteristic structure, carbon dioxide removal means in the interior of the separation tube 4 or the rear stage of the discharge port 11 of the separation tube 4. The methanation catalyst for promoting carbon monoxide methanation and / or the shift reaction catalyst for promoting the shift reaction are arranged.

二酸化炭素除去手段としては、具体的には、二酸化炭素を吸着して除去する二酸化炭素吸着剤や、二酸化炭素を膜分離して除去する二酸化炭素分離膜などが好適に使用できる。二酸化炭素吸着剤としては、例えば、酸化カルシウムやリチウムシリケートのような無機化合物や、アルカリ溶液、イオン性溶液、あるいはアルカリ溶液やイオン性溶液を担持したアルミナやシリカ等の無機質多孔体などを好適に用いることができる。二酸化炭素分離膜としては、例えば、高分子膜やゼオライト膜などを好適に用いることができる。メタネーション触媒としては、例えば、ニッケル−アルミナ触媒やルテニウム−アルミナ触媒などを好適に用いることができる。また、シフト反応触媒としては、例えば、鉄−クロム触媒、銅−亜鉛触媒、白金−アルミナ触媒、白金−チタニア触媒などを好適に用いることができる。   As the carbon dioxide removing means, specifically, a carbon dioxide adsorbent that adsorbs and removes carbon dioxide, a carbon dioxide separation membrane that removes carbon dioxide by membrane separation, and the like can be suitably used. As the carbon dioxide adsorbent, for example, an inorganic compound such as calcium oxide or lithium silicate, an alkali solution, an ionic solution, or an inorganic porous material such as alumina or silica carrying an alkali solution or an ionic solution is preferably used. Can be used. As the carbon dioxide separation membrane, for example, a polymer membrane or a zeolite membrane can be suitably used. As the methanation catalyst, for example, a nickel-alumina catalyst or a ruthenium-alumina catalyst can be suitably used. Moreover, as a shift reaction catalyst, an iron-chromium catalyst, a copper-zinc catalyst, a platinum-alumina catalyst, a platinum-titania catalyst, etc. can be used suitably, for example.

二酸化炭素吸着剤、メタネーション触媒及びシフト反応触媒は、それぞれペレット形状やビーズ形状にして、分離管4内や分離管4の排出口11に結合した管体内などに充填して用いてもよいが、ハニカム構造体に代表されるセラミック構造体に担持して分離管4内や分離管4の排出口11に結合した管体内などに配置してもよい。選択透過膜型反応器では、水素の透過量を増やすために、透過側(分離管4の内部側)が減圧(真空引き)されることが多いが、ハニカム構造体のようなセラミック構造体は、ペレット形状やビーズ形状のものを充填した場合に比して圧力損失が小さいため、透過側の真空度を高く保つことができるという利点がある。   The carbon dioxide adsorbent, the methanation catalyst, and the shift reaction catalyst may be used in the form of pellets or beads, respectively, filled in the separation tube 4 or a tube coupled to the discharge port 11 of the separation tube 4. Alternatively, it may be disposed in a separation tube 4 or a tube coupled to the discharge port 11 of the separation tube 4 by being supported on a ceramic structure typified by a honeycomb structure. In a selectively permeable membrane reactor, the permeation side (inside of the separation tube 4) is often depressurized (evacuated) in order to increase the amount of hydrogen permeation. Since the pressure loss is small as compared with the case of filling a pellet or bead shape, there is an advantage that the degree of vacuum on the permeate side can be kept high.

本発明に係る選択透過膜型反応器において、反応管1の入口9から供給された水蒸気を含む原料ガスが、改質反応触媒6に接触すると、原料ガス中の炭化水素が改質反応等により水素ガス等に分解される。例えば、メタンの水蒸気改質では、先にも述べたとおり、下記式(1)に示す改質反応、及び下記式(2)に示すシフト反応が促進されることによって、炭化水素(メタン)が水素、一酸化炭素、二酸化炭素等の反応生成物に分解され、これらの反応生成物を含む混合ガス(生成ガス)が得られる。
CH4+H2O → CO+3H2 …(1)
CO+H2O → CO2+H2 …(2)
In the permselective membrane reactor according to the present invention, when the raw material gas containing water vapor supplied from the inlet 9 of the reaction tube 1 comes into contact with the reforming reaction catalyst 6, the hydrocarbon in the raw material gas is converted by the reforming reaction or the like. Decomposed into hydrogen gas. For example, in the steam reforming of methane, as described above, the reforming reaction represented by the following formula (1) and the shift reaction represented by the following formula (2) are promoted, so that hydrocarbon (methane) is converted. It is decomposed into reaction products such as hydrogen, carbon monoxide, carbon dioxide, and a mixed gas (product gas) containing these reaction products is obtained.
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)

こうして得られた生成ガスのうち水素は、選択透過膜5を透過して分離管4内に選択的に引き抜かれ、他のガス成分と分離されて取り出される。また、選択透過膜5を透過しない他のガス成分は、反応管1の出口10より反応器の外部へ排出されるが、選択透過膜5にピンホール等の欠陥が生じていると、本来であれば出口10より反応器の外部へ排出される一酸化炭素や二酸化炭素といった選択膜を透過しないガス成分の一部が、当該欠陥部分から選択透過膜5を通過し、選択透過膜5で分離した水素に不純物として混入してしまう。   Of the product gas thus obtained, hydrogen permeates through the permselective membrane 5 and is selectively extracted into the separation pipe 4 and separated from other gas components and taken out. Further, other gas components that do not permeate the permselective membrane 5 are discharged to the outside of the reactor through the outlet 10 of the reaction tube 1. If the permselective membrane 5 has defects such as pinholes, If there is, a part of the gas component which does not permeate the selective membrane such as carbon monoxide and carbon dioxide discharged from the outlet 10 from the outlet passes through the permselective membrane 5 from the defective portion and is separated by the permselective membrane 5. It is mixed as impurities in the hydrogen.

本発明では、こうして水素に混入した不純物ガス成分のうち、まず二酸化炭素を、分離管4の内部又は分離管4の排出口11の後段部に配置した二酸化炭素除去手段により除去し、水素中の二酸化炭素濃度を低下させる。そして、メタネーション触媒を配置している場合においては、そのメタネーション触媒によって、下記式(3)に示す一酸化炭素メタネーションを促進させ、一酸化炭素を除去する。ここで、一酸化炭素メタネーションの副反応として、下記式(4)に示すように水素の消費を伴う二酸化炭素メタネーションが生じることとなるが、前記のとおり二酸化炭素除去手段により水素中の二酸化炭素濃度を低下させているので、二酸化炭素メタネーションの反応が低減し、二酸化炭素メタネーションによる水素の消失が抑制され、結果的に水素濃度の低下を抑えつつ、燃料電池における電極劣化等の要因となる一酸化炭素が除去される。
CO+3H2 → CH4+H2O …(3)
CO2+4H2 → CH4+2H2O …(4)
In the present invention, among the impurity gas components mixed in hydrogen in this way, first, carbon dioxide is removed by the carbon dioxide removing means disposed in the separation pipe 4 or in the rear stage portion of the outlet 11 of the separation pipe 4, Reduce carbon dioxide concentration. And when the methanation catalyst is arrange | positioned, the carbon monoxide methanation shown to following formula (3) is promoted with the methanation catalyst, and carbon monoxide is removed. Here, as a side reaction of carbon monoxide methanation, carbon dioxide methanation accompanied by consumption of hydrogen occurs as shown in the following formula (4). Since the carbon concentration is lowered, the carbon dioxide methanation reaction is reduced, the disappearance of hydrogen due to carbon dioxide methanation is suppressed, and as a result, factors such as electrode deterioration in the fuel cell are suppressed while suppressing the decrease in hydrogen concentration. The resulting carbon monoxide is removed.
CO + 3H 2 → CH 4 + H 2 O (3)
CO 2 + 4H 2 → CH 4 + 2H 2 O (4)

また、シフト反応触媒を配置している場合においては、そのシフト反応触媒によって、下記式(2)に示すシフト反応が生じるが、前記のとおり二酸化炭素除去手段により水素中の二酸化炭素濃度を低下させているので、シフト反応が促進される。すなわち、このシフト反応は、平衡反応であるため、生成物である二酸化炭素を減らすことで、平衡を超えて反応を促進させることができる。こうして促進させたシフト反応により一酸化炭素が二酸化炭素に高効率で転化する。更に、シフト反応触媒と二酸化炭素除去手段を混在させた場合、シフト反応により生成した二酸化炭素も、二酸化炭素除去手段により除去されるので、シフト反応は更に促進され、一酸化炭素濃度がより一層低減された高純度の水素が得られる。
CO+H2O → CO2+H2 …(2)
In the case where a shift reaction catalyst is arranged, the shift reaction catalyst causes a shift reaction represented by the following formula (2). As described above, the carbon dioxide removal means reduces the carbon dioxide concentration in hydrogen. As a result, the shift reaction is promoted. That is, since this shift reaction is an equilibrium reaction, the reaction can be promoted beyond the equilibrium by reducing the product carbon dioxide. Carbon monoxide is converted to carbon dioxide with high efficiency by the shift reaction thus promoted. Furthermore, when the shift reaction catalyst and the carbon dioxide removing means are mixed, the carbon dioxide generated by the shift reaction is also removed by the carbon dioxide removing means, so that the shift reaction is further promoted and the carbon monoxide concentration is further reduced. High purity hydrogen is obtained.
CO + H 2 O → CO 2 + H 2 (2)

分離管4の内部又は分離管4の排出口11の後段部に配置される二酸化炭素除去手段とメタネーション触媒及び/又はシフト反応触媒との位置関係としては、少なくとも二酸化炭素除去手段の一部については、選択透過膜5を通過してきたガスがメタネーション触媒及び/又はシフト反応触媒よりも先に接触するような位置に配置することが望ましい。例えば、分離管4の内部に配置する場合は、選択透過膜5に近い分離管4の内表面に二酸化炭素除去手段の少なくとも一部を配置し、その内側にメタネーション触媒やシフト反応触媒を、必要に応じ二酸化炭素除去手段と混在させて配置する。このような位置関係とすることにより、水素中の二酸化炭素濃度が低下した状態で前記一酸化炭素メタネーションやシフト反応が行われ、一酸化炭素濃度が低減された高純度の水素が得られる。   The positional relationship between the carbon dioxide removing means disposed in the separation pipe 4 or the rear stage of the outlet 11 of the separation pipe 4 and the methanation catalyst and / or shift reaction catalyst is at least part of the carbon dioxide removing means. Is preferably arranged at a position where the gas that has passed through the permselective membrane 5 contacts before the methanation catalyst and / or the shift reaction catalyst. For example, when arranged inside the separation pipe 4, at least a part of the carbon dioxide removing means is arranged on the inner surface of the separation pipe 4 close to the selectively permeable membrane 5, and a methanation catalyst or shift reaction catalyst is placed inside thereof. If necessary, it is mixed with carbon dioxide removal means. By adopting such a positional relationship, the carbon monoxide methanation or shift reaction is performed in a state where the carbon dioxide concentration in hydrogen is lowered, and high-purity hydrogen with a reduced carbon monoxide concentration is obtained.

本発明に係る水素製造方法は、以上説明したような選択透過膜型反応器を使用して水素の製造を行うものであり、前記のとおり、選択透過膜にピンホール等の欠陥が生じていたとしても、不純物としての一酸化炭素の濃度が低い高純度の水素を製造できる。   The hydrogen production method according to the present invention is to produce hydrogen using the selectively permeable membrane reactor as described above, and as described above, defects such as pinholes were generated in the selectively permeable membrane. However, high-purity hydrogen with a low concentration of carbon monoxide as an impurity can be produced.

なお、本発明に係る選択透過膜型反応器における、二酸化炭素除去手段、メタネーション触媒及びシフト反応触媒には、それぞれ除去・反応速度の面と平衡制約の面とから適した温度が存在するため、この選択透過膜型反応器を用いて水素の製造を行うに際しては、それらの温度制御が重要である。一例として、二酸化炭素除去手段にリチウムシリケート系の二酸化炭素吸収剤を用いた場合にはそれを300〜400℃程度に温度制御することが好ましく、メタネーション触媒にルテニウム−アルミナ触媒を用いた場合にはそれを250〜450℃程度に温度制御することが好ましく、シフト反応触媒に白金−チタニア触媒を用いた場合にはそれを150〜500℃程度に温度制御することが好ましい。また、二酸化炭素除去手段に二酸化炭素吸着剤を用いる場合に関しては、その吸着能を維持するため、必要な吸着容量を考慮した上で、適宜、吸着剤の交換又は加熱等の操作による二酸化炭素の脱離を行う必要がある。   In the selectively permeable membrane reactor according to the present invention, the carbon dioxide removal means, methanation catalyst, and shift reaction catalyst each have a suitable temperature in terms of removal / reaction rate and equilibrium constraints. When hydrogen is produced using this selectively permeable membrane reactor, the temperature control thereof is important. As an example, when a lithium silicate type carbon dioxide absorbent is used as the carbon dioxide removal means, it is preferable to control the temperature to about 300 to 400 ° C., and when a ruthenium-alumina catalyst is used as the methanation catalyst. It is preferable to control the temperature to about 250 to 450 ° C., and when a platinum-titania catalyst is used as the shift reaction catalyst, it is preferable to control the temperature to about 150 to 500 ° C. In addition, in the case of using a carbon dioxide adsorbent as the carbon dioxide removal means, in order to maintain the adsorption capacity, in consideration of the necessary adsorption capacity, the carbon dioxide is appropriately removed by an operation such as replacement of the adsorbent or heating. Desorption is required.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1〜3並びに比較例1及び2)
図1に示すような基本構造を有する選択透過膜型反応器を作製した。分離管4は、一端部が閉じられた有底筒状のアルミナ多孔体(外径10mm、長さ75mm)からなり、その表面に選択透過膜5として、水素を選択的に透過するパラジウム−銀合金膜をメッキ法により成膜した。膜の組成は、水素透過性能を考慮してパラジウムが75質量%、銀が25質量%となるようにし、膜厚は2.5μmとした。反応管1は、両端部が開口したSUS製の円筒体(内径25mm、長さ800mm)を使用した。改質反応触媒6には、大きさが1mm程度のペレット状に成形された市販のルテニウム−アルミナ触媒を使用し、反応管1と分離管4との間に充填した。
(Examples 1-3 and Comparative Examples 1 and 2)
A permselective membrane reactor having a basic structure as shown in FIG. 1 was produced. The separation tube 4 is made of a bottomed cylindrical porous alumina body (outer diameter 10 mm, length 75 mm) with one end closed, and a palladium-silver that selectively permeates hydrogen as a permselective membrane 5 on the surface thereof. An alloy film was formed by a plating method. In consideration of hydrogen permeation performance, the composition of the membrane was 75% by mass of palladium and 25% by mass of silver, and the film thickness was 2.5 μm. The reaction tube 1 used was a SUS cylinder (inner diameter 25 mm, length 800 mm) with both ends opened. As the reforming reaction catalyst 6, a commercially available ruthenium-alumina catalyst formed in a pellet shape having a size of about 1 mm was used and filled between the reaction tube 1 and the separation tube 4.

このような基本構造を有する選択透過膜型反応器の分離管4の排出口11に管状体を直結し、この管状体の内部に二酸化炭素除去手段とメタネーション触媒とを配置して、それらが後述する評価において400℃に温度制御されるようにしたものを実施例1とした。また、二酸化炭素の除去とシフト反応とが逐次進行するように、前記管状体の内部の上流側に二酸化炭素除去手段、下流側にシフト反応触媒を配置して、それらが後述する評価において200℃に温度制御されるようにしたものを実施例2とした。また、二酸化炭素の除去とシフト反応とが同一場で進行するように、前記管状体の内部に二酸化炭素除去手段とシフト反応触媒とを混在して配置して、それらが後述する評価において400℃に温度制御されるようにしたものを実施例3とした。更に、前記管状体の内部に何も配置されていないものを比較例1とした。更にまた、前記管状体の内部にメタネーション触媒のみを配置し、それが後述する評価において400℃に温度制御されるようにしたものを比較例2とした。なお、これら実施例及び比較例において、二酸化炭素除去手段、メタネーション触媒、シフト反応触媒には、それぞれ順に、リチウムシリケート、ルテニウム−アルミナ触媒、白金−チタニア触媒を用いた。   A tubular body is directly connected to the discharge port 11 of the separation pipe 4 of the selectively permeable membrane reactor having such a basic structure, and a carbon dioxide removing means and a methanation catalyst are arranged inside the tubular body, In the evaluation described later, the temperature was controlled to 400 ° C. as Example 1. Further, carbon dioxide removal means is disposed upstream of the inside of the tubular body and shift reaction catalyst is disposed downstream of the tubular body so that the removal of carbon dioxide and the shift reaction proceed sequentially. The temperature was controlled to be Example 2. Further, carbon dioxide removal means and a shift reaction catalyst are mixedly arranged inside the tubular body so that the removal of carbon dioxide and the shift reaction proceed in the same field, and in the evaluation described later, they are 400 ° C. The temperature was controlled to be Example 3. Furthermore, a sample in which nothing was arranged inside the tubular body was used as Comparative Example 1. Furthermore, Comparative Example 2 was obtained by disposing only the methanation catalyst inside the tubular body and controlling the temperature thereof to 400 ° C. in the evaluation described later. In these Examples and Comparative Examples, a lithium silicate, a ruthenium-alumina catalyst, and a platinum-titania catalyst were used in this order for the carbon dioxide removal means, methanation catalyst, and shift reaction catalyst, respectively.

(評価)
図2に示すような装置を使用し、前記実施例1〜3並びに比較例1及び2の選択透過膜型反応器について、それぞれ試験を行い評価した。この装置は、原料ガス源として、メタン、ブタン等の炭化水素や、エタノール等の含酸素炭化水素、水、二酸化炭素、酸素を使用できるようライン接続され、これらを必要に応じて選択し、混合して選択透過膜型反応器に供給できるようになっている。なお、水やエタノール等の液体系の原料は気化器でガス化して供給される。
(Evaluation)
Using the apparatus shown in FIG. 2, the selectively permeable membrane reactors of Examples 1 to 3 and Comparative Examples 1 and 2 were tested and evaluated. This equipment is connected in line so that hydrocarbons such as methane and butane, oxygen-containing hydrocarbons such as ethanol, water, carbon dioxide, and oxygen can be used as the source gas source, and these are selected and mixed as necessary. Thus, it can be supplied to a selectively permeable membrane reactor. Note that liquid raw materials such as water and ethanol are supplied after being gasified by a vaporizer.

膜透過ガスラインと膜非透過ガスラインは、その上流側がそれぞれ選択透過膜型反応器の膜透過側(分離管の排出口に直結した管状体の出口)と膜非透過側(反応管の出口)に接続されている。膜透過ガスラインの下流側には、ガス量を測定するための流量計と、ガス成分を定量するためのガスクロマトグラフが接続されている。膜非透過ガスラインの下流側にも、同様に流量計とガスクロマトグラフが接続されているが、更に流量計の上流側に、常温にて水等の液体成分を捕集するために約5℃設定された液体トラップが設けられている。また、選択透過膜型反応器の周囲には、外部から加熱できるように加熱用ヒータが設置されている。   The membrane permeation gas line and the membrane non-permeation gas line are upstream on the membrane permeation side (exit of the tubular body directly connected to the outlet of the separation tube) and on the membrane non-permeation side (reaction tube outlet), respectively. )It is connected to the. A flow meter for measuring the amount of gas and a gas chromatograph for quantifying gas components are connected to the downstream side of the membrane permeation gas line. Similarly, a flow meter and a gas chromatograph are connected to the downstream side of the non-permeating gas line, but the upstream side of the flow meter is about 5 ° C. in order to collect liquid components such as water at room temperature. A set liquid trap is provided. A heater for heating is installed around the permselective membrane reactor so that it can be heated from the outside.

このような装置にて、前記実施例1〜3並びに比較例1及び2の各選択透過膜型反応器に、原料ガスとしてメタンと水蒸気とをモル比でH2O/CH4=3となるよう供給して、メタンと水蒸気による改質反応とそれに付随して生ずる反応を行わせ、反応生成物から水素を選択的に分離した。前記反応の反応温度は550℃に調整し、反応側圧力は3atm、透過側圧力は0.1atmとなるようにした。また、原料ガスの流量は、メタンが250cc/min、水蒸気が750cc/minとなるようにした。反応管の排出口に直結され、分離された水素が通過する管状体の内部に配置された二酸化炭素除去手段、メタネーション触媒、シフト反応触媒は、それぞれ表1に示す温度になるように調整した。このようにして水素の製造を行い、膜透過側及び膜非透過側のそれぞれにおけるガスの流量と組成を調べることにより、メタンの転化率と透過ガスの水素純度を算出し、その結果から得られた透過ガスの組成を表1に示した。 In such an apparatus, in each of the selectively permeable membrane reactors of Examples 1 to 3 and Comparative Examples 1 and 2, methane and water vapor as a raw material gas have a molar ratio of H 2 O / CH 4 = 3. Thus, the reforming reaction by methane and steam and the accompanying reaction were performed, and hydrogen was selectively separated from the reaction product. The reaction temperature of the reaction was adjusted to 550 ° C., the reaction side pressure was 3 atm, and the permeation side pressure was 0.1 atm. Further, the flow rates of the raw material gas were 250 cc / min for methane and 750 cc / min for water vapor. The carbon dioxide removal means, methanation catalyst, and shift reaction catalyst directly connected to the outlet of the reaction tube and disposed inside the tubular body through which the separated hydrogen passes were adjusted so as to have the temperatures shown in Table 1, respectively. . By producing hydrogen in this way and examining the gas flow rate and composition on each of the membrane permeation side and the membrane non-permeation side, the conversion rate of methane and the hydrogen purity of the permeate gas are calculated and obtained from the results. The composition of the permeated gas is shown in Table 1.

Figure 2007246333
Figure 2007246333

管状体の内部に何も配置していない比較例1の結果は、選択透過膜を透過した透過ガスの組成をそのまま表したものである。比較例2は、メタネーション触媒による一酸化炭素メタネーションによって一酸化炭素の低減を図ったものであり、一酸化炭素は10ppm未満の低い濃度になっているものの、副反応である二酸化炭素メタネーションによって多くの水素が消費され、水素濃度が約94%にまで低下している。一方、二酸化炭素吸着剤とメタネーション触媒とを併用した実施例1においては、二酸化炭素除去手段により予め二酸化炭素が吸着除去されることに起因して、副反応である二酸化炭素メタネーションによる水素の消失が抑えられ、水素濃度が約98%と比較例2に比して高くなっている。また、二酸化炭素除去手段とシフト反応触媒とを併用した実施例2及び実施例3は、二酸化炭素除去手段により予め二酸化炭素が吸着除去されることによりシフト反応が促進されて、一酸化炭素の二酸化炭素への転化が高効率で行われ、比較例1に比して、一酸化炭素濃度が低下するとともに水素濃度が高くなっている。更に、二酸化炭素の吸着除去とシフト反応とが同時に進行するようにした実施例3は、二酸化炭素の吸着除去とシフト反応とが逐次進行するようにした実施例2に比して、一酸化炭素濃度の低下が顕著である。これは、二酸化炭素除去手段とシフト反応触媒とを混在して配置し、二酸化炭素の除去とシフト反応とが同一場で同時進行するようにすると、シフト反応で発生した二酸化炭素も除去されて、シフト反応がより一層促進されるためである。   The result of Comparative Example 1 in which nothing is arranged inside the tubular body directly represents the composition of the permeated gas that has permeated the permselective membrane. In Comparative Example 2, carbon monoxide was reduced by carbon monoxide methanation using a methanation catalyst. Although carbon monoxide had a low concentration of less than 10 ppm, carbon dioxide methanation as a side reaction was used. As a result, much hydrogen is consumed, and the hydrogen concentration is reduced to about 94%. On the other hand, in Example 1 in which the carbon dioxide adsorbent and the methanation catalyst are used in combination, carbon dioxide is adsorbed and removed in advance by the carbon dioxide removing means, and therefore, the hydrogen reaction by carbon dioxide methanation, which is a side reaction, is performed. The disappearance is suppressed, and the hydrogen concentration is about 98%, which is higher than that of Comparative Example 2. Further, in Example 2 and Example 3 in which the carbon dioxide removal means and the shift reaction catalyst are used in combination, the shift reaction is promoted by the carbon dioxide removal means previously adsorbing and removing the carbon dioxide, so that carbon dioxide monoxide. Conversion to carbon is performed with high efficiency, and compared with Comparative Example 1, the concentration of carbon monoxide is reduced and the concentration of hydrogen is increased. Further, Example 3 in which the adsorption removal of carbon dioxide and the shift reaction proceed at the same time is compared with Example 2 in which the adsorption removal of carbon dioxide and the shift reaction proceed sequentially. The decrease in concentration is remarkable. This is because when carbon dioxide removal means and shift reaction catalyst are mixed and arranged so that the removal of carbon dioxide and the shift reaction proceed simultaneously in the same field, the carbon dioxide generated by the shift reaction is also removed, This is because the shift reaction is further promoted.

本発明は、メタン、ブタン、灯油等の炭化水素や、メタノール、エタノール、ジメチルエーテル等の含酸素炭化水素を主たる原料ガスとし、改質反応等を利用して、水素を生成させ、分離して取り出すために使用される選択透過膜型反応器と、それを用いた水素の製造に好適に利用することができるものである。   The present invention uses hydrocarbons such as methane, butane, and kerosene, and oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether as the main raw material gas. Therefore, the permselective membrane reactor used for the above-mentioned purpose can be suitably used for the production of hydrogen using the reactor.

本発明に係る選択透過膜型反応器の基本構造を示す概略断面図である。It is a schematic sectional drawing which shows the basic structure of the selectively permeable membrane reactor which concerns on this invention. 実施例において使用した試験装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the test apparatus used in the Example.

符号の説明Explanation of symbols

1:反応管、4:分離管、5:選択透過膜、6:改質反応触媒、9:入口、10:出口、11:排出口。 1: reaction tube, 4: separation tube, 5: selective permeable membrane, 6: reforming reaction catalyst, 9: inlet, 10: outlet, 11: outlet.

Claims (5)

一端部がガスの入口で、他端部がガスの出口である反応管と、当該反応管内に挿入された、表面に水素を選択的に透過させる選択透過膜を有し、前記選択透過膜を透過した分離ガスの出口である排出口を有する分離管と、前記反応管と前記分離管との間に配置された、炭化水素の改質反応を促進する改質反応触媒とを有する選択透過膜型反応器であって、
前記分離管の内部又は前記分離管の排出口の後段部に、二酸化炭素除去手段と、一酸化炭素メタネーションを促進するメタネーション触媒及び/又はシフト反応を促進するシフト反応触媒とが配置された選択透過膜型反応器。
A reaction tube having one end portion serving as a gas inlet and the other end serving as a gas outlet; and a permselective membrane inserted into the reaction tube and selectively permeating hydrogen to the surface; A permselective membrane having a separation tube having a discharge port that is an outlet for the permeated separation gas, and a reforming reaction catalyst that is disposed between the reaction tube and the separation tube and promotes a reforming reaction of hydrocarbons Type reactor,
A carbon dioxide removing means and a methanation catalyst for promoting carbon monoxide methanation and / or a shift reaction catalyst for promoting a shift reaction are arranged inside the separation pipe or at the rear stage of the outlet of the separation pipe. Permselective membrane reactor.
前記二酸化炭素除去手段が、二酸化炭素吸着剤である請求項1に記載の選択透過膜型反応器。   The selectively permeable membrane reactor according to claim 1, wherein the carbon dioxide removing means is a carbon dioxide adsorbent. 前記二酸化炭素除去手段が、二酸化炭素分離膜である請求項1に記載の選択透過膜型反応器。   The selectively permeable membrane reactor according to claim 1, wherein the carbon dioxide removing means is a carbon dioxide separation membrane. 前記二酸化炭素吸着剤、前記メタネーション触媒及び前記シフト反応触媒うちの少なくとも何れか1つが、ハニカム構造体に担持された状態で、前記分離管の内部又は前記分離管の排出口の後段部に配置された請求項2に記載の選択透過膜型反応器。   At least one of the carbon dioxide adsorbent, the methanation catalyst, and the shift reaction catalyst is supported on the honeycomb structure and disposed inside the separation tube or at the rear stage of the discharge port of the separation tube. The selectively permeable membrane reactor according to claim 2. 請求項1〜4の何れか一項に記載の選択透過膜型反応器を使用した水素製造方法。   A method for producing hydrogen using the permselective membrane reactor according to any one of claims 1 to 4.
JP2006071808A 2006-03-15 2006-03-15 Permselective membrane reactor and hydrogen production method using the same Expired - Fee Related JP4819537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071808A JP4819537B2 (en) 2006-03-15 2006-03-15 Permselective membrane reactor and hydrogen production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071808A JP4819537B2 (en) 2006-03-15 2006-03-15 Permselective membrane reactor and hydrogen production method using the same

Publications (2)

Publication Number Publication Date
JP2007246333A true JP2007246333A (en) 2007-09-27
JP4819537B2 JP4819537B2 (en) 2011-11-24

Family

ID=38591014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071808A Expired - Fee Related JP4819537B2 (en) 2006-03-15 2006-03-15 Permselective membrane reactor and hydrogen production method using the same

Country Status (1)

Country Link
JP (1) JP4819537B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147201A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Dicing sheet and method of manufacturing the same, and method of manufacturing electronic component
JP2009149507A (en) * 2007-12-19 2009-07-09 Air Products & Chemicals Inc Carbon dioxide separation via partial pressure swing cyclic chemical reaction
JP2011116577A (en) * 2009-12-01 2011-06-16 Ngk Spark Plug Co Ltd Hydrogen producing apparatus
US8597383B2 (en) 2011-04-11 2013-12-03 Saudi Arabian Oil Company Metal supported silica based catalytic membrane reactor assembly
JP2016184501A (en) * 2015-03-26 2016-10-20 東京瓦斯株式会社 Fuel battery system
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377935B1 (en) * 2012-05-31 2014-03-28 (주)유성 Method for manufacturing methane and hydrogen from biogas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640703A (en) * 1992-05-21 1994-02-15 Mitsubishi Heavy Ind Ltd Steam reforming reactor
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
JP2002033113A (en) * 1999-11-18 2002-01-31 Toyota Motor Corp Fuel gas generating device for fuel cell and composite material for hydrogen separation
JP2002100388A (en) * 2000-09-21 2002-04-05 Mitsubishi Kakoki Kaisha Ltd Hydrogen production method for fuel cell and manufacturing equipment
JP2002255510A (en) * 2001-02-23 2002-09-11 Tokyo Gas Co Ltd Method for increasing co removal rate of co transformer in hydrogen production apparatus
JP2004079262A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Hydrogen-supply system and mobile hydrogen production equipment
JP2004075439A (en) * 2002-08-14 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen generating apparatus
JP2005041749A (en) * 2003-07-25 2005-02-17 Shikoku Electric Power Co Inc Enhancing method of co shift reaction, and manufacturing method of hydrogen gas or gas reduced in co content using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640703A (en) * 1992-05-21 1994-02-15 Mitsubishi Heavy Ind Ltd Steam reforming reactor
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
JP2002033113A (en) * 1999-11-18 2002-01-31 Toyota Motor Corp Fuel gas generating device for fuel cell and composite material for hydrogen separation
JP2002100388A (en) * 2000-09-21 2002-04-05 Mitsubishi Kakoki Kaisha Ltd Hydrogen production method for fuel cell and manufacturing equipment
JP2002255510A (en) * 2001-02-23 2002-09-11 Tokyo Gas Co Ltd Method for increasing co removal rate of co transformer in hydrogen production apparatus
JP2004079262A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Hydrogen-supply system and mobile hydrogen production equipment
JP2004075439A (en) * 2002-08-14 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen generating apparatus
JP2005041749A (en) * 2003-07-25 2005-02-17 Shikoku Electric Power Co Inc Enhancing method of co shift reaction, and manufacturing method of hydrogen gas or gas reduced in co content using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147201A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Dicing sheet and method of manufacturing the same, and method of manufacturing electronic component
JP2009149507A (en) * 2007-12-19 2009-07-09 Air Products & Chemicals Inc Carbon dioxide separation via partial pressure swing cyclic chemical reaction
JP2011116577A (en) * 2009-12-01 2011-06-16 Ngk Spark Plug Co Ltd Hydrogen producing apparatus
US8597383B2 (en) 2011-04-11 2013-12-03 Saudi Arabian Oil Company Metal supported silica based catalytic membrane reactor assembly
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US10071909B2 (en) 2011-04-11 2018-09-11 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US10093542B2 (en) 2011-04-11 2018-10-09 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US10252911B2 (en) 2011-04-11 2019-04-09 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic systems
US10252910B2 (en) 2011-04-11 2019-04-09 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
JP2016184501A (en) * 2015-03-26 2016-10-20 東京瓦斯株式会社 Fuel battery system

Also Published As

Publication number Publication date
JP4819537B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
Wang et al. Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation
US10632437B2 (en) Shell-and-tube type reactor for reforming natural gas and a preparation method of syngas or hydrogen gas by using the same
JP4819537B2 (en) Permselective membrane reactor and hydrogen production method using the same
JP5015638B2 (en) Permselective membrane reactor and hydrogen production method
JP5814506B2 (en) Hydrogen separation membrane and selectively permeable membrane reactor
Maneerung et al. Triple-layer catalytic hollow fiber membrane reactor for hydrogen production
US20120067211A1 (en) Porous Hollow Fiber Supported Dense Membrane For Hydrogen Production, Separation, Or Purification
JP2002045637A (en) Zeolite membrane, method for producing the same, and membrane reactor
JP5161763B2 (en) Hydrogen production method using selectively permeable membrane reactor
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
US8128896B2 (en) Permselective membrane type reactor
JP5139971B2 (en) Hydrogen production method using selectively permeable membrane reactor
JP5037877B2 (en) Permselective membrane reactor and method for producing hydrogen gas
JP2007070165A (en) Membrane-type reactor for shift reaction
JP2008044812A (en) Permselective membrane type reactor and method for producing hydrogen gas using the same
JP4367694B2 (en) Permselective membrane reactor
JP5183962B2 (en) Method for producing hydrogen using selectively permeable membrane reactor
JP5037878B2 (en) Permselective membrane reactor and method for producing hydrogen gas
JP2004075439A (en) Hydrogen generating apparatus
JP4929065B2 (en) Permselective membrane reactor
JP2003071287A (en) Catalyst membrane, method for producing the same, and method for selectively removing carbon monoxide by using the same
CN110483228B (en) Method and device for simultaneously obtaining high-purity hydrogen and chemicals through reaction in proton conduction membrane reactor
JP2006199508A (en) Method for removing carbon monoxide from reformed gas
JP2000017276A (en) Equipment and process for desulfurization and reforming of hydrocarbon feedstock
JP2002308605A (en) Method for refining gaseous hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees