JPH06126120A - Method for increasing co concentration in cracking gas - Google Patents

Method for increasing co concentration in cracking gas

Info

Publication number
JPH06126120A
JPH06126120A JP4274628A JP27462892A JPH06126120A JP H06126120 A JPH06126120 A JP H06126120A JP 4274628 A JP4274628 A JP 4274628A JP 27462892 A JP27462892 A JP 27462892A JP H06126120 A JPH06126120 A JP H06126120A
Authority
JP
Japan
Prior art keywords
gas
adsorption
pressure
pressure swing
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4274628A
Other languages
Japanese (ja)
Inventor
Katsushi Kosuge
克志 小菅
Kentaro Shibamura
謙太郎 芝村
Yasushi Kawamura
靖 川村
Toshiya Higuchi
俊也 樋口
Mitsuya Yamada
光矢 山田
Takeo Yuya
武雄 油谷
Yukio Hiranaka
幸男 平中
Akio Hirayama
昭雄 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Osaka Gas Co Ltd
Original Assignee
Nippon Steel Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Osaka Gas Co Ltd filed Critical Nippon Steel Corp
Priority to JP4274628A priority Critical patent/JPH06126120A/en
Publication of JPH06126120A publication Critical patent/JPH06126120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To achieve a stabilized operational condition in a method for increas ing CO concentration in a cracking gas based on a pressure swing adsorption method. CONSTITUTION:In a method for increasing CO concn. in a cracking gas wherein when a hydrocarbon gas is cracked by means of a steam reforming method or a partial oxidation method to form a cracking gas wherein H2, CO, CO2, CH4 and N2 are main ingredients, a CO2 rich gas is recovered by means of a pressure swing adsorption method and the CO2 rich gas is fed as a modifier for cracking the hydrocarbon gas, an adsorbent adsorbing preferentially CO2 gas to other gases is placed in each adsorption tower of the pressure swing adsorption apparatus and before each pressurizing process and desorption process of the pressure swing adsorption method having the pressurizing process, an adsorption process and the desorption process, a pressure uniformizing process uniformizing the inner pressure of each adsorption tower is provided to reduce mixing of the CO2 rich gas into H2 and N2 in the raw material gas. The CO concn. in the cracking gas is increased thereby stably and effectively and a complete utilization cycle of the recovery gas in the recovery of CO can be completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CO2 を含有する混合
ガスを、複数配置したそれぞれの吸着塔に供給し、それ
ぞれ昇圧,吸着,洗浄,脱着の各工程をずらし、繰り返
すことによりCO2 を回収する圧力スイング吸着法(P
SA法)に関する。
BACKGROUND OF THE INVENTION The present invention is a mixed gas containing CO 2, it is supplied to each of the adsorption towers in which a plurality arranged, respectively boost, adsorption, washing, shifting each step of desorption, CO 2 by repeating Swing adsorption method (P
SA method).

【0002】[0002]

【従来の技術】炭化水素ガスを水蒸気改質法又は部分酸
化法によって分解しCO含有ガスを製造する際、CO2
リッチガスを改質剤として供給することにより、分解ガ
ス中のCO濃度が向上することは、従来から知られてい
る。
2. Description of the Related Art When a CO-containing gas is produced by decomposing a hydrocarbon gas by a steam reforming method or a partial oxidation method, CO 2
It has been conventionally known that the CO concentration in the cracked gas is improved by supplying the rich gas as a modifier.

【0003】一般的に改質剤としてCO2 を含有する混
合ガス等よりCO2 リッチガスを回収し供給する手段と
しては、例えばCaloric社のCalcorプロセ
スに記載があるように、CO2 を溶液にて吸収・放散に
より回収するCO2 吸収液法が用いられている。しかし
ながら、前記の方法は、吸収したCO2 を放散する際、
吸収溶液を高温にする必要があり、その分ランニングコ
ストが高くなる。
Generally, as a means for recovering and supplying a CO 2 rich gas from a mixed gas containing CO 2 as a modifier, for example, as described in the Calcor process of Caloric, CO 2 in a solution is used. A CO 2 absorbing solution method is used in which the CO 2 absorbing solution is recovered by absorption and diffusion. However, the above method, when releasing absorbed CO 2 ,
It is necessary to raise the temperature of the absorption solution, which increases the running cost.

【0004】また、前記欠点を解決する方法として、C
2 を含有する混合ガスを、複数配置したそれぞれの吸
着塔に供給し、それぞれ昇圧,吸着,洗浄,脱着の各工
程をずらし、繰り返すことによりCO2 を回収する方法
は、圧力スイング吸着法として従来から知られている。
As a method for solving the above-mentioned drawback, C
A method of supplying a mixed gas containing O 2 to each of a plurality of adsorbing towers arranged and shifting the pressurizing, adsorbing, washing, and desorbing steps and repeating them to recover CO 2 is a pressure swing adsorption method. Known from the past.

【0005】ところで、特開平2−129014号公報
には、かかる圧力スイング吸着法において、1段の圧力
スイング吸着操作を使用して、吸着工程でH2 ,N2
ッチガスを得、次に順方向減圧工程で、吸着方向と同じ
方向で減圧し、COリッチガスを得、さらに、逆方向減
圧工程で逆方向に減圧してCO2 リッチガスを抽出し、
このCO2 リッチガスを改質剤として利用することによ
り、分解ガス中のCOの純度を高める方法が開示されて
いる。
By the way, in Japanese Patent Laid-Open No. 2-129014, in such a pressure swing adsorption method, a one-stage pressure swing adsorption operation is used to obtain H 2 and N 2 rich gas in the adsorption step, and then forward direction. In the depressurization step, the pressure is reduced in the same direction as the adsorption direction to obtain a CO-rich gas, and in the reverse direction depressurization step, the pressure is reduced in the opposite direction to extract the CO 2 rich gas,
A method of increasing the purity of CO in the decomposition gas by using this CO 2 rich gas as a modifier is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この方
式においては、1段の圧力スイング吸着操作による3種
類のガス成分を抽出するものであるため、各成分の抜き
出し量により改質剤としてのCO2 リッチガス成分組成
及び量が大きく影響を受け、炭化水素の水蒸気改質法又
は部分酸化法による分解に際してCO濃度が大きく変動
し、安定した操業が不可能となる欠点がある。
However, in this method, since three kinds of gas components are extracted by one-stage pressure swing adsorption operation, CO 2 as a modifier is extracted depending on the extraction amount of each component. There is a drawback that the composition and amount of the rich gas are greatly affected, the CO concentration fluctuates greatly when the hydrocarbon is decomposed by the steam reforming method or the partial oxidation method, and stable operation becomes impossible.

【0007】本発明の目的は、かかる圧力スイング吸着
法による分解ガス中のCO濃度増大方法において、操業
状態を安定化するための手段を提供することにある。
An object of the present invention is to provide means for stabilizing the operating condition in the method of increasing the CO concentration in the cracked gas by the pressure swing adsorption method.

【0008】[0008]

【課題を解決するための手段】本発明は、炭化水素系ガ
スを水蒸気改質法又は部分酸化法によって分解して、H
2 ,CO,CO2 ,CH4 ,N2 を主成分とする分解ガ
スを生成する際、圧力スイング吸着法によってCO2
ッチガスを回収し、同CO2 リッチガスを炭化水素系ガ
スの分解の改質剤として供給する分解ガス中のCO濃度
増大方法において、圧力スイング吸着装置の各吸着塔に
CO2 ガスを他のガスより優先的に吸着する吸着剤を配
置し、昇圧工程、吸着工程、脱着工程の各工程を有する
圧力スイング吸着法の各昇圧工程と脱着工程の前に、各
吸着塔の内圧を共通化する均圧工程を設け、原料ガス中
のH2 ,N2 のCO2 リッチガスへの混入を少なくする
ことによって目的を達成した。
According to the present invention, a hydrocarbon gas is decomposed by a steam reforming method or a partial oxidation method to obtain H
2, CO, CO 2, CH 4, when the N 2 to produce a decomposition gas mainly composed, a CO 2 rich gas recovered by the pressure swing adsorption method, modification of the decomposition of the hydrocarbon gas to the CO 2 rich gas In the method for increasing the CO concentration in the decomposition gas supplied as an agent, an adsorbent that preferentially adsorbs CO 2 gas over other gases is arranged in each adsorption tower of the pressure swing adsorption device, and a pressure increasing step, adsorption step, desorption step Prior to each pressurizing step and desorbing step of the pressure swing adsorption method having each step, a pressure equalizing step for making the internal pressure of each adsorption column common is provided, and H 2 and N 2 in the raw material gas are converted into CO 2 rich gas. The objective was achieved by reducing the contamination.

【0009】[0009]

【作用】炭化水素ガスにスチーム又はO2 ガスを添加
し、炭化水素を分解する水蒸気改質法又は部分酸化法に
おいて、H2 ,CO,CO2 ,CH4 ,N2 を主成分と
する分解ガスを生成する際、圧力スイング吸着法を適用
してN2 ,H2 等の含有の少ないCO2 リッチガスを分
解回収し、これを炭化水素系ガスの分解反応の改質剤と
して使用することによって分解ガス中のCO濃度が安定
して増大する。
In the steam reforming method or partial oxidation method in which steam or O 2 gas is added to hydrocarbon gas to decompose hydrocarbon, decomposition mainly containing H 2 , CO, CO 2 , CH 4 , and N 2 is performed. When a gas is generated, a pressure swing adsorption method is applied to decompose and recover a CO 2 rich gas containing less N 2 , H 2 and the like, and this is used as a modifier for a decomposition reaction of a hydrocarbon gas. The CO concentration in the cracked gas increases steadily.

【0010】また、分解ガスを該圧力スイング吸着法の
原料ガスとして使用することによって、炭化水素ガスか
らのCO回収に際しての完全な利用サイクルが完成す
る。
Further, by using the cracked gas as a raw material gas for the pressure swing adsorption method, a complete utilization cycle for recovering CO from the hydrocarbon gas is completed.

【0011】[0011]

【実施例】図1は本発明を実施するための操業フローを
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows an operational flow for carrying out the present invention.

【0012】同図において、水蒸気改質法又は部分酸化
法(分解装置)の原料炭化水素ガス中に、スチームある
いはO2 ガス、それに圧力スイング吸着塔によって得た
CO2 リッチガスを添加し、分解装置による触媒反応に
よって、H2 ,CO,CO2,CH4 ,N2 を主成分と
する分解ガスを得る。H2 ,CO,CO2 ,CH4 ,N
2 を主成分とする混合ガスあるいはこの分解ガスを原料
ガスとして、CO2 吸着剤を充填した複数の吸着塔を配
置した圧力スイング吸着装置によって、吸着されたCO
2 リッチガスは、炭化水素分解に際しての改質剤として
利用される。
In the figure, steam or O 2 gas and CO 2 rich gas obtained by a pressure swing adsorption tower are added to the raw hydrocarbon gas of the steam reforming method or partial oxidation method (decomposition apparatus) to decompose it. By the catalytic reaction by, a decomposition gas containing H 2 , CO, CO 2 , CH 4 , and N 2 as main components is obtained. H 2 , CO, CO 2 , CH 4 , N
CO gas adsorbed by a pressure swing adsorption device having a plurality of adsorption columns filled with a CO 2 adsorbent, using a mixed gas containing 2 as a main component or a decomposition gas of this as a raw material gas.
2 Rich gas is used as a modifier in hydrocarbon decomposition.

【0013】図2,3は上記図1における圧力スイング
吸着装置として3基の吸着塔を使用した装置概要と配管
を示す図である。
FIGS. 2 and 3 are views showing the outline and piping of the apparatus using three adsorption towers as the pressure swing adsorption apparatus in FIG.

【0014】図4は上記図1における圧力スイング吸着
装置として2基の吸着塔を使用した装置概要と配管を示
す図である。
FIG. 4 is a diagram showing an outline of the apparatus and piping using two adsorption towers as the pressure swing adsorption apparatus in FIG.

【0015】図2,3において、吸着塔としてCO2
着剤を充填した2基の吸着塔10A,10B,10Cが
配置されており、図1に示す分解ガスの原料ガスは供給
管1によってそれぞれの吸着塔へ供給される。それぞれ
の吸着塔10A,10B,10Cにおいて分離回収され
たCO2 は、真空ポンプ11によって回収管2を介して
バッファタンク12に一旦貯蔵され、バッファタンク1
2からのCO2 リッチガスは、図1に示す炭化水素分解
装置に改質剤として供給される。また、各吸着塔10
A,10B,10Cからの排ガスは、排出管3の圧力調
整弁206を介して排出される。供給管1、回収管2、
排出管3のそれぞれは、切替弁201A〜C、202A
〜C、203A〜C、204A〜C、また、バイパス弁
205によって切り換えられ、これによって、各吸着塔
毎に、均圧,昇圧,吸着,脱着の工程を切り換えて操業
する。
2 and 3, two adsorption towers 10A, 10B and 10C filled with a CO 2 adsorbent are arranged as adsorption towers, and the raw material gas of the decomposition gas shown in FIG. Is supplied to the adsorption tower. The CO 2 separated and recovered in each of the adsorption towers 10A, 10B, 10C is temporarily stored in the buffer tank 12 via the recovery pipe 2 by the vacuum pump 11,
The CO 2 rich gas from 2 is supplied to the hydrocarbon decomposing apparatus shown in FIG. 1 as a modifier. In addition, each adsorption tower 10
The exhaust gas from A, 10B, and 10C is discharged via the pressure adjusting valve 206 of the discharge pipe 3. Supply pipe 1, recovery pipe 2,
Each of the discharge pipes 3 has a switching valve 201A to C, 202A.
.About.C, 203A to C, 204A to C, and the bypass valve 205, whereby the steps of pressure equalization, pressurization, adsorption and desorption are switched and operated for each adsorption tower.

【0016】図5は、図2,3に示す3基の吸着塔10
A,10B,10Cを配置した装置の各操作工程のタイ
ムサイクルを示し、図2,3に示す各配管の切替弁の操
作によって行なわれる。
FIG. 5 shows the three adsorption towers 10 shown in FIGS.
The time cycle of each operation step of the device in which A, 10B, and 10C are arranged is shown, and is performed by operating the switching valve of each pipe shown in FIGS.

【0017】図4において、吸着塔としてCO2 吸着剤
を充填した2基の吸着塔10A,10Bが配置されてお
り、図1に示す分解ガスの原料ガスは供給管1によって
それぞれの吸着塔へ供給される。それぞれの吸着塔10
A,10Bにおいて分離回収されたCO2 は、真空ポン
プ11によって回収管2を介してバッファタンク12に
一旦貯蔵され、バッファタンク12からのCO2 リッチ
ガスは、図1に示す炭化水素分解装置に改質剤として供
給される。また、各吸着塔10A,10Bからの排ガス
は、排出管3の圧力調整弁206を介して排出される。
また、2塔式の場合、均圧工程を行なうため均圧ガスホ
ルダー13が設置され、吸着塔と均圧ガスホルダーにて
均圧が行なわれる。供給管1、回収管2、排出管3のそ
れぞれは、切替弁201A,B、202A,B、203
A,B、204A,B、また、バイパス弁205によっ
て切り換えられ、これによって、各吸着塔毎に、均圧,
昇圧,吸着,脱着の工程を切り換えて操業する。
In FIG. 4, two adsorption towers 10A and 10B filled with a CO 2 adsorbent are arranged as adsorption towers, and the raw material gas of the decomposition gas shown in FIG. Supplied. Each adsorption tower 10
The CO 2 separated and recovered in A and 10B is temporarily stored in the buffer tank 12 by the vacuum pump 11 via the recovery pipe 2, and the CO 2 rich gas from the buffer tank 12 is converted to the hydrocarbon decomposing device shown in FIG. Supplied as a substance. Further, the exhaust gas from each of the adsorption towers 10A and 10B is discharged via the pressure adjusting valve 206 of the discharge pipe 3.
In the case of the two-column type, a pressure equalizing gas holder 13 is installed to perform the pressure equalizing step, and pressure equalization is performed by the adsorption tower and the pressure equalizing gas holder. Each of the supply pipe 1, the recovery pipe 2, and the discharge pipe 3 has switching valves 201A, B, 202A, B, 203.
A, B, 204A, B, and the bypass valve 205 are used to switch the pressure, so that the pressure equalization,
The operation is switched by switching between pressure increasing, adsorption and desorption processes.

【0018】図6は、図4に示す2基の吸着塔10A,
10Bを配置した装置の各操作工程のタイムサイクルを
示し、図4に示す各配管の切替弁の操作によって行われ
る。
FIG. 6 shows the two adsorption towers 10A shown in FIG.
10B shows the time cycle of each operation step of the device in which 10B is arranged, and is performed by operating the switching valve of each pipe shown in FIG.

【0019】図5,6に示すように、各塔は昇圧,吸
着,脱着工程を基本として各工程を交互に繰り返し操作
され、各吸着塔は吸着工程終了後と脱着工程終了後に均
圧工程を有する。
As shown in FIGS. 5 and 6, each of the columns is alternately and repeatedly operated on the basis of pressurization, adsorption and desorption steps, and each adsorption column is subjected to a pressure equalization step after the adsorption step and the desorption step. Have.

【0020】この均圧工程は、3塔式の場合には、吸着
工程の終了した塔と脱着工程の終了した塔とを連結さ
せ、吸着工程終了後未吸着のまま塔内に残留しているH
2 ,N2 を両吸着塔の内圧を均圧化しながら脱着工程終
了後の塔へ移動させ、次の脱着工程で得られるCO2
ッチガス中のH2 ,N2 を低減させる。
In the case of the three-column type pressure equalizing step, the column after the adsorption step and the column after the desorption step are connected to each other, and the column remains unadsorbed after the adsorption step. H
2 and N 2 are moved to the tower after completion of the desorption step while equalizing the internal pressures of both adsorption towers to reduce H 2 and N 2 in the CO 2 rich gas obtained in the next desorption step.

【0021】2塔式の場合についても同じ目的で均圧工
程を設けているが、この場合には吸着工程の終了した塔
と均圧ガスホルダーを連結させ、未吸着のH2 ,N2
一旦均圧ガスホルダーに移動し、脱着工程が終了後、移
動したH2 ,N2 を吸着塔へ戻す均圧工程操作を行な
う。
A pressure equalizing step is provided for the same purpose also in the case of the two-column type. In this case, the column after the adsorption step and the pressure equalizing gas holder are connected to remove unadsorbed H 2 and N 2 . After moving to the pressure equalizing gas holder once and the desorption process is completed, the pressure equalizing process operation of returning the moved H 2 and N 2 to the adsorption tower is performed.

【0022】この均圧工程のガスの流れとしては、吸着
工程終了後の塔からは、吸着工程でのガスの流れと順方
向に流れるように移動させ、脱着工程終了後の塔へは吸
着工程のガス流れと順方向(図2)あるいは逆方向(図
3,4)へ流入させる。
The gas flow in the pressure equalization step is moved so as to flow in the forward direction from the gas flow in the adsorption step after the adsorption step, and the adsorption step is performed in the column after the desorption step. The gas flow in the direction (Fig. 2) or the opposite direction (Figs. 3 and 4).

【0023】吸着工程終了後の塔よりガスを移動させる
方向としては、吸着工程のガスの流れと逆方向でも可能
であるが、この場合、H2 ,N2 と共にCO2 等の移動
量が増加してしまうため、脱着工程で得られるCO2
ッチガス中のCO2 濃度に低下をきたし、あまり好まし
くない。
The gas can be moved from the tower after the adsorption step in the opposite direction to the gas flow in the adsorption step, but in this case, the amount of CO 2 and the like moved along with H 2 and N 2 increases. As a result, the CO 2 concentration in the CO 2 rich gas obtained in the desorption process decreases, which is not very preferable.

【0024】以下に、3塔式の場合(図2)を例にとっ
て、タイムサイクルにおける各工程でのガスの流れを詳
細に説明する。
The flow of gas in each step in the time cycle will be described in detail below, taking the case of the three-column type (FIG. 2) as an example.

【0025】図7は、図2の場合の図5に示すタイムサ
イクルにおいて、吸着塔10Aを吸着工程とし、吸着塔
10Bと吸着塔10Cを均圧工程にした状態でのガスの
流れを示す。
FIG. 7 shows the gas flow when the adsorption tower 10A is in the adsorption step and the adsorption towers 10B and 10C are in the pressure equalization step in the time cycle shown in FIG. 5 in the case of FIG.

【0026】同図に示すように、入口弁201Aと出口
弁202Aとを開とし、原料ガス中のCO2 を吸着塔1
0Aの吸着剤に吸着せしめ、H2 ,CO,N2 ,CH4
を主成分とする混合ガスは圧力調節弁206を介して排
出する。一方、吸着塔10Bと10Cとの間の弁203
Bを開にして、吸着塔10C内の未吸着H2 ,N2 ガス
を吸着塔10B内に移送して両吸着塔10B,10Cの
内圧を均圧化する。
As shown in the figure, the inlet valve 201A and the outlet valve 202A are opened, and CO 2 in the raw material gas is adsorbed in the adsorption tower 1
Adsorbed to 0A of the adsorbent, H 2, CO, N 2 , CH 4
The mixed gas containing as a main component is discharged through the pressure control valve 206. On the other hand, the valve 203 between the adsorption towers 10B and 10C
By opening B, the unadsorbed H 2 and N 2 gas in the adsorption tower 10C is transferred into the adsorption tower 10B to equalize the internal pressures of the adsorption towers 10B and 10C.

【0027】図8は、図2の場合の図5に示すタイムサ
イクルにおいて、吸着塔10Aを吸着工程とし、吸着塔
10Bを昇圧工程、吸着塔10Cを脱着工程にした状態
でのガスの流れを示す。このとき、吸着塔10Cの圧力
が常圧になるまで吸着塔10Cの脱着工程はバイパス弁
205を閉とし、脱着したCO2 リッチガスはバッファ
タンク12に収納し、改質剤として供給する。
FIG. 8 shows the gas flow in the time cycle shown in FIG. 5 in the case of FIG. 2 with the adsorption tower 10A in the adsorption step, the adsorption tower 10B in the pressurization step, and the adsorption tower 10C in the desorption step. Show. At this time, the bypass valve 205 is closed in the desorption process of the adsorption tower 10C until the pressure of the adsorption tower 10C becomes normal pressure, and the desorbed CO 2 rich gas is stored in the buffer tank 12 and supplied as a modifier.

【0028】図9は、図2の場合の図5に示すタイムサ
イクルにおいて、吸着塔10Aを吸着工程とし、吸着塔
10Bを昇圧工程、吸着塔10Cの脱着工程において、
吸着塔10Cの圧力が常圧になった後、バイパス弁20
5を開とし、真空ポンプ11により吸着塔10Cを減圧
し、脱着したCO2 リッチガスはバッファタンク12に
収納し、改質剤として供給する。
In the time cycle shown in FIG. 5 in the case of FIG. 2, FIG. 9 shows the adsorption tower 10A as the adsorption step, the adsorption tower 10B as the pressurization step, and the adsorption tower 10C as the desorption step.
After the pressure of the adsorption tower 10C becomes normal pressure, the bypass valve 20
5, the adsorption tower 10C is decompressed by the vacuum pump 11, and the desorbed CO 2 rich gas is stored in the buffer tank 12 and supplied as a modifier.

【0029】図10は、図2の場合の図5に示すタイム
サイクルにおいて、吸着塔10Aを吸着工程、吸着塔1
0Bを待機状態、吸着塔10Cを図9と同様の吸着工程
の場合を示す。
FIG. 10 shows the adsorption tower 10A in the adsorption step, adsorption tower 1 in the time cycle shown in FIG. 5 in the case of FIG.
0B shows the case of a standby state, and 10 C of adsorption towers shows the case of the adsorption process similar to FIG.

【0030】図11は本実施例で使用した活性炭吸着剤
の20℃における平衡圧力と平衡吸着量の関係を示す。
図から明らかなように、吸着剤の平衡吸着量はCO2
CH4 ,CO,N2 ,H2 の順で吸着能力を有し、CO
2 を選択優先的に吸着する。
FIG. 11 shows the relationship between the equilibrium pressure at 20 ° C. and the equilibrium adsorption amount of the activated carbon adsorbent used in this example.
As is clear from the figure, the equilibrium adsorption amount of the adsorbent is CO 2 ,
CH 4 , CO, N 2 , H 2 have the adsorbing ability in this order, and CO
Adsorbs 2 preferentially.

【0031】図12は分解ガスを原料とし、圧力スイン
グ吸着法として吸着圧力が3kg/cm2 G、吸着時間
Tを7.5分、到達脱着圧力を150torrとした場
合の本発明方法のかかる均圧工程を有する条件下で分離
回収したCO2 リッチガス中の成分と、従来方法のかか
る均圧工程を有しない比較例の場合との比較を示す。
FIG. 12 shows that the pressure swing adsorption method using a decomposition gas as a raw material has an adsorption pressure of 3 kg / cm 2 G, an adsorption time T of 7.5 minutes and an ultimate desorption pressure of 150 torr. A comparison between the components in the CO 2 rich gas separated and recovered under the condition of having a pressure step and the case of a comparative example not having such a pressure equalizing step of the conventional method is shown.

【0032】図から明らかなように、本発明は比較例と
比べてCO2 ガス量は変わらないが、H2 ガス量は半分
以下となる。
As is clear from the figure, the CO 2 gas amount of the present invention is the same as that of the comparative example, but the H 2 gas amount is half or less.

【0033】表1は、かかる均圧工程を有する条件下で
分離回収したCO2 リッチガス中の成分を、かかる均圧
工程を有しない比較例の場合との比較で示す。
Table 1 shows the components in the CO 2 rich gas separated and recovered under the condition of having such a pressure equalizing step in comparison with the case of the comparative example not having such a pressure equalizing step.

【0034】[0034]

【表1】 表1に示すように、本発明のCO2 リッチガス中のCO
2 濃度は相対的に多く、出発原料の改質に好影響を与え
ないH2 ,N2 ガスの吸着量は極めて少ないものとなっ
ている。
[Table 1] As shown in Table 1, CO in the CO 2 rich gas of the present invention
The 2 concentration is relatively high, and the amount of H 2 and N 2 gas adsorption that does not have a favorable effect on the reforming of the starting material is extremely small.

【0035】同表から、明らかなように、水蒸気改質法
分解ガスを原料ガスとする場合、CO2 リッチガス量が
少ない場合でもCO濃度が高く、かつ分解反応に必要な
熱量も低減可能であることを示している。
As is clear from the table, when the steam reforming decomposition gas is used as the raw material gas, the CO concentration is high and the amount of heat required for the decomposition reaction can be reduced even when the amount of CO 2 rich gas is small. It is shown that.

【0036】[0036]

【発明の効果】本発明によって以下の効果を奏する。The present invention has the following effects.

【0037】(1) 炭化水素の分解に際しての改質剤
であるCO2 リッチガス中に分解反応に寄与しない
2 ,N2 が、均圧工程を用いることにより半分以下と
なり、改質剤としてのCO2 の効果を高める。
(1) H 2 and N 2 which do not contribute to the decomposition reaction in the CO 2 rich gas which is a modifier at the time of decomposing hydrocarbons are reduced to less than half by using the pressure equalizing step, Enhances the effect of CO 2 .

【0038】(2)CO2 リッチガス量が少ない場合で
もCO濃度が高く、かつ反応に必要な熱量も低減可能で
ある。
(2) Even if the amount of CO 2 rich gas is small, the CO concentration is high and the amount of heat required for the reaction can be reduced.

【0039】(3)シンプルなPSA操作により、効果
的かつ安定したCO2 リッチガスが得られるため、炭化
水素系ガスを原料として水蒸気改質法又は部分酸化法に
より、COを含有する分解ガスが安定して得られる。
(3) Since an effective and stable CO 2 rich gas can be obtained by a simple PSA operation, a decomposition gas containing CO is stabilized by a steam reforming method or a partial oxidation method using a hydrocarbon gas as a raw material. Obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を実施するための操業フローを示す。FIG. 1 shows an operational flow for carrying out the present invention.

【図2】 圧力スイング吸着装置として3基の吸着塔を
使用した装置概要と配管を示す。
FIG. 2 shows an outline of equipment and piping using three adsorption towers as a pressure swing adsorption equipment.

【図3】 圧力スイング吸着装置として3基の吸着塔を
使用した装置概要と配管を示す。
FIG. 3 shows an outline of equipment and piping using three adsorption towers as a pressure swing adsorption equipment.

【図4】 圧力スイング吸着装置として2基の吸着塔を
使用した装置概要と配管を示す。
FIG. 4 shows an outline of equipment and piping using two adsorption towers as a pressure swing adsorption apparatus.

【図5】 図2,3に示す3基の吸着塔を配置した装置
の各操作工程のタイムサイクルを示す。
FIG. 5 shows a time cycle of each operation step of the apparatus in which the three adsorption towers shown in FIGS. 2 and 3 are arranged.

【図6】 図4に示す2基の吸着塔を配置した装置の各
操作工程のタイムサイクルを示す。
FIG. 6 shows a time cycle of each operation step of the apparatus shown in FIG. 4 in which two adsorption towers are arranged.

【図7】 図5に示すタイムサイクルにおいて、吸着塔
Bと吸着塔Cを均圧状態にした状態でのガスの流れを示
す。
FIG. 7 shows a gas flow in a state where the adsorption tower B and the adsorption tower C are in a pressure equalized state in the time cycle shown in FIG.

【図8】 図5に示すタイムサイクルにおいて、吸着塔
Aを吸着工程とし、吸着塔Bを昇圧工程、吸着塔Cを脱
着工程にした状態でのガスの流れを示す。
FIG. 8 shows a gas flow in the time cycle shown in FIG. 5 in a state where the adsorption tower A is in the adsorption step, the adsorption tower B is in the pressurization step, and the adsorption tower C is in the desorption step.

【図9】 図5に示すタイムサイクルにおいて、吸着塔
Aを吸着工程とし、吸着塔Bを昇圧工程、吸着塔Cを脱
着工程にした状態でのガスの流れを示す。
FIG. 9 shows the gas flow in the time cycle shown in FIG. 5 with the adsorption tower A in the adsorption step, the adsorption tower B in the pressurization step, and the adsorption tower C in the desorption step.

【図10】 図5に示すタイムサイクルにおいて、吸着
塔Aを吸着工程、吸着塔Bを待機状態、吸着塔Cを吸着
工程にした状態でのガスの流れを示す。
10 shows a gas flow in a state where the adsorption tower A is in an adsorption step, the adsorption tower B is in a standby state, and the adsorption tower C is in an adsorption step in the time cycle shown in FIG.

【図11】 本発明実施例の活性炭吸着剤の20℃にお
ける平衡圧力と平衡吸着量の関係を示す。
FIG. 11 shows the relationship between the equilibrium pressure and the equilibrium adsorption amount at 20 ° C. of the activated carbon adsorbent of the example of the present invention.

【図12】 均圧工程による平衡圧力と原料ガス中の各
成分の吸着量の関係を示す。
FIG. 12 shows the relationship between the equilibrium pressure in the pressure equalization step and the adsorption amount of each component in the raw material gas.

【符号の説明】[Explanation of symbols]

1 供給管 10A,10B,10C 吸着塔 11 真空ポンプ 12 バッファタンク 13 均一ガスホルダー 201A〜C,202A〜C,203A〜C 切替弁 205 バイパス弁 206 圧力調整弁 1 Supply Pipes 10A, 10B, 10C Adsorption Tower 11 Vacuum Pump 12 Buffer Tank 13 Uniform Gas Holders 201A-C, 202A-C, 203A-C Switching Valve 205 Bypass Valve 206 Pressure Control Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 靖 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社機械・プラント事業部内 (72)発明者 樋口 俊也 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社機械・プラント事業部内 (72)発明者 山田 光矢 大阪府大阪市中央区平野町4丁目1番2号 大阪瓦斯株式会社内 (72)発明者 油谷 武雄 大阪府大阪市中央区平野町4丁目1番2号 大阪瓦斯株式会社内 (72)発明者 平中 幸男 大阪府大阪市中央区平野町4丁目1番2号 大阪瓦斯株式会社内 (72)発明者 平山 昭雄 大阪府大阪市中央区平野町4丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Yasushi Kawamura Yasushi Kawamura 46-59 Nakahara, Tobata-ku, Kitakyushu, Fukuoka 46-59 Nippon Steel Corporation Machinery & Plant Division (72) Toshiya Higuchi Tobata-ku, Kitakyushu, Fukuoka Nakahara 46-59 Nippon Steel Corporation Machinery & Plant Division (72) Inventor Mitsuya Yamada 4-1-2 Hiranocho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd. (72) Inventor Takeo Yutani Osaka 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Gas Co., Ltd. (72) Inventor Yukio Hiranaka 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka (72) Inventor Akio Hirayama 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Within Osaka Gas Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系ガスを水蒸気改質法又は部分
酸化法によって分解して、H2 ,CO,CO2 ,C
4 ,N2 を主成分とする分解ガスを生成する際、圧力
スイング吸着法によってCO2 リッチガスを回収し、同
CO2 リッチガスを炭化水素系ガスの分解の改質剤とし
て供給する分解ガス中のCO濃度増大方法において、 圧力スイング吸着装置の各吸着塔にCO2 ガスを他のガ
スより優先的に吸着する吸着剤を配置し、昇圧工程、吸
着工程、脱着工程の各工程を有する圧力スイング吸着法
の各昇圧工程と脱着工程の前に、各吸着塔の内圧を共通
化する均圧工程を設け、原料ガス中のH2 ,N2 のCO
2 リッチガスへの混入を少なくする分解ガス中のCO濃
度増大方法。
1. A hydrocarbon-based gas is decomposed by a steam reforming method or a partial oxidation method to obtain H 2 , CO, CO 2 and C.
H 4, when generating a decomposition gas of N 2 as a main component, a CO 2 rich gas recovered by pressure swing adsorption, decomposition gas supplying the CO 2 rich gas as a modifying agent for decomposition of hydrocarbon gas In the method for increasing CO concentration, an adsorbent that preferentially adsorbs CO 2 gas over other gases is arranged in each adsorption tower of a pressure swing adsorption device, and a pressure swing having steps of a pressure increasing step, an adsorption step, and a desorption step. Before each depressurizing step and pressure increasing step of the adsorption method, a pressure equalizing step for making the internal pressure of each adsorption tower common is provided, and CO of H 2 and N 2 in the source gas is
2 Method of increasing CO concentration in cracked gas to reduce mixture into rich gas.
JP4274628A 1992-10-13 1992-10-13 Method for increasing co concentration in cracking gas Pending JPH06126120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274628A JPH06126120A (en) 1992-10-13 1992-10-13 Method for increasing co concentration in cracking gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274628A JPH06126120A (en) 1992-10-13 1992-10-13 Method for increasing co concentration in cracking gas

Publications (1)

Publication Number Publication Date
JPH06126120A true JPH06126120A (en) 1994-05-10

Family

ID=17544362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274628A Pending JPH06126120A (en) 1992-10-13 1992-10-13 Method for increasing co concentration in cracking gas

Country Status (1)

Country Link
JP (1) JPH06126120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427412B2 (en) * 2006-11-24 2014-02-26 岩谷産業株式会社 Ozone gas concentration method and apparatus
JP2014509558A (en) * 2011-03-01 2014-04-21 エクソンモービル アップストリーム リサーチ カンパニー Method and related apparatus and system for removing contaminants from hydrocarbon streams by swing adsorption
WO2015146766A1 (en) * 2014-03-28 2015-10-01 住友精化株式会社 Purification method and purification device for target gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427412B2 (en) * 2006-11-24 2014-02-26 岩谷産業株式会社 Ozone gas concentration method and apparatus
JP2014509558A (en) * 2011-03-01 2014-04-21 エクソンモービル アップストリーム リサーチ カンパニー Method and related apparatus and system for removing contaminants from hydrocarbon streams by swing adsorption
WO2015146766A1 (en) * 2014-03-28 2015-10-01 住友精化株式会社 Purification method and purification device for target gas
JPWO2015146766A1 (en) * 2014-03-28 2017-04-13 住友精化株式会社 Purification method and apparatus for target gas

Similar Documents

Publication Publication Date Title
Jüntgen et al. Carbon molecular sieves: production from coal and application in gas separation
CA1336041C (en) Separation of gas mixtures including hydrogen
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US5604047A (en) Carbon monoxide removal method based on adsorption/steam desorption cycle
TWI521056B (en) Methane recovery method and methane recovery unit
GB2127710A (en) Separating nitrogen and carbon monoxide
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
EP0501344A1 (en) Separation of multicomponent gas mixtures by selective adsorption
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JPS61176540A (en) Collection of gaseous mixture of methane and carbon dioxide
JPS6140807A (en) Process and apparatus for purifying gaseous argon
JPH02129014A (en) Production of carbon monoxide gas
EP3549657A1 (en) Gas separation and recovery method and equipment
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JPH06126120A (en) Method for increasing co concentration in cracking gas
JPS5949818A (en) Method for concentrating carbon monoxide in gaseous mixture containing carbon monoxide by using adsorption method
EP0314040B1 (en) Method for removing carbon dioxide gas and moisture in a city gas production
JP2587334B2 (en) Method of separating CO gas not containing CH4
JP2686349B2 (en) Pressure swing hydrogen purification method
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JP2000317245A (en) Separation and purification of gas
JPH07165B2 (en) Refining method of hydrocarbon reformed gas
US20230331550A1 (en) Process and apparatus for producing low-nitrogen synthesis gas from nitrogen-containing natural gas
JPH01234313A (en) Production of carbon dioxide having high purity
JPH03242313A (en) Purification of carbon monoxide

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011019