JP2686349B2 - Pressure swing hydrogen purification method - Google Patents

Pressure swing hydrogen purification method

Info

Publication number
JP2686349B2
JP2686349B2 JP2177528A JP17752890A JP2686349B2 JP 2686349 B2 JP2686349 B2 JP 2686349B2 JP 2177528 A JP2177528 A JP 2177528A JP 17752890 A JP17752890 A JP 17752890A JP 2686349 B2 JP2686349 B2 JP 2686349B2
Authority
JP
Japan
Prior art keywords
hydrogen
adsorption
pressure
adsorption stage
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2177528A
Other languages
Japanese (ja)
Other versions
JPH0465302A (en
Inventor
順 泉
博之 蔦谷
清一 田辺
祥三 金子
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2177528A priority Critical patent/JP2686349B2/en
Publication of JPH0465302A publication Critical patent/JPH0465302A/en
Application granted granted Critical
Publication of JP2686349B2 publication Critical patent/JP2686349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】 〔産業上の利用分野〕 アンモニアプラント、都市ガスプラント、水素製造プ
ラント等の水蒸気改質炉による水蒸気改質ガス又はコー
クス炉オブガス等の水素ガスとこれに随伴するCO,CO2
よりなるガスからの圧力スイング式水素精製方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] Hydrogen gas such as steam reforming gas by a steam reforming furnace such as an ammonia plant, a city gas plant, a hydrogen production plant or a coke oven of gas and its accompanying CO, The present invention relates to a pressure swing type hydrogen purification method from a gas such as CO 2 .

〔従来の技術〕[Conventional technology]

コークス炉、石油精製プラントオフガス、天然ガス、
液化石油ガス、ナフサ原料とする水蒸気改質炉等では
H2,CO,CO2,H2O等を主成分とするガスを生成する。この
混合ガスからのH2の選択的な濃縮は、H2の広範な用途を
考えると極めて有意義かつ重要である。
Coke oven, oil refinery off-gas, natural gas,
In liquefied petroleum gas, steam reforming furnaces that use naphtha as raw material, etc.
It produces a gas containing H 2 , CO, CO 2 , H 2 O, etc. as its main components. The selective enrichment of H 2 from this gas mixture is extremely significant and important given the wide range of applications for H 2 .

H2は従来高級炭化水素に触媒の共存条件下で接触させ
て低級化する水添反応に用いられる他、メタノール合
成、アンモニア合成等化学工業上の基礎物質として広く
用いられている。
H 2 is conventionally used in a hydrogenation reaction in which a higher hydrocarbon is brought into contact with a higher hydrocarbon under coexisting conditions to lower the hydrogen, and is also widely used as a basic substance in the chemical industry such as methanol synthesis and ammonia synthesis.

他の用途としてはH2のO2との燃焼反応により瞬時に多
量のエネルギーを生成するために、燃料電池、水素エン
ジン等ロケット燃料との燃料として注目されている。
As another application, since a large amount of energy is instantly generated by the combustion reaction of H 2 with O 2 , it has been attracting attention as a fuel for rocket fuels such as fuel cells and hydrogen engines.

従来のH2の精製の代表的な方法の概要を述べると装置
は3塔又は4塔又はそれ以上の吸着塔、開閉弁、流量制
御弁から構成される。
An outline of a typical method for purifying conventional H 2 is as follows. The apparatus is composed of three or four or more adsorption columns, an on-off valve, and a flow control valve.

この装置に於いて1塔に供給されたH2,CO,CO2,H2O等
を主成分とする高圧の混合ガスは、入口側より逐次H2O,
CO2,COの強吸着成分から難吸着成分の順に吸着される。
The high-pressure mixed gas containing H 2 , CO, CO 2 , H 2 O, etc., as the main components, which was supplied to one tower in this device, was sequentially fed from the inlet side to H 2 O,
CO 2 and CO are adsorbed in order from the strongly adsorbed component to the difficultly adsorbed component.

吸着塔入口付近に通常アルミナ、活性炭等の強吸着成
分の吸着に適した吸着剤を配し、後流には弱吸着成分用
にゼオライト系吸着剤を配する。
Usually, an adsorbent suitable for adsorbing strongly adsorbing components such as alumina and activated carbon is arranged near the inlet of the adsorption tower, and a zeolite adsorbent for weakly adsorbing components is arranged in the downstream.

H2は殆どの吸着剤に対して吸着能を示さないため、出
口からの高圧のまま流過する。この工程を続けると塔出
口からH2以外のガスが流過を始めるため、その前に原料
ガスの供給を終了する。(吸着工程終了) この時他の塔では塔内圧は大気圧に迄降圧し後述する
要領で既に吸着剤は再生されている。(再生工程終了) 吸着工程終了時の塔にはまだ多量のH2が残存している
ため、再生工程終了時の塔を後方で結ぶと高圧の塔から
はH2が流出して低圧の塔に回収され、互いの塔の圧力は
等しくなる。(塔間均圧工程) この後、更に塔の前方を開放して向流に減圧すると吸
着塔内圧力は低下し、吸着されたCO,CO2,H2O等は吸着剤
から離脱し系外に放出される。
Since H 2 does not have an adsorbing ability for most adsorbents, it flows through as it is at a high pressure from the outlet. If this step is continued, gas other than H 2 will start to flow from the outlet of the tower, so the supply of the raw material gas is terminated before that. (End of adsorption step) At this time, in the other columns, the column internal pressure is reduced to atmospheric pressure, and the adsorbent has already been regenerated as described later. (End of regeneration process) Since a large amount of H 2 still remains in the tower at the end of the adsorption process, connecting the towers at the end of the regeneration process causes H 2 to flow out from the high pressure column and the low pressure column. And the pressure in each tower becomes equal. (Inter-column pressure equalization process) After that, if the front of the column is further opened and the pressure is reduced in countercurrent, the pressure inside the adsorption column will decrease, and the adsorbed CO, CO 2 , H 2 O, etc. will separate from the adsorbent and the system will be released. Released to the outside.

(減圧工程) この工程のみでは不充分なため、大気圧条件下製品H2
の一部を向流に流すと吸着剤からは更に徹底して被吸着
ガスが離脱して再生される。(製品H2パージ) 複数の塔において同様の操作を周期をずらして行なう
ことによって、連続的にH2を回収することができる。
(Depressurization process) Since only this process is insufficient, the product H 2
When a part of the adsorbent gas is caused to flow countercurrently, the adsorbed gas is more thoroughly desorbed from the adsorbent and regenerated. By performing shifting the cycle the same operation in (product H 2 purge) a plurality of columns, it can be recovered continuously H 2.

上記の水素の精製方法では、一般的には、 塔数を多くして塔間均圧を行なう程、H2回収率は上昇
するが、単位吸着剤、単位時間当りのH2精製量は低下す
る。
In the above hydrogen purification method, in general, the more the number of columns is increased and the pressure between the columns is increased, the higher the H 2 recovery rate is, but the lower the H 2 purification amount per unit adsorbent and unit time is. To do.

高圧吸着、大気圧再生であるために、圧力が低下する
と製品H2パージ用のH2の確保が困難となり、吸着圧力は
10atm以上が望ましい。
Due to high pressure adsorption and atmospheric pressure regeneration, it becomes difficult to secure H 2 for product H 2 purging when the pressure drops, and the adsorption pressure is
10atm or more is desirable.

と言われている。It is said that.

このため、塔間均圧を主体とする製品H2の回収率の向
上に工夫が凝らされているが、H2の回収率は85%が最高
である。
For this reason, efforts have been made to improve the recovery rate of the product H 2 which is mainly due to the pressure equalization between the towers, but the maximum H 2 recovery rate is 85%.

H2濃度については容易に高純度のH2が得られ最高到達
濃度は99.999%に達する。
Regarding H 2 concentration, high-purity H 2 can be easily obtained, and the maximum attainable concentration reaches 99.999%.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の従来の方法では、未吸着水素の回収のために吸
着終了後の高圧塔と減圧再生終了後の低圧塔の間で逐次
塔間均圧を行なう方法が取られている。この方法では、
電力等のユーティリティを使用せずに水素回収を計るこ
ととなるが、以下の欠点を有する。
In the above-mentioned conventional method, in order to recover unadsorbed hydrogen, a method of sequentially performing inter-column pressure equalization between the high pressure column after completion of adsorption and the low pressure column after completion of decompression regeneration is adopted. in this way,
Although hydrogen will be recovered without using a utility such as electric power, it has the following drawbacks.

水素の高回収率を計るためには塔数の増加と多段に亘
る塔間均圧操作が必要である。このため、複雑なシーケ
ンスと多数のバルブが必要である。
In order to measure the high recovery rate of hydrogen, it is necessary to increase the number of towers and operate the pressure equalization between towers in multiple stages. This requires complex sequences and multiple valves.

水素の高回収率を計るためには多段の塔間均圧操作が
必要であるので吸着圧力を高く設定する必要がある。
In order to measure the high recovery rate of hydrogen, it is necessary to set a high adsorption pressure because a multistage pressure equalization operation between columns is required.

水蒸気改質装置からの水素精製する例として、シフト
反応器後流の水素70vol%CO225vol%,CO5vol%のガスか
ら99.9vol%の水素を精製する場合を挙げると、圧力20a
tm4塔式吸着塔で水素回収率70%、10塔式で85%といわ
れ、また10atmの4塔式では水素回収率は60%を下廻
る。
As an example of purifying hydrogen from a steam reformer, the case of purifying 99.9vol% hydrogen from 70vol% CO 2 25vol% gas and 5vol% CO gas in the downstream of the shift reactor, the pressure is 20a.
It is said that the tm4 tower type adsorption tower has a hydrogen recovery rate of 70% and the 10 tower type has a hydrogen recovery rate of 85%, and the 10 atm four tower type has a hydrogen recovery rate of less than 60%.

この水素回収率の低下の原因は、第一にCO以下の弱吸
着成分の吸着帯(吸着されるゾーン)が長いために、吸
着剤間及び吸着剤内部の空隙に高純度の水素が残留し、
これが回収されないことに起因する。
The cause of this decrease in the hydrogen recovery rate is, first of all, because the adsorption zone (adsorption zone) for weakly adsorbing components below CO is long, so high-purity hydrogen remains between the adsorbents and in the voids inside the adsorbents. ,
This is because it is not collected.

本発明は、以上の従来の圧力スイング式水素精製方法
の欠点を解消しようとするものである。
The present invention is intended to solve the above-mentioned drawbacks of the conventional pressure swing hydrogen purification method.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、加圧下で水素とこれに随伴するCO,CO2等よ
りなる原料ガス中の水素に随伴する成分を吸着剤によっ
て吸着して高純度水素を精製し、減圧下で吸着成分を離
脱させて吸着剤を再生する系を複数個備え、各系におい
て上記吸着及び離脱を交互に繰り返す圧力スイング式水
素精製方法において、CO2以上の強吸着成分を吸着する
吸着剤を充填した第一の吸着段に、次いでCO以下の弱吸
着成分を吸着する吸着剤を充填した第二の吸着段に加圧
された原料ガスを導入し、原料ガス中から先づ上記第一
の吸着段においてCO2以上の強吸着成分を吸着し、次い
で上記第二の吸着段でCO以下の弱吸着成分を吸着して高
純度の水素を得た後、上記第一の吸着段で吸着された強
吸着成分を減圧下で離脱して系外に放出すると共に、上
記第二の吸着段で吸着された弱吸着成分を減圧下で離脱
した後同第二の吸着段に残存する水素と共にシフトコン
バータに導入してCOとH2Oを反応させて水素を発生させ
た上更に上記吸着段へ導入して再精製することを特徴と
する。
The present invention, CO is associated hydrogen thereto under pressure, the components that accompany the hydrogen in the source gas consisting of CO 2, etc. is adsorbed by the adsorbent and purified high-purity hydrogen, leaving the adsorbed components in vacuo A plurality of systems for regenerating the adsorbent are provided, and in each of the pressure swing type hydrogen purification methods in which the adsorption and desorption are alternately repeated in each system, the first adsorbent that adsorbs a strongly adsorbed component of CO 2 or more is used. The pressurized raw material gas is introduced into the adsorption stage and then into the second adsorption stage filled with an adsorbent that adsorbs weakly adsorbed components of CO or less, and CO 2 is introduced in the first adsorption stage from the raw material gas first. After adsorbing the above strongly adsorbed components, and then adsorbing weakly adsorbed components of CO or less at the second adsorption stage to obtain high-purity hydrogen, the strongly adsorbed components adsorbed at the first adsorption stage are removed. It is released under reduced pressure, released outside the system, and adsorbed in the second adsorption stage above. After desorbing the weakly adsorbed components under reduced pressure, they are introduced into the shift converter together with the hydrogen remaining in the second adsorption stage to react CO with H 2 O to generate hydrogen, and then to the above adsorption stage. It is characterized in that it is purified again.

〔作用〕[Action]

本発明では、原料ガス中のCO2,CO等は、それぞれ吸着
塔内の第一吸着段及び第二吸着段において吸着され、高
純度の水素が第一、第二の吸着段を通過して回収され、
これが複数の系で順次行なわれて連続的に水素の回収が
行なわれる。
In the present invention, CO 2 in the raw material gas, CO, etc. are respectively adsorbed in the first adsorption stage and the second adsorption stage in the adsorption tower, high-purity hydrogen passes through the first and second adsorption stages. Recovered,
This is sequentially performed in a plurality of systems to continuously collect hydrogen.

各系の吸着段について見ると、以上の吸着工程が終了
すると、CO2以上の強吸着成分を吸着した吸着剤が充填
された第一の吸着段は減圧されて、上記強吸着成分は吸
着剤から離脱されて吸着剤の再生が行なわれ、吸着剤か
ら離脱されたCO2以上の強吸着成分は系外に排出され
る。
Looking at the adsorption stage of each system, when the above adsorption process is completed, the first adsorption stage filled with the adsorbent that has adsorbed the strongly adsorbed component of CO 2 or more is decompressed, and the strongly adsorbed component is the adsorbent. The adsorbent is regenerated by being separated from the adsorbent, and the strongly adsorbed component of CO 2 or more separated from the adsorbent is discharged out of the system.

一方、COよりも弱吸着成分を吸着する第二の吸着段
は、吸着工程が終了した段階で吸着剤には弱吸着成分が
吸着され空隙には高純度の水素が高圧で残留している。
この第二の吸着段が減圧され、吸着剤からCO以下の弱吸
着分が離脱され、同吸着剤が再生される。また、吸着さ
れてCO及びCOより弱い吸着力をもつ成分は吸着剤より離
脱されて、残存する水素と共にシフトコンバータに導入
され、同シフトコンバータにおいてCOはシフト反応によ
りCO+H2O→H2+CO2として水素に転換された原料ガスと
合流して再び上記第一及び第二吸着段に至り水素が精製
される。
On the other hand, in the second adsorption stage that adsorbs weakly adsorbed components rather than CO, the weakly adsorbed components are adsorbed by the adsorbent at the stage when the adsorption step is completed, and high-purity hydrogen remains in the voids at high pressure.
The second adsorption stage is decompressed, weakly adsorbed components of CO or less are separated from the adsorbent, and the adsorbent is regenerated. In addition, CO and components having a weaker adsorption force than CO are desorbed from the adsorbent and introduced into the shift converter together with the remaining hydrogen. In the shift converter, CO shifts to CO + H 2 O → H 2 + CO 2 As a result, the raw material gas, which has been converted to hydrogen, joins and reaches the first and second adsorption stages again to purify hydrogen.

このように、本発明では、第二の吸着段に残存する水
素を回収すると共に、同第二の吸着段で吸着されたCOを
吸着剤から離脱させた上、これによってシフトコンバー
タで水素を得ることができるために、吸着時の圧力を低
くしても水素の高回収率が実現される。
As described above, in the present invention, the hydrogen remaining in the second adsorption stage is recovered, and the CO adsorbed in the second adsorption stage is desorbed from the adsorbent, whereby hydrogen is obtained by the shift converter. Therefore, a high hydrogen recovery rate can be achieved even if the pressure during adsorption is lowered.

〔実施例〕〔Example〕

第1図に高水素回収率を実現した本発明の一実施例を
示す。
FIG. 1 shows an embodiment of the present invention that realizes a high hydrogen recovery rate.

第1図において、水蒸気改質炉1を出た乾ガス基準で
水素70vol%,CO2 20vol%,CO 10vol%の圧力7atmの水
蒸気改質ガス100Nm3/hは、流路2、熱交3を経て250℃
に降温し、シフトコンバータ4に至る。シフトコンバー
タ4にはシフト触媒5が充填されており、CO+H2O→H2
+CO2の反応でCOは5vol%迄低減され、流路6、バルブ7
aを経て、並列に配置されたCO2以上の強吸着成分吸着段
8a,8bの一方の強吸着成分吸着段8aに至る。強吸着成分
吸着段8aは前方には水分吸着用にアルミナ9が後方には
CO2吸着剤として(Na-X)10が充填されており、水分、C
O2等の強吸着成分が吸着除去されてバルブ11aを経て、
後流側のCO以下の弱吸着成分吸着段12aに至る。弱吸着
成分吸着段12aにはCO吸着剤として(Ca-X)13が充填さ
れCO等の弱吸着成分が吸着されて99.9vol%以上の高濃
度水素がバルブ14aを通じて製品水素ホルダ15に至る。
この時、それぞれ上記吸着段8a,12aと並列に配置され同
様の吸着剤が充填された他方の強吸着成分吸着段8b、弱
吸着成分吸着段12bは真空ポンプ16により、0.5atmの減
圧に到達し、吸着剤が再生されている。
In FIG. 1, 100 Nm 3 / h of steam reformed gas of 70 vol% hydrogen, 20 vol% CO 2 and 10 vol% CO at a pressure of 7 atm on the basis of dry gas discharged from the steam reforming furnace 1, the flow path 2 and the heat exchange 3 Through 250 ℃
The temperature is lowered to the shift converter 4. The shift converter 4 is filled with the shift catalyst 5, and CO + H 2 O → H 2
CO is reduced to 5 vol% by the reaction of + CO 2 , and the flow path 6 and valve 7
CO 2 or more strongly adsorbed component adsorption stages arranged in parallel via a
One of the strong adsorption components 8a and 8b reaches the adsorption stage 8a. The strongly adsorbing component adsorption stage 8a has alumina 9 for adsorbing water in the front
It is filled with (Na-X) 10 as a CO 2 adsorbent and contains water, C
Strongly adsorbed components such as O 2 are adsorbed and removed, and after passing through the valve 11a,
The weaker adsorbent component of CO or less on the downstream side reaches the adsorption stage 12a. The weak adsorption component adsorption stage 12a is filled with (Ca-X) 13 as a CO adsorbent to adsorb weak adsorption components such as CO, and high concentration hydrogen of 99.9 vol% or more reaches the product hydrogen holder 15 through the valve 14a.
At this time, the other strong adsorption component adsorption stage 8b and the weak adsorption component adsorption stage 12b, which are arranged in parallel with the adsorption stages 8a and 12a and are filled with the same adsorbent, reach a reduced pressure of 0.5 atm by the vacuum pump 16. However, the adsorbent is being regenerated.

上記吸着段8b,12bの再生が終了すると、11a,17a,17b,
11bを開きその他のバルブを閉じると、吸着段12aの後方
に残留する水素が低圧の吸着段12bに回収され、吸着の
終了した7atmの吸着段8a,12aは3.75atmに降圧し、一方
再生が終了した0.5atmの吸着段8b,12bは3.75atmへと昇
圧し吸着段間の圧力は等しくなる。
When the regeneration of the adsorption stages 8b, 12b is completed, 11a, 17a, 17b,
When 11b is opened and the other valves are closed, hydrogen remaining behind the adsorption stage 12a is recovered by the low-pressure adsorption stage 12b, and the adsorption stage 8a, 12a of 7atm after the adsorption is reduced to 3.75atm, while the regeneration is performed. The pressure of the adsorption stages 8b and 12b of 0.5 atm which has been completed is increased to 3.75 atm and the pressure between the adsorption stages becomes equal.

3.75atmに降圧した吸着段に着目すると、強吸着成分
吸着段8aでは先づバルブ18a,19を開いて大気圧迄降圧し
大気圧以下ではバルブ19を閉じて真空ポンプ16で系外に
CO2等の強吸着成分が脱着される。一方弱吸着成分段12a
ではバルブ20aを開いて再循環圧縮機21にて吸着剤から
離脱したCOと吸着段12aに残存する水素を主成分とする
ガスが流路22からシフトコンバータ4の上流に再循環さ
れる。弱吸着成分段12aの圧力が大気圧になるとバルブ2
0aを閉じてバルブ11aを開き残るガスは、強吸着成分段8
aと同様に真空排気される。
Focusing on the adsorption stage reduced to 3.75 atm, in the strong adsorption component adsorption stage 8a, the valves 18a and 19 are first opened to reduce the pressure to atmospheric pressure, and below the atmospheric pressure, the valve 19 is closed and the vacuum pump 16 is used outside the system.
Strongly adsorbed components such as CO 2 are desorbed. On the other hand, weakly adsorbed component stage 12a
Then, the valve 20a is opened and the gas having CO as a main component and hydrogen remaining in the adsorption stage 12a in the recirculation compressor 21 is recirculated from the flow path 22 to the upstream side of the shift converter 4. When the pressure of the weakly adsorbed component stage 12a becomes atmospheric pressure, the valve 2
0a is closed and valve 11a is left open.
It is evacuated as in a.

この後は、並列に配置された吸着段8a,12a,8b,12bを
入れ換えて同様な操作を行なう。
After that, the adsorption stages 8a, 12a, 8b, 12b arranged in parallel are exchanged and the same operation is performed.

なお、上記吸着工程において、3.75atmから7atmへ昇
圧する場合には、バルブ23,17aを開いて製品水素をホル
ダ15から、向流に流して昇圧し水蒸気改質炉1に吸着段
の圧力変動が伝わらないように配慮がなされている。
In the adsorption process, when the pressure is increased from 3.75 atm to 7 atm, the valves 23 and 17a are opened to flow the product hydrogen from the holder 15 in a countercurrent direction to increase the pressure to cause the pressure fluctuation of the adsorption stage in the steam reforming furnace 1. Is taken into consideration so that it will not be transmitted.

上記の製品水素ホルダ15に至った99.9vol%の高純度
水素は流路24から高圧のまま取り出される。真空ポンプ
16から放出されたCO2等の強吸着成分は流路25から水蒸
気改質炉1の燃料として供給される。
The high-purity hydrogen of 99.9 vol% reaching the product hydrogen holder 15 is taken out from the flow path 24 under high pressure. Vacuum pump
The strongly adsorbed component such as CO 2 released from 16 is supplied as fuel for the steam reforming furnace 1 from the flow path 25.

また、流路22から供給されるCO及び水素の高圧の弱吸
着成分はシフトコンバータ4で原料ガスと合流して上述
の水素精製が実施される。
Further, the high-pressure weakly adsorbed components of CO and hydrogen supplied from the flow path 22 are combined with the raw material gas in the shift converter 4 to carry out the above-mentioned hydrogen purification.

以上説明したように、本実施例では、弱吸着成分を吸
収する吸着段12a,12bから吸着されたCOが同吸着段に残
存する水素と共にシフトコンバータ4へ導入され、こゝ
でCOが反応して水素を発生させ、これらを再び吸着段8
a,12a;8b,12bへ導入することによって、水素の回収率を
著しく高めることができる。
As described above, in this embodiment, the CO adsorbed from the adsorption stages 12a and 12b that absorbs weakly adsorbed components is introduced into the shift converter 4 together with the hydrogen remaining in the adsorption stages, and the CO reacts there. To generate hydrogen, which are then adsorbed to the adsorption stage 8
By introducing into a, 12a; 8b, 12b, the recovery rate of hydrogen can be significantly increased.

発明者は第1図に示す実施例の効果を確認すべく、原
料乾ガス量100Nm3/h.成分H2 70vol%CO2 25vol%,CO5vo
l%,圧力7atmのシフトコンバータ出口のガスを、第1
図に示す水素精製装置に導入して本発明の水素精製性能
を確認した。
In order to confirm the effect of the embodiment shown in FIG. 1, the inventor has a raw material dry gas amount of 100 Nm 3 / h. Component H 2 70vol% CO 2 25vol%, CO5vo
The gas at the shift converter outlet with l% and pressure of 7 atm is
The hydrogen purification performance of the present invention was confirmed by introducing the hydrogen purification apparatus shown in the figure.

第2図はこの装置の製品水素濃度99.9vol%での吸着
塔圧力(atm)と製品水素回収率(vol%)の関係であ
る。実線と実施例、一点鎖線は従来法の4塔式高圧吸着
大気圧再生の水素精製性能(回収率)を示す。従来法で
20atmで最高85%、5atmでは40%を下廻るのに対し、本
実施例では3atm以上ではほぼ95%の水素回収率を示すこ
とが確認された。
Fig. 2 shows the relationship between the adsorption column pressure (atm) and product hydrogen recovery rate (vol%) at a product hydrogen concentration of 99.9 vol% in this equipment. The solid line, the example, and the alternate long and short dash line show the hydrogen purification performance (recovery rate) of the conventional 4-column high-pressure adsorption atmospheric pressure regeneration. Conventional method
It was confirmed that the maximum hydrogen recovery rate at 20 atm was less than 85% and that at 5 atm was less than 40%, whereas in the present example, the hydrogen recovery rate was almost 95% at 3 atm or more.

また、第3図は製品水素濃度99.9vol%での吸着塔圧
力(atm)と1Tonの吸着剤での水素精製量の関係を示
す。本実施例では80〜200Nm3/h/Tonの値を示し、従来法
を30%上廻る。これは、本実施例では、多段の塔(吸着
段)間均圧がないために、より大きな吸着能力を保持で
きるためである。
Further, Fig. 3 shows the relationship between the adsorption tower pressure (atm) at a product hydrogen concentration of 99.9 vol% and the hydrogen purification amount with 1 Ton of adsorbent. In this embodiment, a value of 80 to 200 Nm 3 / h / Ton is shown, which is 30% higher than that of the conventional method. This is because, in this example, since there is no pressure equalization between multiple columns (adsorption stage), a larger adsorption capacity can be maintained.

なお、上記実施例で示されるように、本実施例は、低
圧においても高い水素回収率を得ることができ、従っ
て、使用時に水素を減圧する必要がないために、耐圧強
度の低い燃料電池等に水素を供給する場合に適してい
る。また、同じ理由によって、コークス炉のオフガスの
ように低圧の水素含有ガスから水素を精製して回収する
場合にも適している。
As shown in the above embodiment, this embodiment can obtain a high hydrogen recovery rate even at a low pressure, and therefore, it is not necessary to depressurize hydrogen at the time of use. Suitable for supplying hydrogen to. Further, for the same reason, it is suitable for purifying and recovering hydrogen from a low-pressure hydrogen-containing gas such as off-gas of a coke oven.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、圧力スイング式水素
精製装置の各系において、CO2以上の強吸着成分を吸着
する第一の吸着段とCO以下の弱吸着成分を吸着する第二
の吸着段において吸着を行ない、これを複数の系で順次
交互に繰り返すことによって、連続的に高濃度の水素を
回収することができる。
As described above, the present invention is, in each system of the pressure swing type hydrogen purifier, a first adsorption stage for adsorbing strongly adsorbed components of CO 2 or more and a second adsorption stage for adsorbing weakly adsorbed components of CO or less. By adsorbing in a stage and repeating this alternately in a plurality of systems, a high concentration of hydrogen can be continuously recovered.

また、第一の吸着段から離脱した強吸着成分であるCO
2,H2O等は系外に放出すると共に、第二の吸着段から離
脱したCOと同吸着段に残存する水素をシフトコンバータ
に導入してCOによって水素を発生させ、更にこれらを再
び吸着段に導入することによって水素の回収率を著しく
高めることができる。
In addition, CO, which is a strongly adsorbed component separated from the first adsorption stage,
2 , H 2 O, etc. are released to the outside of the system, and CO desorbed from the second adsorption stage and hydrogen remaining in the same adsorption stage are introduced into the shift converter to generate hydrogen by CO, and these are adsorbed again. By introducing the hydrogen into the stage, the recovery rate of hydrogen can be significantly increased.

また更に、本発明は、吸着段を低圧にしても高い水素
回収率を得ることができる。
Furthermore, according to the present invention, a high hydrogen recovery rate can be obtained even when the pressure of the adsorption stage is low.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の系統図、第2図は同実施例
の効果に関し圧力と製品水素回収率の関係を示すグラ
フ、第3図は同実施例の効果に関し吸着剤量と製品水素
量の関係を示すグラフである。 1…水蒸気改質炉,4…シフトコンバータ,8a,8b…強吸着
成分吸着段,9…アルミナ,12a,12b…弱吸着成分吸着段,1
5…製品水素ホルダ,16…真空ポンプ,21…再循環圧縮
機。
FIG. 1 is a system diagram of one embodiment of the present invention, FIG. 2 is a graph showing the relationship between pressure and product hydrogen recovery rate regarding the effect of the same embodiment, and FIG. 3 is an adsorbent amount regarding the effect of the same embodiment. It is a graph which shows the relationship of product hydrogen amount. 1 ... Steam reforming furnace, 4 ... Shift converter, 8a, 8b ... Strong adsorption component adsorption stage, 9 ... Alumina, 12a, 12b ... Weak adsorption component adsorption stage, 1
5… Product hydrogen holder, 16… Vacuum pump, 21… Recirculation compressor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田辺 清一 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会社内 (72)発明者 金子 祥三 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 久留 長生 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 平1−242120(JP,A) 特開 昭60−103002(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Seiichi Tanabe 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. (72) Inventor Shozo Kaneko 1-1-1, Atunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industrial Co., Ltd. Nagasaki Shipbuilding Co., Ltd. (72) Inventor, Nagao Kurume, Nagano Prefecture Nagasaki City, No. 1-1 Atsunoura-machi Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) Reference JP-A-1-242120 (JP, A) JP Sho 60-103002 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加圧下で水素とこれに随伴するCO,CO2等よ
りなる原料ガス中の水素に随伴する成分を吸着剤によっ
て吸着して高純度水素を精製し、減圧下で吸着成分を離
脱させて吸着剤を再生する系を複数個有し、各系におい
て上記吸着及び離脱を交互に繰り返えす圧力スイング式
水素精製方法において、CO2以上の強吸着成分を吸着す
る吸着剤を充填した第一の吸着段に、次いでCO以下の弱
吸着成分を吸着する吸着剤を充填した第二の吸着段に、
加圧された原料ガスを導入し、原料ガス中から先づ上記
第一の吸着段においてCO2以上の強吸着成分を吸着し、
次いで上記第二の吸着段でCO以下の弱吸着成分を吸着し
て高純度の水素を得た後、上記第一の吸着段で吸着され
た強吸着成分を減圧下で離脱して系外に放出すると共
に、上記第二の吸着段で吸着された弱吸着成分を減圧下
で離脱した後同第二吸着段に残存する水素と共にシフト
コンバータに導入してCOとH2Oを反応させて水素を発生
させた上更に上記吸着段へ導入して再精製することを特
徴とする圧力スイング式水素精製方法。
1. A high-purity hydrogen is purified by adsorbing a component of hydrogen and a component of hydrogen in a raw material gas, such as CO and CO 2 which accompanies it under pressure, by an adsorbent to purify high-purity hydrogen. In a pressure swing type hydrogen purification method that has multiple systems for desorbing and regenerating the adsorbent, and repeating the adsorption and desorption alternately in each system, fill the adsorbent that adsorbs strongly adsorbed components of CO 2 or more. To the first adsorption stage, and then to the second adsorption stage filled with an adsorbent that adsorbs weakly adsorbed components below CO,
Introducing a pressurized raw material gas, adsorbing strongly adsorbed components of CO 2 or more in the first adsorption stage from the raw material gas,
Then, in the second adsorption stage, weakly adsorbed components of CO or less are adsorbed to obtain high-purity hydrogen, and then the strongly adsorbed components adsorbed in the first adsorption stage are desorbed under reduced pressure to the outside of the system. At the same time as releasing the weakly adsorbed components adsorbed in the second adsorption stage under reduced pressure, they are introduced into the shift converter together with the hydrogen remaining in the second adsorption stage and reacted with CO and H 2 O to produce hydrogen. Is generated and further introduced into the adsorption stage for re-purification, and a pressure swing-type hydrogen purification method is characterized.
JP2177528A 1990-07-06 1990-07-06 Pressure swing hydrogen purification method Expired - Fee Related JP2686349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177528A JP2686349B2 (en) 1990-07-06 1990-07-06 Pressure swing hydrogen purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177528A JP2686349B2 (en) 1990-07-06 1990-07-06 Pressure swing hydrogen purification method

Publications (2)

Publication Number Publication Date
JPH0465302A JPH0465302A (en) 1992-03-02
JP2686349B2 true JP2686349B2 (en) 1997-12-08

Family

ID=16032503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177528A Expired - Fee Related JP2686349B2 (en) 1990-07-06 1990-07-06 Pressure swing hydrogen purification method

Country Status (1)

Country Link
JP (1) JP2686349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132040A1 (en) * 2005-06-07 2006-12-14 Kabushiki Kaisha Kobe Seiko Sho Process for producing high-purity hydrogen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402429B1 (en) * 1998-07-07 2003-10-22 닛폰산소 가부시키가이샤 Apparatus for producing highly clean dry air
AU3459500A (en) * 1999-04-02 2000-10-23 Ebara Corporation Method and apparatus for production of hydrogen by gasification of combusible material
JP2005256899A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Hydrogen storage and/or derivation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132040A1 (en) * 2005-06-07 2006-12-14 Kabushiki Kaisha Kobe Seiko Sho Process for producing high-purity hydrogen

Also Published As

Publication number Publication date
JPH0465302A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
TWI521056B (en) Methane recovery method and methane recovery unit
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US7524344B2 (en) Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
US4836833A (en) Production and recovery of hydrogen and carbon monoxide
US7361199B2 (en) Combined water gas shift reactor/carbon dioxide adsorber for use in a fuel cell system
US4790858A (en) Fractionation of multicomponent gas mixtures by pressure swing adsorption
US4869894A (en) Hydrogen generation and recovery
KR101388266B1 (en) Method and apparatus for separating blast furnace gas
US6770390B2 (en) Carbon monoxide/water removal from fuel cell feed gas
US20070227353A1 (en) Process and apparatus to recover medium purity carbon dioxide
KR102624566B1 (en) Method for continuous production of gaseous hydrogen stream
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
US8372375B2 (en) Method of producing high-purity hydrogen
JP3947752B2 (en) High purity hydrogen production method
JP3985006B2 (en) High purity hydrogen production method
JP2014516778A (en) Low energy cyclic PSA process
JP2686349B2 (en) Pressure swing hydrogen purification method
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
JP2004075439A (en) Hydrogen generating apparatus
JPH04206161A (en) Supply method of methanol reformed gas for fuel cell
EP4230575A1 (en) Pressure swing adsorption apparatus for hydrogen purification from ammonia-cracked gas and hydrogen purification method using same
JPS6259041B2 (en)
EP3626328A1 (en) Method for separating a gas mixture by pressure swing adsorption
KR20240023427A (en) Ammonia Decomposition for Green Hydrogen
JPH06126120A (en) Method for increasing co concentration in cracking gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees