JPS6241701A - Pressure swing type gas separator in methanol decomposition apparatus - Google Patents

Pressure swing type gas separator in methanol decomposition apparatus

Info

Publication number
JPS6241701A
JPS6241701A JP60176858A JP17685885A JPS6241701A JP S6241701 A JPS6241701 A JP S6241701A JP 60176858 A JP60176858 A JP 60176858A JP 17685885 A JP17685885 A JP 17685885A JP S6241701 A JPS6241701 A JP S6241701A
Authority
JP
Japan
Prior art keywords
gas
adsorption
methanol
hydrogen
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60176858A
Other languages
Japanese (ja)
Other versions
JPH0761843B2 (en
Inventor
Mamoru Tamai
玉井 守
Mitsuharu Murakami
村上 光春
Masaaki Yanagi
正明 柳
Michio Haneda
羽田 道夫
Yoshio Miyairi
宮入 嘉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60176858A priority Critical patent/JPH0761843B2/en
Publication of JPS6241701A publication Critical patent/JPS6241701A/en
Publication of JPH0761843B2 publication Critical patent/JPH0761843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to improve the gas separation capacity and gas purity, by exchanging the heat of a regenerated gas with waste gas using a heater provided in the course of a regenerated gas conduit and completing the regeneration of adsorption columns of a gas separator. CONSTITUTION:A raw material methanol 1 and pure water 2 are heated in a preheater 3 and fed to a reactor 7. A heating medium heated in a heating furnace 16 is fed to the reactor 7 to heat a catalyst layer in the reactor 7. The methanol 1, etc., are passed through the catalyst layer and decomposed. The resultant decomposed gas 11 is fed to a separation unit 13 to separate hydrogen and/or carbon monoxide. In the process, a purified hydrogen conduit 14 for purified hydrogen discharged from the adsorption column 22 in the pressurized adsorption step is connected to the adsorption column 22 in the decompressed desorption step with a regenerated gas conduit 27 to carry out the heat exchange of the waste gas from the heating furnace 16 with the regenerated gas in a regenerated gas heater 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メタノールを分解して水素ガス、あるいは一
酸化炭素ガス、あるいは4九らの混合ガスを製造するメ
タノール分解装置で水素と一酸化炭素の分離に使用され
る圧力スイング式ガス分離器に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a methanol decomposition device that decomposes methanol to produce hydrogen gas, carbon monoxide gas, or a mixed gas of 49 gases. This invention relates to a pressure swing type gas separator used for carbon separation.

〔従来の技術〕[Conventional technology]

現代産業における水素の重要性は今さら強調するまでも
ない。
There is no need to overstate the importance of hydrogen in modern industry.

すなわち、アンモニア合成、メタノール合成・石油精製
工業などの低濃度多量消9&型から半導体工業、宇宙監
業などの高濃度小量消費型に到るまで、有機・無機化学
工業、食品、冶金、電気、原子力エネルギーなどの広い
分野で水素は不可決で安価な水素の製造法が叫ばれて久
しい。
In other words, from low-concentration, large-volume consumption types such as ammonia synthesis, methanol synthesis, and oil refining industries to high-concentration and small-volume consumption types such as semiconductor industry and space inspection, organic and inorganic chemical industries, food, metallurgy, and electricity. It has been a long time since hydrogen has become unpopular in a wide range of fields, such as nuclear energy, and calls for an inexpensive hydrogen production method have been made.

しかし、安価な水素製造法の新規な技術開発は、安易で
はなく、小量O場合には水の電気分解、大量の場合に祉
ブタン、ナフサなどの炭化水素の接触改質によって製造
されている。
However, the development of new technology for inexpensive hydrogen production is not easy, and hydrogen is produced by electrolysis of water in the case of small amounts of hydrogen, and by catalytic reforming of hydrocarbons such as butane and naphtha in the case of large amounts. .

−万、一酸化炭素は有機化学工業でのカルボニル化反応
やオキソ反応、酢酸やエチレングリコール製造に使われ
るほか、最近は特にal化学の原料として注目されてい
る。しかし、この一酸化炭素も安価に製造するのは困難
で、ブタンあるいは重質油等の炭化水素の部分酸化反応
、あるいは製鉄所廃ガスなどの一酸化炭素を含むガスか
らの回収などにより製造しているが、工程が複雑なため
、水素よりもむしろ高価なガスとなっている。
- Carbon monoxide is used in carbonylation reactions and oxo reactions in the organic chemical industry, as well as in the production of acetic acid and ethylene glycol, and has recently attracted particular attention as a raw material for Al chemistry. However, it is difficult to produce carbon monoxide at a low cost, and it can be produced through partial oxidation reactions of hydrocarbons such as butane or heavy oil, or by recovery from gases containing carbon monoxide such as steel plant waste gas. However, the process is complicated, making it a more expensive gas than hydrogen.

さらに、水素と一酸化炭素の混合を色々な比率で必要と
する場合も多いが、この場合も重質油、石炭々どの部分
酸化で製造しており、これもま九高価々ものである。
Furthermore, it is often necessary to mix hydrogen and carbon monoxide in various ratios, but in this case too, it is produced by partial oxidation of heavy oil, coal, etc., and this is also expensive.

このような従来の水素、一酸化炭素、あるいはその混合
ガス金製造する方法にかわるものとしてメタノールの改
質、あるいは分解の反応を利用することができる。この
反応工程は以下のとお9である。
As an alternative to such conventional methods for producing gold using hydrogen, carbon monoxide, or a mixture thereof, methanol reforming or decomposition reactions can be used. This reaction step is as follows.

すなわち、製品として水素を得る場合にはメタノールの
水蒸気改質反応により次式が進行する。
That is, when hydrogen is obtained as a product, the following equation proceeds by the steam reforming reaction of methanol.

0H30H+H20→3 Fi2 + 002・・・・
・(1)また、製品として水素と一酸化炭素の混合ガス
を得る場合には、メタノールの分解反応で次式が進行す
る。
0H30H+H20→3 Fi2 + 002...
- (1) Also, when obtaining a mixed gas of hydrogen and carbon monoxide as a product, the following equation proceeds in the decomposition reaction of methanol.

C!EI、OH→2H2+OO・・・・・(2)こOい
ずれの反応も触媒下での反応で、反応温度は300〜4
00℃での吸熱反応であり、(1)式では1t s x
caL/−v: #メタノール、(2)式では21.4
 Kcal、I’Eニルメタノールの反応熱を必要とす
る。
C! EI, OH → 2H2 + OO... (2) This O Both reactions are reactions under a catalyst, and the reaction temperature is 300-4
It is an endothermic reaction at 00°C, and in equation (1), 1t s x
caL/-v: #methanol, 21.4 in formula (2)
Requires reaction heat of Kcal and I'E nyl methanol.

従来の技術を第4図に示し、その内容を簡単に説明する
A conventional technique is shown in FIG. 4, and its contents will be briefly explained.

所定の流量比に調整されたメタノールと水はメタノール
供給ライン1、及び純水供給ライン2から供給し、原料
予熱器3で反応器7からの出口ガスと熱交換を行った後
、蒸発加熱器4にて反応器入口温度まで昇温し、反応器
7へ供給する。反応器7は一般には管式タイプで、反応
管内の触媒を充填した層にメタノールを通す。
Methanol and water adjusted to a predetermined flow rate ratio are supplied from the methanol supply line 1 and the pure water supply line 2, and after exchanging heat with the outlet gas from the reactor 7 in the raw material preheater 3, they are transferred to the evaporation heater. In Step 4, the temperature is raised to the reactor inlet temperature, and the mixture is supplied to the reactor 7. The reactor 7 is generally of the tubular type, and methanol is passed through a bed filled with catalyst within the reaction tube.

この胴側には熱媒加熱炉16において、燃料供給ライン
20からの燃料を焚いて加熱した熱媒を流し、反応管を
外部から加熱してメタノール分解に必要な熱全供給する
。熱媒加熱炉からの熱媒の一部は蒸発加熱器4へも供給
され降温した後、熱媒循環ポンプ18i/(より熱媒加
熱炉へもどる。反応器7でメタノールは分解し、水素ガ
スあるいは水素と一酸化炭素の混合ガスか生成するが、
この高温ガスは原料予熱器3で原料に熱を与えた後、冷
却器9において常温付近までさらに冷却し、気液分離器
10で未反応メタノール全台む凝縮液を分離し、ガス分
のみをガスライン11からガス分離ユニット15に供給
する。ガス分離ユニット13では不純物の除去、および
水素/一酸化炭素の分11cあるいはガス比調整を・行
った後、製品ガス取出しライン14゜15から製品ガス
金取出す。気液分離器1oでの凝縮底分は循環ライン1
2から純水供給ライン2へ2、あるいはメタノール供給
ライン1へもどす。
A heating medium heated by burning fuel from a fuel supply line 20 is passed through a heating medium heating furnace 16 on this shell side, and the reaction tube is heated from the outside to supply all the heat necessary for methanol decomposition. A part of the heat medium from the heat medium heating furnace is also supplied to the evaporative heater 4, and after cooling down, returns to the heat medium circulation pump 18i/ (through the heat medium heating furnace. Methanol is decomposed in the reactor 7, and hydrogen gas is generated. Alternatively, a mixed gas of hydrogen and carbon monoxide is generated,
After this high-temperature gas gives heat to the raw material in the raw material preheater 3, it is further cooled to around room temperature in the cooler 9, and the condensate containing all unreacted methanol is separated in the gas-liquid separator 10, and only the gas component is separated. The gas is supplied from the gas line 11 to the gas separation unit 15. In the gas separation unit 13, after removing impurities and adjusting the hydrogen/carbon monoxide ratio 11c or gas ratio, the product gas gold is taken out from the product gas take-out lines 14 and 15. The condensed bottom in the gas-liquid separator 1o is connected to the circulation line 1
2 to pure water supply line 2 or return to methanol supply line 1.

図中5は、スタートアップ時に使用する原料予熱器であ
る。
5 in the figure is a raw material preheater used at startup.

第4図中のガス分離ユニット13は圧力スイング方式に
よる水素ガスと一酸化炭素ガスの分離法が用いられるの
が通常である。
The gas separation unit 13 in FIG. 4 normally uses a pressure swing method to separate hydrogen gas and carbon monoxide gas.

すなわち、第5図に示すように、ゼオライト等の吸着剤
を充填した複数の吸着塔22fc時間サイクルで圧力ス
イング操作をさせ、加圧時に混合ガス供給ライン21か
らガスを塔内に送入して一酸化炭素を吸着剤に選択に吸
着させることにより製品ガスライン2Sから水素ガス全
取出す。ある時間後、吸着量が飽和に達するとライン2
1.ライン23のバルブを閉め、パージガスライン24
を開いて吸着塔22の有圧ガスを抜き、この過程で吸着
剤に吸着された一酸化炭素が脱着回収される。
That is, as shown in FIG. 5, a plurality of adsorption towers 22fc filled with an adsorbent such as zeolite are subjected to pressure swing operation in a time cycle, and gas is fed into the tower from the mixed gas supply line 21 during pressurization. All hydrogen gas is taken out from the product gas line 2S by selectively adsorbing carbon monoxide onto an adsorbent. After a certain time, when the amount of adsorption reaches saturation, line 2
1. Close the valve of line 23 and purge gas line 24.
is opened to vent the pressurized gas in the adsorption tower 22, and in this process, carbon monoxide adsorbed by the adsorbent is desorbed and recovered.

ここで問題となるのは、一酸化炭素が他のガス、例えば
二酸化炭素などに比べて吸着:liiが少ないという点
である。このために、従来のような単に圧力スイング全
く9反すだけでは処理できるガス量は少なく、また水素
、一酸化炭素のそれぞれの純度も低い。これに対し、水
素ガス純度を上げる方法として脱着操作が終った時に製
品ガスの一部で吸着塔を洗浄し、層内に含まれる一酸化
炭素を排出する方法もとられる場合があるが、この場合
には、製品水素ガス量が低下し、かつ、−醸化炭素ガス
中に水素が多量混入することとなり好ましくない。
The problem here is that carbon monoxide has less adsorption:lii than other gases, such as carbon dioxide. For this reason, the amount of gas that can be treated by simply repeating nine pressure swings as in the conventional method is small, and the purity of each of hydrogen and carbon monoxide is also low. On the other hand, as a method to increase the purity of hydrogen gas, sometimes a method is used to wash the adsorption tower with a part of the product gas after the desorption operation and exhaust the carbon monoxide contained in the layer. If this is the case, the amount of hydrogen gas product will decrease, and a large amount of hydrogen will be mixed into the fermented carbon gas, which is undesirable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来のメタノール分解装置の圧力スイング式
ガス分離器の欠点を解消し、分解装置内に熱源、ガス源
を求めて、ガス分離器の吸着塔の再生をより完全に行い
、分離能力の飛躍的向上と精製ガス純度の向上を可能と
する圧力スイング式ガス分離器を提供しようとするもの
である。
The present invention solves the shortcomings of the pressure swing type gas separator of the conventional methanol cracking equipment, seeks heat sources and gas sources within the cracker, and more completely regenerates the adsorption tower of the gas separator, increasing the separation capacity. The present invention aims to provide a pressure swing type gas separator that enables dramatic improvements in gas purification and purified gas purity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、メタノールを触媒下で分解して水素ガス又は
一酸化炭素ガスあるいはこれらの混合ガスを製造するメ
タノール分解装置の圧力スイング式ガス分離器において
、加圧吸着工程の吸着塔からの排出される精製水素導管
と減圧脱着工程の吸着塔とを接続する再生ガス導管を設
け、メタノール分解反応器に供給する熱媒を加熱するボ
イラーの排ガスと前記再生ガスとを熱交換させる再生ガ
ス加熱器を前記再生ガス導管の途中に設けることを特徴
とするメタノール分解装置の圧力スイング式ガス分離器
である。
The present invention is a pressure swing type gas separator for a methanol decomposition device that decomposes methanol under a catalyst to produce hydrogen gas, carbon monoxide gas, or a mixture thereof. A regeneration gas conduit is provided to connect the purified hydrogen conduit and the adsorption tower in the vacuum desorption step, and a regeneration gas heater is provided to exchange heat between the regeneration gas and the exhaust gas of the boiler that heats the heating medium supplied to the methanol decomposition reactor. This is a pressure swing type gas separator for a methanol decomposition apparatus, characterized in that it is installed in the middle of the regeneration gas conduit.

〔作用〕[Effect]

吸着剤の一酸化炭素吸着特性を第6図に示す。 Figure 6 shows the carbon monoxide adsorption characteristics of the adsorbent.

この図から明らかなように、ガス中の一酸化炭素分圧に
よって吸着量は変化するが、さらに、温度によっても大
きく変化する。すなわち、同じ圧力では、温度金工げる
と吸着量は増加し、温度を上げると低下する。この現象
を利用し、本発明では従来の圧力スイングに加えて、脱
着時に吸着塔の温度を上げて吸着されている一酸化炭素
を、圧力スイングのみの場合よりも多く脱着する。そし
て、この吸着塔加熱の熱源として、熱媒加熱用ボイラの
排ガスの持つ熱の有効利用金はかる。加圧で吸着操作の
終った吸着塔を同じ温度で減圧脱着した後、製品水素ガ
スのごく一部全熱媒加熱用ボイラの排ガスと熱交換して
昇温した後吸着塔に供給し、吸着剤を加熱して一酸化炭
素をさらに脱着させる。これにより次のサイクルの吸着
操作での一酸化炭素吸着量が増加し、従って、ガス処理
量が増えるとともに、水素ガスの純度が向上する。複数
の吸着塔を使用し、各吸着塔では回分的に吸着、脱着全
くり返し・装置全体で連続的に水素と一酸化炭素に分離
するのは従来と同様でおる。
As is clear from this figure, the adsorption amount changes depending on the partial pressure of carbon monoxide in the gas, but it also changes significantly depending on the temperature. That is, at the same pressure, the amount of adsorption increases as the temperature increases, and decreases as the temperature increases. Utilizing this phenomenon, in the present invention, in addition to the conventional pressure swing, the temperature of the adsorption tower is increased during desorption to desorb more of the adsorbed carbon monoxide than in the case of pressure swing alone. As a heat source for heating the adsorption tower, the heat of the exhaust gas from the boiler for heating the heating medium is effectively utilized. After the adsorption tower has completed the adsorption operation under pressure, it is desorbed under reduced pressure at the same temperature. A small portion of the product hydrogen gas is heated by exchanging heat with the exhaust gas of the total heat medium heating boiler, and then supplied to the adsorption tower, where it is adsorbed. The agent is heated to further desorb carbon monoxide. This increases the amount of carbon monoxide adsorbed in the next cycle of adsorption operation, thus increasing the gas throughput and improving the purity of hydrogen gas. Multiple adsorption towers are used, and each adsorption tower performs adsorption and desorption in batches, with the entire device continuously separating hydrogen and carbon monoxide in the same manner as in the past.

以下、本発明を図面に示す実施例にもとづいて説明する
The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明によるメタノール分解装置全体を示し、
第2図は、このうちのガス分離ユニット15の詳細?示
す。これらの図中で、本発明に特徴的な構成としては、
熱交換器25、熱媒加熱用ボイラー排ガスライン26、
パージ用水素ライン27、パージガス供給ライン28で
ある。
FIG. 1 shows the entire methanol decomposition apparatus according to the present invention,
Figure 2 shows details of the gas separation unit 15. show. In these figures, the configurations characteristic of the present invention are as follows:
heat exchanger 25, boiler exhaust gas line 26 for heating medium,
They are a purge hydrogen line 27 and a purge gas supply line 28.

第3図は、本発明による吸着変化量を、従来の圧力スイ
ングのみによる吸着変化量と比較して本発明の優位さを
概念的に示す。
FIG. 3 conceptually shows the superiority of the present invention by comparing the amount of change in adsorption according to the present invention with the amount of change in adsorption due to conventional pressure swing alone.

第1図及び第2図中、製品水素ガスのごく一部をパージ
用水素ライン27から分岐し、熱媒加熱用ボイラー16
の排ガス26と熱交換器25において熱交換し、その加
熱した水素ガスをパージガス供給ライン28から脱着操
作下にある吸着塔に供給する。
In FIG. 1 and FIG. 2, a small part of the product hydrogen gas is branched from the purge hydrogen line 27, and the heating medium heating boiler 16
The heated hydrogen gas is exchanged with the exhaust gas 26 in the heat exchanger 25, and the heated hydrogen gas is supplied from the purge gas supply line 28 to the adsorption tower under desorption operation.

第3図において、吸着時の温度25℃で、吸着操作が終
了した時点での吸着量はA点で示され、これを同温度で
減圧脱着するとB点に吸着量が低下する。すなわち、従
来の圧力スイングでは、A点とB点の間の変化管する。
In FIG. 3, at a temperature of 25° C. during adsorption, the amount of adsorption at the end of the adsorption operation is indicated by point A, and when this is desorbed under reduced pressure at the same temperature, the amount of adsorption decreases to point B. That is, in the conventional pressure swing, the pressure swing varies between points A and B.

これに対し、本発明の方法でミ加熱した水素で脱着時に
パージすると、吸着量は0点となり、吸着、脱着による
吸着変化はA点と0点に拡大される。
On the other hand, if the method of the present invention is used to purge with heated hydrogen during desorption, the amount of adsorption becomes 0 point, and the change in adsorption due to adsorption and desorption is expanded to point A and 0 point.

〔実施例1〕 25℃の温度において、ゼオライト系吸着剤1即を充填
した吸着塔へ水素65モルチ、一酸化炭素30モルチ、
その他5モルチのガスを供給し、吸着操作20気圧、脱
着操作1.5気圧のくり返しテスト上行ったところ、一
酸化炭素吸着変化量40 f / 紹吸着剤の結果であ
った。これに対し、脱着時に吸着塔を50℃に加熱する
ことにより吸着変化量は55f/に9吸着剤となり、約
40%吸着量が増加した。
[Example 1] At a temperature of 25°C, 65 mol of hydrogen, 30 mol of carbon monoxide,
In addition, when 5 molti of gas was supplied and repeated tests were conducted with adsorption operation at 20 atm and desorption operation at 1.5 atm, the result was that the change in carbon monoxide adsorption was 40 f / 1. On the other hand, by heating the adsorption tower to 50° C. during desorption, the amount of adsorption change was 55 f/9 adsorbents, increasing the amount of adsorption by about 40%.

〔実施例2〕 実施例1と同じ吸着剤を1塔あた950時充填した吸着
塔4塔金有するガス分離ユニットパイロットプラントに
おいて、実施例1と同じガス組成のガスを毎時40 N
m’供給し、6塔を時間的に切り変えながらガス分離を
行った。この場合、単に圧力スイングのみによる分離で
は製品ガスとして水素純度96七ルチのガスが毎時15
 Nm3Lか得られず、他方の製品ガスは一散化炭素純
度50モルチが毎時23N−であった。
[Example 2] In a gas separation unit pilot plant having four adsorption towers in which each tower was filled with the same adsorbent as in Example 1 for 950 hours, a gas having the same gas composition as in Example 1 was charged at 40 N/hour.
m' was supplied, and gas separation was performed while changing the six towers over time. In this case, if separation is performed simply by pressure swing, gas with a hydrogen purity of 967 rupees will be produced as a product gas at 15% per hour.
Only 3 L of Nm was obtained, and the other product gas had a monodispersed carbon purity of 50 molty at 23 N/h.

これに対し、製品水素ガスの5%t一温度350℃の熱
媒加熱用ボイラー排ガスと熱交換して60℃に加熱し、
これを脱着操作中の吸着塔へ供給しパージするシステム
とした。この結果、製品水素ガス岐水素純度9交5チで
毎時2ON−が得られ、他方の一酸化炭素ガスは純度6
6%で毎時18N−であった。
On the other hand, 5% of the product hydrogen gas is heated to 60°C by exchanging heat with boiler exhaust gas for heat medium heating at a temperature of 350°C.
This was used as a system to supply and purge the adsorption tower during desorption operation. As a result, 2ON- per hour was obtained with the hydrogen purity of the product hydrogen gas branch 9x5, and the other carbon monoxide gas had a purity of 6
6% and 18 N/h.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成全採用することによジ次の効果を有す
る。
The present invention has the following effects by employing all of the above configurations.

(1)  単位量あたりの吸着剤の吸着量が増加するの
で、同じ充填量の吸着塔ではガス処理能力が向上し、ガ
ス処理量が同じ場合には装置規模が小さくなり、装置製
作費が安くなる。
(1) Since the amount of adsorbent adsorbed per unit amount increases, the gas processing capacity improves in an adsorption tower with the same filling amount, and when the amount of gas processed is the same, the equipment scale becomes smaller and the equipment manufacturing cost is reduced. Become.

(2)製品として得る水素ガスの童が増え、かつ水素純
度も向上する。
(2) The amount of hydrogen gas obtained as a product will increase, and the purity of hydrogen will also improve.

(3)他の製品ガス中の一酸化炭素純度も高く々るので
、高純度−醸化炭素を製造する原料とする場合にはきわ
めて有利である。
(3) Since the purity of carbon monoxide in other product gases is also high, it is extremely advantageous when used as a raw material for producing high-purity fermented carbon.

(4)加熱用熱源としてボイラー排ガスを用いるので、
新たに必要となるユーティリティはない。
(4) Since boiler exhaust gas is used as a heating heat source,
No new utilities are required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としてのメタノール分解装置
であり、第2図は同じ実施例のガス募離ユニット、第3
図は、吸着変化量の従来法との差を示す概念図である。 第4図は従来の方法によるメタノール分解装置、第5図
に従来の方法によるガス分離ユニットを示し、第6図は
ゼオライト系吸着剤の吸着特性図である。 復代理人  内 1)  明 復代理人  萩 厚 亮 − 復代理人  安 西 篤 夫 小 \  審
FIG. 1 shows a methanol decomposition apparatus as an embodiment of the present invention, and FIG. 2 shows a gas recruitment unit and a third embodiment of the same embodiment.
The figure is a conceptual diagram showing the difference between the amount of change in adsorption and the conventional method. FIG. 4 shows a methanol decomposition apparatus using a conventional method, FIG. 5 shows a gas separation unit using a conventional method, and FIG. 6 shows an adsorption characteristic diagram of a zeolite adsorbent. Sub-Agents 1) Meifuku Agent Atsushi Hagi - Sub-Agent Atsushi Anzai

Claims (1)

【特許請求の範囲】[Claims] メタノールを触媒下で分解して水素ガス又は一酸化炭素
ガスあるいはこれらの混合ガスを製造するメタノール分
解装置の圧力スイング式ガス分離器において、加圧吸着
工程の吸着塔からの排出される精製水素導管と減圧脱着
工程の吸着塔とを接続する再生ガス導管を設け、メタノ
ール分解反応器に供給する熱媒を加熱するボイラーの排
ガスと前記再生ガスとを熱交換させる再生ガス加熱器を
前記再生ガス導管の途中に設けることを特徴とするメタ
ノール分解装置の圧力スイング式ガス分離器。
In the pressure swing type gas separator of a methanol cracker that produces hydrogen gas, carbon monoxide gas, or a mixture of these gases by cracking methanol under a catalyst, a purified hydrogen conduit discharged from an adsorption tower in a pressurized adsorption process. A regeneration gas conduit is provided to connect the regeneration gas conduit and the adsorption tower of the vacuum desorption process, and a regeneration gas heater for exchanging heat between the regeneration gas and the exhaust gas of the boiler that heats the heating medium supplied to the methanol decomposition reactor is installed in the regeneration gas conduit. A pressure swing type gas separator for a methanol decomposition device, characterized in that it is installed in the middle of a methanol decomposition device.
JP60176858A 1985-08-13 1985-08-13 Pressure swing type gas separator for methanol cracker Expired - Lifetime JPH0761843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176858A JPH0761843B2 (en) 1985-08-13 1985-08-13 Pressure swing type gas separator for methanol cracker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176858A JPH0761843B2 (en) 1985-08-13 1985-08-13 Pressure swing type gas separator for methanol cracker

Publications (2)

Publication Number Publication Date
JPS6241701A true JPS6241701A (en) 1987-02-23
JPH0761843B2 JPH0761843B2 (en) 1995-07-05

Family

ID=16021052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176858A Expired - Lifetime JPH0761843B2 (en) 1985-08-13 1985-08-13 Pressure swing type gas separator for methanol cracker

Country Status (1)

Country Link
JP (1) JPH0761843B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750361A1 (en) * 1995-06-23 1996-12-27 Exxon Research And Engineering Company Method of removing CO from CO + H2 gases and fuel cell system using method
US6112752A (en) * 1997-06-25 2000-09-05 Kamaya Kagaku Kogyo Co., Ltd. Liquid container
JP2003246606A (en) * 2001-11-14 2003-09-02 Ceca Sa Syngas purifying method
JP2006527159A (en) * 2003-06-11 2006-11-30 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Purification of H2 / CO mixture by catalytic reaction of impurities
JP2006342014A (en) * 2005-06-08 2006-12-21 Kobe Steel Ltd Method for producing high purity hydrogen
JP2008505047A (en) * 2004-07-09 2008-02-21 アセテクス(キプロス)リミテッド Preparation of synthesis gas for acetic acid synthesis by partial oxidation of methanol feedstock
JP2010083754A (en) * 2008-09-29 2010-04-15 Ifp Process for producing hydrogen with complete capture of co2 and recycling unconverted methane
CN110627017A (en) * 2019-10-30 2019-12-31 苏州海连净化设备有限公司 Methanol pyrolysis hydrogen production device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865174A (en) * 1971-12-13 1973-09-08
JPS59128202A (en) * 1983-01-10 1984-07-24 Nippon Kagaku Gijutsu Kk Method for reforming methanol while recycling purge gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865174A (en) * 1971-12-13 1973-09-08
JPS59128202A (en) * 1983-01-10 1984-07-24 Nippon Kagaku Gijutsu Kk Method for reforming methanol while recycling purge gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750361A1 (en) * 1995-06-23 1996-12-27 Exxon Research And Engineering Company Method of removing CO from CO + H2 gases and fuel cell system using method
US6112752A (en) * 1997-06-25 2000-09-05 Kamaya Kagaku Kogyo Co., Ltd. Liquid container
JP2003246606A (en) * 2001-11-14 2003-09-02 Ceca Sa Syngas purifying method
JP2006527159A (en) * 2003-06-11 2006-11-30 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Purification of H2 / CO mixture by catalytic reaction of impurities
JP4814087B2 (en) * 2003-06-11 2011-11-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Purification of H2 / CO mixture by catalytic reaction of impurities
JP2008505047A (en) * 2004-07-09 2008-02-21 アセテクス(キプロス)リミテッド Preparation of synthesis gas for acetic acid synthesis by partial oxidation of methanol feedstock
JP2006342014A (en) * 2005-06-08 2006-12-21 Kobe Steel Ltd Method for producing high purity hydrogen
JP2010083754A (en) * 2008-09-29 2010-04-15 Ifp Process for producing hydrogen with complete capture of co2 and recycling unconverted methane
CN110627017A (en) * 2019-10-30 2019-12-31 苏州海连净化设备有限公司 Methanol pyrolysis hydrogen production device

Also Published As

Publication number Publication date
JPH0761843B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP4903339B2 (en) Method for producing carbon monoxide by catalytic reverse conversion
EP0650950B1 (en) Process for the production of methanol
CA2565604C (en) Hydrogen generation process using partial oxidation/steam reforming
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
CN105858606B (en) A kind of full temperature journey pressure varying adsorption of purified method of ultra-pure hydrogen
US4203915A (en) Process of producing methanol
CN110180383B (en) Hydrogen sulfide acid gas and hydrogen sulfide resource cooperative recovery device and method
US3969481A (en) Process for generating ultra high purity H2 or O2
CN100381354C (en) Heavy water production process and apparatus
JPS6241701A (en) Pressure swing type gas separator in methanol decomposition apparatus
JP4564259B2 (en) Method for catalytic production of methanol and apparatus for carrying out the method
CN100374184C (en) A process and apparatus for purifying hydrogen bromide
CN107789969B (en) Method and device for treating refinery acid gas
JP2005509016A5 (en)
CN216377479U (en) Plasma reforming distributed natural gas hydrogen production device
RU2203214C1 (en) Methanol production process
JP2001097906A (en) Method for producing methanol
US3144307A (en) Process for the selective adsorption of hydrogen sulfide and its subsequent catalytic conversion to elemental sulphur
JPH03242302A (en) Production of hydrogen and carbon monoxide
JP2000233918A (en) Production of carbon monoxide
CN1184136C (en) Method for preparing high purity hydrogen by catalyzing dry gas being as raw material
KR101315676B1 (en) Apparatus for simultaneous production of synthetic oil and electricity using Fischer-Tropsch synthesis reactor unit and Fuel Cell unit and method thereof
JP2686349B2 (en) Pressure swing hydrogen purification method
JP3782311B2 (en) Chemical reactor
Zou et al. The separation enhanced reaction process (SERP) in the production of hydrogen from methane steam reforming