JPH07165B2 - Refining method of hydrocarbon reformed gas - Google Patents

Refining method of hydrocarbon reformed gas

Info

Publication number
JPH07165B2
JPH07165B2 JP62208284A JP20828487A JPH07165B2 JP H07165 B2 JPH07165 B2 JP H07165B2 JP 62208284 A JP62208284 A JP 62208284A JP 20828487 A JP20828487 A JP 20828487A JP H07165 B2 JPH07165 B2 JP H07165B2
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
pressure
raw material
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62208284A
Other languages
Japanese (ja)
Other versions
JPS6451120A (en
Inventor
常雄 三好
永治 広岡
Original Assignee
昭和エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和エンジニアリング株式会社 filed Critical 昭和エンジニアリング株式会社
Priority to JP62208284A priority Critical patent/JPH07165B2/en
Publication of JPS6451120A publication Critical patent/JPS6451120A/en
Publication of JPH07165B2 publication Critical patent/JPH07165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は天然ガスの代用としての使用可能な代替天然ガ
ス(SNG)の精製方法に関し、より詳しくは炭化水素の
水蒸気改質により合成されるメタン、水素、二酸化炭素
を主成分とする原料ガスから圧力変動吸着法(PSA法)
により二酸化炭素を除去した精製ガスの製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for purifying alternative natural gas (SNG) that can be used as a substitute for natural gas, and more specifically, it is synthesized by steam reforming of hydrocarbons. Pressure fluctuation adsorption method (PSA method) from raw material gas consisting mainly of methane, hydrogen and carbon dioxide
And a method for producing a purified gas from which carbon dioxide has been removed.

[従来の技術およびその問題点] 天然ガス(LNG)はその安定供給性、高熱量性、安全性
等により沿岸の大都市においては既に都市ガスの主要原
料となり、内陸の中小都市においても都市ガス源として
需要の伸展がはかられるようとしている。
[Conventional technology and its problems] Natural gas (LNG) has already become a major raw material for city gas in coastal large cities due to its stable supply, high calorific value, safety, etc. As a source, it is trying to expand demand.

しかしながら地方都市においては比較的少ない需要量に
見合った少ない貯蔵量及び輸送の点から一時的にLNGの
供給が停止するような事態が考慮される。このため緊急
時に対応できる代替エネルギーの供給装置を備えること
が必要になる。
However, in local cities, a situation in which the supply of LNG is temporarily stopped is considered in view of the small amount of storage and transportation commensurate with the relatively small demand. For this reason, it is necessary to provide an alternative energy supply device that can respond in an emergency.

代替エネルギー供給装置に必要とされる条件として、LN
Gとほぼ同質のガスを同じ配管で供給することができる
こと、緊急時における始動が迅速に行なわれ、安定性の
高いことが要求される。この要求を達成するためガス発
生装置としてブタン等の炭化水素の水蒸気改質による小
型SNG装置と炭酸ガス除去装置を組み合わせるプロセス
がある。
LN is a requirement for alternative energy supply equipment.
It is required that a gas of almost the same quality as G can be supplied through the same pipe, that the start-up in an emergency can be performed quickly and that stability is high. To meet this demand, there is a process that combines a small SNG device by steam reforming of hydrocarbons such as butane and a carbon dioxide gas removal device as a gas generator.

炭化水素、例えばブタンの水蒸気改質は次の反応工程で
行なわれる。
The steam reforming of hydrocarbons such as butane is carried out in the next reaction step.

C4H10+4H2O → 4CO+9H2 CO+H2O CO2+H2 CO+3H2 CH4+H2O 改質炉を出たガス中に含まれるCOは転化炉でCO2に転化
される。
C 4 H 10 + 4H 2 O → 4CO + 9H 2 CO + H 2 O CO 2 + H 2 CO + 3H 2 CH 4 + H 2 O CO contained in the gas leaving the reforming furnace is converted to CO 2 in the conversion furnace.

CO+H2O CO2+H2 上記反応式から明らかなようにガス組成は反応条件によ
って異るが、いずれも20〜30%のCO2を有し、このまま
ではカロリーが低く消費者向けに供給することはできな
いためCO2除去装置が必要となる。
CO + H 2 O CO 2 + H 2 As is clear from the above reaction formula, the gas composition varies depending on the reaction conditions, but each has 20 to 30% CO 2 , and as it is, it has low calories and can be supplied to consumers. Therefore, a CO 2 removal device is required.

CO2除去プロセスとしては従来化学的吸収法又は物理的
吸収法が用いられてきたが、これらの操作は通常、高温
又は高圧で行なわれ、始動時間も長く緊急時には対応で
きない等欠点がある。
Conventionally, a chemical absorption method or a physical absorption method has been used as a CO 2 removal process, but these operations are usually performed at a high temperature or a high pressure, and there are drawbacks such as a long start-up time and an inability to deal with an emergency.

[問題点を解決するための手段] 本願発明者は従来の吸収法CO2除去プロセスに代わる方
法として圧力変動吸着法(以下PSA吸着法という)によ
るCO2除去プロセスの開発研究を鋭意進めた結果、緊急
時にも対応でき、操作も簡便であり、しかも原料ガスの
もつ圧力をほとんど減ずることなく精製ガスの圧力とし
て利用できる、安定したCO2除去方法である、本願発明
を完成させるに到った。
[Means for solving the problems] The present inventors have conducted extensive advances result of research and development of CO 2 removal process by pressure swing adsorption method (hereinafter referred to as PSA adsorption method) As an alternative to conventional absorption method CO 2 removal process The present invention is a stable CO 2 removal method that can respond to emergencies, is easy to operate, and can be used as the pressure of purified gas without reducing the pressure of the raw material gas. .

すなわち本願発明の要旨は、二酸化炭素を選択的に吸着
する吸着剤を充填した3基の吸着塔を用いて、これらの
吸着塔に二酸化炭素を含有する炭化水素改質ガスである
原料ガスを流通させて、二酸化炭素を吸着除去すること
により、炭化水素改質ガスを精製する方法であって、第
1の吸着塔において、順次に、 (1) 加圧状態の原料ガスを原料端部へ供給し、塔内
を一定の圧力に保持しながら、製品端部から炭化水素改
質ガスを精製ガスとして導出し、この精製ガスの一部
を、第3の吸着塔からの炭化水素改質ガスの流入によっ
て均圧化が行なわれつつある第2の吸着塔の製品端部へ
供給する工程、 (2) 加圧状態の原料ガスを原料端部へ供給し、塔内
を一定の圧力に保持しながら、製品端部から炭化水素改
質ガスを精製ガスとして導出し、この精製ガスの一部
を、既に第3の吸着塔からの炭化水素改質ガスの流入に
よって均圧化が行なわれた第2の吸着塔の製品端部へ供
給して第2の吸着塔を昇圧する工程、 (3) 加圧状態の原料ガスを原料端部へ供給し、塔内
を一定の圧力に保持しながら、製品端部から炭化水素改
質ガスを精製ガスとして導出し、この精製ガスの一部
を、第2の吸着塔の製品端部へ供給して第2の吸着塔を
昇圧すると同時に、既に排気された第3の吸着塔へも供
給して第3の吸着塔を掃気する工程、 (4) 原料ガスの流入を停止し、製品端部から炭化水
素改質ガスを導出し、この炭化水素改質ガスを既に掃気
された第3の吸着塔へ供給して均圧化する工程、 (5) 原料端部より排気する工程、 (6) 炭化水素改質ガスを精製ガスとして導出してい
る第2の吸着塔から、その精製ガスの一部を製品端部よ
り流入させて塔内を掃気する工程、 (7) 原料ガスの流入を停止した第2の吸着塔から導
出する炭化水素改質ガスと、炭化水素改質ガスを精製ガ
スとして導出している第3の吸着塔からの精製ガスの一
部を製品端部より流入させて均圧化する工程、及び (8) 炭化水素改質ガスを精製ガスとして導出してい
る第3の吸着塔からの精製ガスの一部を製品端部より流
入させて昇圧させる工程、 を実施し、更にその間に前記工程サイクルを第2及び第
3の吸着塔のそれぞれにおいて位相を変えて実施するこ
とを特徴とする炭化水素改質ガスの精製方法にある。
That is, the gist of the present invention is to use three adsorption towers filled with an adsorbent that selectively adsorbs carbon dioxide, and to flow a raw material gas that is a hydrocarbon reforming gas containing carbon dioxide into these adsorption towers. A method for purifying a hydrocarbon reformed gas by adsorbing and removing carbon dioxide, comprising: (1) supplying a raw material gas in a pressurized state to a raw material end in order in a first adsorption tower. Then, while maintaining the inside of the tower at a constant pressure, the hydrocarbon reformed gas is led out from the product end as a purified gas, and a part of this purified gas is discharged from the hydrocarbon reformed gas from the third adsorption tower. Supplying to the product end of the second adsorption tower where pressure equalization is being performed by inflow, (2) supplying pressurized raw material gas to the raw material end, and maintaining a constant pressure inside the tower However, the hydrocarbon reformed gas was discharged as a purified gas from the end of the product. , A part of this purified gas is supplied to the product end of the second adsorption tower, which has been pressure-equalized by the inflow of the hydrocarbon reforming gas from the third adsorption tower, (3) The pressurized raw material gas is supplied to the raw material end, and the hydrocarbon reformed gas is discharged as a purified gas from the product end while maintaining a constant pressure in the tower. A part of the purified gas is supplied to the product end of the second adsorption tower to raise the pressure of the second adsorption tower, and at the same time, it is also supplied to the already exhausted third adsorption tower to form the third adsorption tower. Scavenging step, (4) Stop the flow of raw material gas, derive the hydrocarbon reformed gas from the product end, supply this hydrocarbon reformed gas to the already adsorbed third adsorption tower, and equalize the pressure. (5) Step of exhausting from the raw material end, (6) Derivation of hydrocarbon reformed gas as purified gas (7) A hydrocarbon reforming gas derived from the second adsorption tower in which the feed of the raw material gas is stopped, A step of inflowing a part of the purified gas from the third adsorption tower, which has derived the hydrocarbon reformed gas as a purified gas, from the end of the product to equalize the pressure, and (8) the hydrocarbon reformed gas A step of causing a part of the purified gas from the third adsorption tower, which is derived as a purified gas, to flow from the end of the product to increase the pressure, and during that period, the process cycle is performed in the second and third adsorption towers. The method for purifying a hydrocarbon reformed gas is characterized in that the phase is changed in each of the above.

[発明の具体的構成] 本件発明に用いられる吸着剤は合成A型ゼオライト(モ
レキュラシーブ3A,4A,5A)、合成X型ゼオライト(モレ
キュラシーブ13X)、天然に産出するゼオライト及びモ
レキュラシーブカーボンのいずれも用いることができる
が、好ましくはモレキュラシーブ4Aを用いる。モレキュ
ラシーブ4Aの25℃における吸着等温線を第2図に示す。
第2図に示されるようにモレキュラシーブ4AはCO2を圧
倒的大量に吸着するものであるが同時にCH4も吸着す
る。本法に用いる炭化水素改質ガスはその約70%がCH4
であり、分圧を考慮すればCH4の吸着量は相当に大き
い。
[Specific Structure of the Invention] As the adsorbent used in the present invention, any of synthetic A type zeolite (molecular sieves 3A, 4A, 5A), synthetic X type zeolite (molecular sieve 13X), naturally occurring zeolite and molecular sieve carbon should be used. However, molecular sieve 4A is preferably used. The adsorption isotherm at 25 ° C of molecular sieve 4A is shown in Fig. 2.
As shown in Fig. 2, molecular sieve 4A adsorbs CO 2 in an overwhelmingly large amount, but also CH 4 at the same time. About 70% of the hydrocarbon reformed gas used in this method is CH 4
Therefore, the adsorption amount of CH 4 is considerably large when the partial pressure is taken into consideration.

ところで吸着塔の原料端部より原料ガスを導入し、吸着
塔の製品端部より精製ガスを取り出す前記(1),
(2),(3)の工程ではCO2の吸着前線は、その前方
にあるCH4の吸着前線を押上げつつ吸着されたCH4を置換
しながら製品端部に向って進むと考えられる。このあり
さまを第3図に示す。第3図(a)はCO2未破過の状態
であり第3図(b)はCO2破過の状態である。第3図よ
り明らかなように製品ガスのCO2の混入率を抑えるため
には、吸着塔はCO2の未破過の状態で次の吸着塔へステ
ップを進ませる方がよく、逆にCH4の回収率を向上させ
るためには、吸着塔はCO2の一部破過の状態で次の吸着
塔へステップを進ませる方がよい。本発明の精製ガスは
前述のごとく、都市ガス代用の熱源であるからCO2の混
入はカロリー低下の要因になるが、微量(5%以下)で
は問題ない。従って本発明では許容される範囲でCO2
破過させつつCH4の回収を大幅に増大させることが好ま
しい。
By the way, the raw material gas is introduced from the raw material end of the adsorption tower, and the purified gas is taken out from the product end of the adsorption tower (1),
In the steps (2) and (3), it is considered that the CO 2 adsorption front proceeds toward the end of the product while pushing up the CH 4 adsorption front in front of it and replacing the adsorbed CH 4 with it. This situation is shown in FIG. FIG. 3 (a) shows the state of no CO 2 breakthrough, and FIG. 3 (b) shows the state of CO 2 breakthrough. As is clear from Fig. 3, in order to suppress the CO 2 contamination rate of the product gas, it is better to advance the step to the next adsorption tower in the state where the adsorption tower has not passed through CO 2 , and conversely CH In order to improve the recovery rate of 4 , it is better to advance the step to the next adsorption tower in the state where the CO 2 partially breaks through the adsorption tower. As described above, since the purified gas of the present invention is a heat source for city gas substitution, the incorporation of CO 2 causes a reduction in calories, but a small amount (5% or less) is not a problem. Therefore, in the present invention, it is preferable to significantly increase CH 4 recovery while allowing CO 2 to pass through within an allowable range.

本発明のもう一つの特徴は第2の吸着塔に着目して説明
すると、前記(1)の工程で第1の吸着塔の精製ガスの
一部と第3の吸着塔からの炭化水素改質ガスによって第
2の吸着塔の均圧化が行なわれ、つづいて前記(2)の
工程で第1の吸着塔からの精製ガスの一部によって第2
の吸着塔の昇圧化がはかられ、そして最後に前記(3)
の工程で第1の吸着塔の精製ガスの一部によって、第2
の吸着塔の昇圧化が完成して、第2の吸着塔の圧力は原
料ガスの圧力と同じにまで昇圧され、つづいておこる第
2の吸着塔での吸着による精製ガスの圧力は原料ガスと
ほとんど変わらないことになる。すなわち原料ガスの圧
力はそのまま精製ガスの圧力として利用できるものであ
る。
Another feature of the present invention will be explained by focusing on the second adsorption tower. In the step (1), a part of the purified gas in the first adsorption tower and the hydrocarbon reforming from the third adsorption tower are reformed. The gas equalizes the pressure in the second adsorption tower, and then a second portion of the purified gas from the first adsorption tower is supplied to the second adsorption tower in the step (2).
The pressure in the adsorption tower of the above is increased, and finally (3)
In the process of
The pressure of the second adsorption tower is increased to the same as the pressure of the raw material gas, and the pressure of the purified gas due to the subsequent adsorption in the second adsorption tower is the same as the raw material gas. It will be almost unchanged. That is, the pressure of the raw material gas can be used as it is as the pressure of the purified gas.

又第3図をもとに説明すると吸着工程を終了した吸着塔
塔中には吸着剤に吸着されたCH4及び吸着剤粒子の空隙
部にとどまっているCH4とあわせて大量のCH4が存在す
る。これが前記(1)の工程で第3の吸着塔から第2の
吸着塔への均圧で移送されるCH4分である。この前記
(1)の工程では第1の吸着塔からの精製ガスの一部に
よってCH4分が第2の吸着塔に移送される。つづいて前
記(2),(3)の工程で第1の吸着塔からの精製ガス
一部を第2の吸着塔の製品端部へ流入させる。第2の吸
着塔の昇圧工程では圧倒的に分圧の高いCH4の吸着前線
がCO2の吸着前線を原料端部に向って押し下げる作用を
もたらしCH4収率の増加と、精製ガス中の成分の増大を
もたらすのである。
Also during the adsorption tower tower has finished the adsorption step and describing Figure 3 based on a large amount of CH 4 together with the CH 4 which has remained in the gap portion of the CH 4 and adsorbent particles adsorbed on the adsorbent Exists. This is CH 4 minutes transferred from the third adsorption tower to the second adsorption tower at the pressure equalization in the step (1). In the step (1), CH 4 is partially transferred to the second adsorption tower by part of the purified gas from the first adsorption tower. Subsequently, in the steps (2) and (3), a part of the purified gas from the first adsorption tower is caused to flow into the product end of the second adsorption tower. In the pressurization process of the second adsorption tower, the CH 4 adsorption front, which has a predominantly high partial pressure, has the effect of pushing down the CO 2 adsorption front toward the end of the raw material, increasing the CH 4 yield, and increasing the CH 4 yield. It brings about an increase in the ingredients.

本発明においては吸着塔下部には吸着剤容量の1/10以下
の容量の活性アルミナを充填し、その上に吸着剤を充填
する。活性アルミナの役割は炭化水素の水蒸気改質ガス
中に含まれる飽和水蒸気圧分としての水分を前記
(1),(2),(3)の工程で活性アルミナに吸着さ
せ、前記(5),(6)の工程では活性アルミナに吸着
した水分を脱着して活性アルミナの再生を行なうことに
より、いわゆる活性アルミナによる水分PSA法を行なわ
せる。これによって水分に弱い吸着剤を保護する。
In the present invention, the lower part of the adsorption tower is filled with activated alumina having a volume of 1/10 or less of the volume of the adsorbent, and the adsorbent is filled thereover. The role of activated alumina is to allow moisture as a saturated steam pressure component contained in the steam reforming gas of hydrocarbon to be adsorbed on the activated alumina in the steps (1), (2) and (3), In the step (6), the moisture adsorbed on the activated alumina is desorbed to regenerate the activated alumina, whereby the so-called moisture PSA method using activated alumina is performed. This protects the adsorbent, which is sensitive to moisture.

PSA法は弁を作動する計装空気を除いては何ら圧力エネ
ルギーを必要とせず、しかも原料ガスが保有する圧力を
ほとんど低下させずに精製ガス圧力として取り出すこと
ができるので極めて経済的である。
The PSA method does not require any pressure energy except for the instrumentation air that operates the valve, and can be taken out as a purified gas pressure with almost no reduction in the pressure held by the raw material gas, which is extremely economical.

さらに本発明によるPSA法の脱着による排気ガス、掃気
ガス中にはいくらかのH2,CH4等の可燃性ガスが含まれ
ており、このガスは水蒸気改質の熱源として利用される
ことが望ましいが脱着、掃気ガスの圧力は燃焼バーナー
に必要な圧力を保持して排出されるのでホールドタンク
に貯えて使用することができる。
Further, in the exhaust gas and scavenging gas by desorption of the PSA method according to the present invention, some combustible gases such as H 2 and CH 4 are contained, and this gas is desirably used as a heat source for steam reforming. However, since the pressure of the desorbed and scavenged gas is discharged while holding the pressure required for the combustion burner, it can be stored and used in the hold tank.

尚、前記(5),(6)の工程では大気圧に開放して排
気、掃気することが一般的であるが、この排気、掃気の
工程では減圧ポンプを用いて吸引を同時に行なって吸着
剤の再生を促進させることも可能である。この場合は減
圧ポンプの排気側圧力が水蒸気改質の熱源燃焼バーナー
に必要な圧力を保持することになる。
In the steps (5) and (6), it is common to open to atmospheric pressure for exhausting and scavenging, but in the steps of exhausting and scavenging, suction is simultaneously performed using a decompression pump to obtain an adsorbent. It is also possible to promote the regeneration of. In this case, the pressure on the exhaust side of the decompression pump holds the pressure required for the heat source combustion burner for steam reforming.

以下、本発明の方法を、第1図を参照しながら具体的に
説明するが、以下に示す操作は一例であって、本発明は
この操作のみに限定されないものであることを理解され
たい。
Hereinafter, the method of the present invention will be specifically described with reference to FIG. 1. However, it should be understood that the operation shown below is an example and the present invention is not limited to this operation.

第1図においてA,B,Cは吸着塔、1〜15は開閉弁、16〜2
1は調節弁、25は原料ガス、26は精製ガス、27は排ガ
ス、31〜37は管、41は精製ガスホールドタンク、42は排
ガスホールドタンク、51は真空脱着を行なう場合に用い
る減圧ポンプ、61はCO2濃度計である。
In FIG. 1, A, B and C are adsorption towers, 1 to 15 are opening / closing valves, and 16 to 2
1 is a control valve, 25 is a raw material gas, 26 is a purified gas, 27 is an exhaust gas, 31 to 37 are pipes, 41 is a purified gas hold tank, 42 is an exhaust gas hold tank, 51 is a decompression pump used when performing vacuum desorption, 61 is a CO 2 concentration meter.

操作にあたって、以下に説明する9工程を順次繰り返し
ながら連続的に炭化水素改質ガスを精製する。また各工
程の操作時間は、タイマーにより任意にコントロールさ
れ得る構成としている。以下の工程において、工程1〜
3ではA塔が吸着工程であり、工程4〜6ではB塔が吸
着工程であり、工程7〜9ではC塔が吸着工程である。
In operation, the hydrocarbon reformed gas is continuously refined while sequentially repeating the 9 steps described below. In addition, the operation time of each step can be arbitrarily controlled by a timer. In the following steps, steps 1 to
In step 3, the tower A is the adsorption step, in steps 4 to 6, the tower B is the adsorption step, and in steps 7 to 9, the tower C is the adsorption step.

工程1 開閉弁1,2,10,15が開かれ原料ガス25は管31より開閉弁
1を経て吸着塔Aに導入される。吸着塔の製品端部より
開閉弁2を経て管32より精製ガスが流出し調節弁21を経
て精製ガスホールドタンク41に貯えられる。精製ガス流
出速度は調節弁21によって行なわれる。一方既に吸着工
程(工程7〜9)を終了した吸着塔Cより調節弁18、開
閉弁15、管34、開閉弁10、および調節弁17を経てガス
が、これも既に精製ガスの一部によって塔内を掃気(洗
浄)されて(工程9)、再生した吸着塔Bに対して向流
に、吸着塔B,C間の圧力がほぼ均等になるまで供給され
る(均圧)。この際ガス移動速度は調節弁18,17によっ
てコントロールされる。吸着塔Bに対して吸着塔Cから
の上記のガスと同時に吸着塔Aからの精製ガスの一部が
管32より調節弁20で速度を調節されて管36,34、開閉弁1
0、調節弁17を経て吸着塔Bに導入される。
Step 1 The on-off valves 1, 2, 10, 15 are opened and the raw material gas 25 is introduced into the adsorption tower A through the pipe 31 through the on-off valve 1. Purified gas flows from the product end of the adsorption tower through the on-off valve 2 and the pipe 32, and is stored in the purified gas hold tank 41 through the control valve 21. The outflow rate of the purified gas is controlled by the control valve 21. On the other hand, the gas from the adsorption tower C, which has already completed the adsorption step (steps 7 to 9), passes through the control valve 18, the on-off valve 15, the pipe 34, the on-off valve 10 and the control valve 17, and this is also due to a part of the purified gas. The inside of the tower is scavenged (washed) (step 9), and is supplied countercurrently to the regenerated adsorption tower B until the pressure between the adsorption towers B and C becomes almost equal (equal pressure). At this time, the gas moving speed is controlled by the control valves 18 and 17. With respect to the adsorption tower B, at the same time with the above-mentioned gas from the adsorption tower C, a part of the purified gas from the adsorption tower A is adjusted in speed by the control valve 20 through the pipe 32, and the pipes 36, 34 and the on-off valves 1
It is introduced into the adsorption tower B via the control valve 17.

工程2 開閉弁15が閉じると同時に開閉弁14が開かれる。吸着塔
Aは工程1と同じ操作をつづける。吸着塔Bは開閉弁15
が閉じることにより吸着塔Cからのガスの流入は止まる
が、吸着塔Aからの精製ガスの一部を受けとりつつ塔内
圧力を上昇させていく(昇圧)。一方吸着塔Cは開閉弁
14を開くことによって大気圧近くまで(真空PSA法の場
合は減圧ポンプ51によって吸引されて大気圧以下まで)
減圧されて吸着ガスを脱着・排気する。排ガスは開閉弁
14、管37を経て(真空PSA法の場合は減圧ポンプ51によ
って吸引されて)、排ガスホールドタンク42に貯えられ
る。
Step 2 The on-off valve 14 is opened at the same time when the on-off valve 15 is closed. The adsorption tower A continues the same operation as in step 1. Adsorption tower B has open / close valve 15
However, the inflow of gas from the adsorption tower C is stopped by closing, but the internal pressure of the tower is increased while receiving a part of the purified gas from the adsorption tower A (pressurization). On the other hand, the adsorption tower C is an open / close valve.
By opening 14 to near atmospheric pressure (in the case of vacuum PSA method, it is sucked by decompression pump 51 and below atmospheric pressure)
The pressure is reduced and the adsorbed gas is desorbed and exhausted. On-off valve for exhaust gas
14, through the pipe 37 (in the case of the vacuum PSA method, sucked by the decompression pump 51) and stored in the exhaust gas hold tank 42.

工程3 開閉弁13が新たに開かれる。吸着塔Aは工程1,2と同じ
操作をつづける。吸着塔Bは工程2と同じ操作をつづけ
さらに圧力の上昇を行ない工程3の最後には吸着塔Aと
同じ圧力に達する。吸着塔Cは工程2の減圧・脱着のあ
と吸着塔Aからの精製ガスの一部によって塔内を掃気
(洗浄)される。すなわち吸着塔Aからの精製ガスの一
部は管32,35、調節弁19、管33、開閉弁13を吸着塔Cに
導入され、塔内を向流に洗浄して開閉弁14、管37を経て
(真空PSA法の場合は減圧ポンプ51によって吸引・排気
されて)、排ガスホールドタンクに貯えられる。掃気
(洗浄)ガス速度は最も洗浄効果の高い速度になるよう
に調節弁19の開度を選択することによって調節される。
Process 3 The on-off valve 13 is newly opened. The adsorption tower A continues the same operation as steps 1 and 2. The adsorption tower B continues the same operation as in step 2 and further increases in pressure, and reaches the same pressure as in adsorption tower A at the end of step 3. The adsorption tower C is scavenged (washed) inside the tower with a part of the purified gas from the adsorption tower A after the depressurization and desorption in step 2. That is, a part of the purified gas from the adsorption tower A is introduced into the adsorption tower C through the pipes 32 and 35, the control valve 19, the pipe 33, and the opening / closing valve 13, and the inside of the tower is washed countercurrently to open / close the valve 14 and the pipe 37. After passing through (in the case of the vacuum PSA method, sucked and exhausted by the decompression pump 51), it is stored in the exhaust gas hold tank. The scavenging (cleaning) gas speed is adjusted by selecting the opening degree of the control valve 19 so that the speed of the cleaning effect is the highest.

工程4 開閉弁1,2,10,13,14が閉じ、開閉弁6,7,15,5が開かれ
る。原料ガス25は管31より開閉弁6を経て吸着塔Bに導
入される。吸着塔の製品端部より開閉弁7を経て管32よ
り精製ガスが流出し調節弁21を経て精製ガスホールドタ
ンク41に貯えられる。精製ガス流出速度は調節弁21によ
って行なわれる。一方既に吸着工程(1〜3)を終了し
た吸着塔Aより調節弁16、開閉弁5、管34、開閉弁15、
および調節弁18を経てガスが、これも既に精製ガスの一
部によって塔内を掃気(洗浄)されて(工程3)、再生
した吸着塔Cに対して向流に、吸着塔C,A間の圧力がほ
ぼ均等になるまで供給される(均圧)。この際ガス移動
速度は調節弁16,18によってコントロールされる。吸着
塔Cに対しては吸着塔Aからの上記のガスと同時に吸着
塔Bからの精製ガスの一部が管32より調節弁20で速度を
調節されて管36、開閉弁15、調節弁18を経て吸着塔Cに
導入される。
Step 4 The on-off valves 1,2,10,13,14 are closed and the on-off valves 6,7,15,5 are opened. The raw material gas 25 is introduced from the pipe 31 into the adsorption tower B through the on-off valve 6. Purified gas flows from the product end of the adsorption tower through the opening / closing valve 7 and the pipe 32, and is stored in the purified gas hold tank 41 through the control valve 21. The outflow rate of the purified gas is controlled by the control valve 21. On the other hand, from the adsorption tower A which has already completed the adsorption steps (1 to 3), the control valve 16, the opening / closing valve 5, the pipe 34, the opening / closing valve 15,
The gas, which has already been scavenged (cleaned) in the tower by a part of the purified gas (step 3), flows countercurrent to the regenerated adsorption tower C between the adsorption towers C and A. It is supplied until the pressure of is almost equal (equal pressure). At this time, the gas moving speed is controlled by the control valves 16 and 18. For the adsorption tower C, at the same time as the above gas from the adsorption tower A, a part of the purified gas from the adsorption tower B is adjusted in speed by the control valve 20 through the pipe 32, and the pipe 36, the on-off valve 15, the control valve 18 Is introduced into the adsorption tower C via.

工程5 開閉弁5が閉じると同時に開閉弁4が開かれる。吸着塔
Bは工程4と同じ操作をつづける。吸着塔Cは開閉弁5
が閉じることにより吸着塔Aからのガスの流入は止まる
が、吸着塔Bからの精製ガスの一部を受けとりつつ塔内
圧力を上昇させていく(昇圧)。一方吸着塔Aは開閉弁
4を開くことによって大気圧近くまで(真空PSA法の場
合は減圧ポンプ51によって吸引されて大気圧以下まで)
減圧されて吸着ガスを脱着・排気する。排ガスは開閉弁
4、管37を経て(真空PSA法の場合は減圧ポンプ51によ
って吸引されて)、排ガスホールドタンク42に貯えられ
る。
Step 5 The opening / closing valve 4 is opened at the same time when the opening / closing valve 5 is closed. The adsorption tower B continues the same operation as in step 4. The adsorption tower C has an on-off valve 5
Although the inflow of gas from the adsorption tower A is stopped by closing, the internal pressure of the tower is raised (pressurization) while receiving a part of the purified gas from the adsorption tower B. On the other hand, the adsorption tower A is brought to near atmospheric pressure by opening the on-off valve 4 (in the case of the vacuum PSA method, it is sucked by the decompression pump 51 and is below atmospheric pressure).
The pressure is reduced and the adsorbed gas is desorbed and exhausted. The exhaust gas is stored in the exhaust gas hold tank 42 through the on-off valve 4 and the pipe 37 (in the case of the vacuum PSA method, it is sucked by the decompression pump 51).

工程6 開閉弁3が新たに開かれる。吸着塔Bは工程4,5と同じ
操作を続ける。吸着塔Cは工程5と同じ操作をつづけさ
らに圧力の上昇を行ない工程6の最後には吸着塔Bと同
じ圧力に達する。吸着塔Aは工程5の減圧・脱着のあと
吸着塔Bからの精製ガスの一部によって塔内を掃気(洗
浄)される。即ち吸着塔Bからの精製ガスの一部は管3
2,35、調節弁19、管33、開閉弁3を経て吸着塔Aに導入
され、塔内を向流に洗浄して開閉弁4、管37を経て(真
空PSA法の場合は減圧ポンプ51によって吸引・排気され
て)、排ガスホールドタンクに貯えられる。掃気(洗
浄)ガス速度は最も洗浄効果の高い速度になるように調
節弁19の開度を選択することによって調節される。
Step 6 The on-off valve 3 is newly opened. The adsorption tower B continues the same operation as steps 4 and 5. The adsorption tower C continues the same operation as in step 5, and the pressure is further increased, and at the end of step 6, it reaches the same pressure as in the adsorption tower B. The adsorption tower A is scavenged (washed) inside the tower by a part of the purified gas from the adsorption tower B after the depressurization and desorption in step 5. That is, part of the purified gas from the adsorption tower B is pipe 3
2, 35, control valve 19, pipe 33, and on-off valve 3 are introduced into the adsorption tower A, and the inside of the tower is washed countercurrently and then through on-off valve 4 and pipe 37 (pressure reducing pump 51 in the case of the vacuum PSA method). (Suctioned and exhausted by) and stored in the exhaust gas hold tank. The scavenging (cleaning) gas speed is adjusted by selecting the opening degree of the control valve 19 so that the speed of the cleaning effect is the highest.

工程7 開閉弁6,7,15,3,4が閉じ、開閉弁11,12、5、10が開か
れる。原料ガス25は管31より開閉弁11を経て吸着塔Cに
導入される。吸着塔の製品端部より開閉弁12を経て管32
より精製ガスが流出し調節弁21を経て精製ガスホールド
タンク41に貯えられる。精製ガス流出速度は調節弁21に
よって行なわれる。一方既に吸着工程(工程4〜6)を
終了した吸着塔Bより調節弁17、開閉弁10、管34、開閉
弁5、および調節弁16を経てガスが、これも既に精製ガ
スの一部によって塔内を掃気(洗浄)されて(工程
6)、再生した吸着塔Aに対して向流に、吸着塔A,B間
の圧力がほぼ均等になるまで供給される(均圧)。この
際ガス移動速度は調節弁17,16によってコントロールさ
れる。吸着塔Aに対しては吸着塔Bからの上記のガスと
同時に吸着塔Cからの精製ガスの一部が管32より調節弁
20で速度を調節されて管36,34、開閉弁5、調節弁16を
経て吸着塔Aに導入される。
Step 7 The on-off valves 6,7,15,3,4 are closed and the on-off valves 11,12,5,10 are opened. The raw material gas 25 is introduced into the adsorption tower C from the pipe 31 through the on-off valve 11. Pipe 32 from the product end of the adsorption tower through the on-off valve 12.
Further purified gas flows out and is stored in the purified gas hold tank 41 through the control valve 21. The outflow rate of the purified gas is controlled by the control valve 21. On the other hand, the gas from the adsorption tower B, which has already completed the adsorption step (steps 4 to 6), passes through the control valve 17, the on-off valve 10, the pipe 34, the on-off valve 5 and the control valve 16, and this is also due to a part of the purified gas. The inside of the tower is scavenged (washed) (step 6) and is supplied countercurrently to the regenerated adsorption tower A until the pressure between the adsorption towers A and B becomes almost equal (equal pressure). At this time, the gas moving speed is controlled by the control valves 17 and 16. For the adsorption tower A, at the same time as the above-mentioned gas from the adsorption tower B, a part of the purified gas from the adsorption tower C is supplied from a pipe 32 to a control valve.
It is introduced into the adsorption tower A through the pipes 36 and 34, the on-off valve 5 and the control valve 16 after the speed is adjusted at 20.

工程8 開閉弁10が閉じると同時に開閉弁9が開かれる。吸着塔
Cは工程7と同じ操作をつづける。吸着塔Aは開閉弁10
が閉じることにより吸着塔Bからのガスの流入は止まる
が、吸着塔Cからの精製ガスの一部を受けとりつつ塔内
圧力を上昇させていく(昇圧)。一方吸着塔Bは開閉弁
9を開くことによって大気圧近くまで(真空PSA法の場
合は減圧ポンプ51によって吸引されて大気圧以下まで)
減圧されて吸着ガスを脱着・排気する。排ガスは開閉弁
9、管37を経て(真空PSA法の場合は減圧ポンプ51によ
って吸引されて)、排ガスホールドタンク42に貯えられ
る。
Step 8 The on-off valve 9 is opened at the same time when the on-off valve 10 is closed. The adsorption tower C continues the same operation as in step 7. Adsorption tower A has open / close valve 10
However, the inflow of gas from the adsorption tower B is stopped by closing, but the tower internal pressure is increased (pressurization) while receiving part of the purified gas from the adsorption tower C. On the other hand, the adsorption tower B is brought to near atmospheric pressure by opening the on-off valve 9 (in the case of the vacuum PSA method, it is sucked by the decompression pump 51 to be below atmospheric pressure).
The pressure is reduced and the adsorbed gas is desorbed and exhausted. The exhaust gas is stored in the exhaust gas hold tank 42 through the on-off valve 9 and the pipe 37 (in the case of the vacuum PSA method, it is sucked by the decompression pump 51).

工程9 開閉弁8が新たに開かれる。吸着塔Cは工程7,8と同じ
操作をつづける。吸着塔Aは工程8と同じ操作をつづけ
さらに圧力の上昇を行ない工程9の最後には吸着塔Cと
同じ圧力に達する。吸着塔Bは工程8の減圧・脱着のあ
と吸着塔Cからの精製ガスの一部によって塔内を掃気
(洗浄)される。即ち吸着塔Cからの精製ガスの一部は
管32,35、調節弁19、管33、開閉弁8を経て吸着塔Bに
導入され、塔内を向流に洗浄して開閉弁9、管37を経て
(真空PSA法の場合は減圧ポンプ51によって吸引・排気
されて)、排ガスホールドタンクに貯えられる。掃気
(洗浄)ガス速度は最も洗浄効果の高い速度になるよう
に調節弁19の開度を選択することによって調節される。
Step 9 The on-off valve 8 is newly opened. The adsorption tower C continues the same operation as steps 7 and 8. The adsorption tower A continues the same operation as in step 8 and further increases in pressure, and reaches the same pressure as in adsorption tower C at the end of step 9. After the decompression / desorption in step 8, the adsorption tower B is scavenged (washed) with a part of the purified gas from the adsorption tower C. That is, a part of the purified gas from the adsorption tower C is introduced into the adsorption tower B via the pipes 32 and 35, the control valve 19, the pipe 33, and the opening / closing valve 8, and the inside of the tower is washed countercurrently to open / close the valve 9 and the pipe. After passing through 37 (in the case of the vacuum PSA method, sucked and exhausted by the decompression pump 51), it is stored in the exhaust gas hold tank. The scavenging (cleaning) gas speed is adjusted by selecting the opening degree of the control valve 19 so that the speed of the cleaning effect is the highest.

以上の説明から理解されるように、上記の9工程は工程
1〜3を1つの単位として、塔と塔との関係において1
塔づつ位相を変えていきながら繰り返し行なうものであ
る。この関係をわかりやすく第1表にまとめる。
As can be understood from the above description, the above-mentioned 9 steps have steps 1 to 3 as one unit, and in the relationship between columns,
This is repeated while changing the phase of each tower. This relationship is summarized in Table 1 for easy understanding.

各開閉弁の開閉はタイマー、シーケンサー等によって自
動的に行なわれる。サイクルに要する時間は1塔当りに
対して1〜10分、好ましくは3〜6分である。精製ガス
中にCO2濃度が5%以下で破過するに足る精製ガス速度
は調節弁21の開度を手動で調節して行なうことができる
が、その他に管32の経路にCO2濃度計を設け、精製ガス
中のCO2濃度が設定値に達した時点でPSA法の工程を進め
る方法をとることができる。
The opening and closing of each on-off valve is automatically performed by a timer, a sequencer or the like. The time required for the cycle is 1 to 10 minutes, preferably 3 to 6 minutes per tower. Refined gas velocity CO 2 concentration in the purified gas is sufficient to breakthrough less than 5% can be accomplished by adjusting the degree of opening of the control valve 21 manually, Other CO 2 concentration meter in the path of the tube 32 Is provided, and when the CO 2 concentration in the purified gas reaches the set value, the PSA method step can be performed.

以下、実施例により本発明を更に詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1] ガス混合器によって合成したブタン水蒸気改質ガスを用
いて精製実験を実施した。3基の吸着塔はステンレス製
(内径28mm×高さ1.25m)であり、1塔当り上部にモレ
キュラシーブ4Aを427g、下部には活性アルミナ95gを充
填した。
Example 1 A refining experiment was carried out using a butane steam reforming gas synthesized by a gas mixer. The three adsorption towers were made of stainless steel (inner diameter 28 mm × height 1.25 m), and the upper portion of each tower was filled with 427 g of molecular sieve 4A and the lower portion was filled with 95 g of activated alumina.

(イ) 実験条件 操作温度:40℃ 吸着圧力:6.0kg/cm2G 排気圧力:1.0kg/cm2G サイクルタイム:4.0分/1塔当り 合成ガス組成:H2=7.0%、CO225.1%、CH4=67.9%、
他に40℃における飽和水蒸気を含む。
(B) Experimental conditions Operating temperature: 40 ° C Adsorption pressure: 6.0 kg / cm 2 G Exhaust pressure: 1.0 kg / cm 2 G Cycle time: 4.0 minutes / per tower Synthesis gas composition: H 2 = 7.0%, CO 2 25.1 %, CH 4 = 67.9%,
It also contains saturated steam at 40 ° C.

(ロ) 操作条件 第4図に示す通りである。(B) Operating conditions As shown in FIG.

工程1:(a)図の通り。Step 1: As shown in (a).

工程2:(b)図の通り。Step 2: (b) As shown in the figure.

工程3:(c)図の通り。Step 3: (c) As shown in the figure.

工程4,工程5,工程6:それぞれ(a)図,(b)図,
(c)図においてA→B,B→C,C→Aに読み変える。
Process 4, Process 5, Process 6: Figures (a) and (b), respectively
(C) In the figure, read as A → B, B → C, C → A.

工程7,工程8,工程9:それぞれ(a)図,(b)図,
(c)図においてA→C,B→A,C→Bに読み変える。
Process 7, Process 8, Process 9: (a) diagram, (b) diagram, respectively
(C) In the figure, read as A → C, B → A, C → B.

(ハ) 実験結果 原料供給ガス量は184.8Nl/Hrに対し精製ガス119.3Nl/Hr
でCH4回収率は84.8%であった。精製ガス組成はH2=5.8
%、CO2=5.0%、CH4=89.2%、露点=−60℃であっ
た。
(C) Experimental results The amount of raw material supply gas was 184.8 Nl / Hr, whereas the purified gas was 119.3 Nl / Hr
The CH 4 recovery was 84.8%. Purified gas composition is H 2 = 5.8
%, CO 2 = 5.0%, CH 4 = 89.2%, and dew point = -60 ° C.

[実施例2] 実施例1において精製ガスの調節弁の開度をより絞るこ
とによって精製ガスのCO2ガスの濃度の減少を計った。
原料合成ガス組成および操作条件は実施例1と同じであ
る。
Example 2 In Example 1, the concentration of CO 2 gas in the purified gas was reduced by further narrowing the opening of the purified gas control valve.
The raw material synthesis gas composition and operating conditions are the same as in Example 1.

実験結果は原料供給ガス量170.3Nl/Hrに対して精製ガス
は95.3Nl/HrでCH4回収率は77.5%であった。又精製ガス
組成はH2=5.8%、CO2=0.1%、CH4=94.0%、露点=−
60℃であった。
The experimental results showed that the purified gas was 95.3 Nl / Hr and the CH 4 recovery rate was 77.5% with respect to the raw material supply gas amount of 170.3 Nl / Hr. The purified gas composition is H 2 = 5.8%, CO 2 = 0.1%, CH 4 = 94.0%, dew point =-
It was 60 ° C.

[実施例3] 排気側に真空ポンプを接続して排気圧力を460Torrまで
減圧した。
[Example 3] A vacuum pump was connected to the exhaust side to reduce the exhaust pressure to 460 Torr.

(イ) 実験条件 実施例1と同じである。(B) Experimental conditions The same as in Example 1.

(ロ) 操作条件 第5図に示す通りである。(B) Operating conditions As shown in FIG.

工程1:(a)図の通り。Step 1: As shown in (a).

工程2:(b)図の通り。Step 2: (b) As shown in the figure.

工程3:(c)図の通り。Step 3: (c) As shown in the figure.

工程4,工程5,工程6:それぞれ(a)図,(b)図,
(c)図においてA→B,B→C,C→Aに読み変える。
Process 4, Process 5, Process 6: Figures (a) and (b), respectively
(C) In the figure, read as A → B, B → C, C → A.

工程7,工程8,工程9:それぞれ(a)図,(b)図,
(c)図においてA→C,B→A,C→Bに読み変える。
Process 7, Process 8, Process 9: (a) diagram, (b) diagram, respectively
(C) In the figure, read as A → C, B → A, C → B.

(ハ) 実験結果 原料供給ガス量231.4Nl/Hrに対して精製ガス11は9.3Nl/
HrでCH4回収率は91.8%であった。又、精製ガス組成はH
2=6.8%、CO2=5.0%、CH4=88.2%、露点=−60℃で
あった。
(C) Experimental results Purified gas 11 is 9.3 Nl / Hr as the raw material supply gas amount is 231.4 Nl / Hr
The H 4 CH 4 recovery was 91.8%. The purified gas composition is H
2 = 6.8%, CO 2 = 5.0%, CH 4 = 88.2%, was dew point = -60 ° C..

[発明の効果] 本発明によって炭化水素改質ガスから二酸化炭素を除去
するに当って (イ) 緊急時に簡便に対応でき、 (ロ) 原料ガスの圧力を損うことなく、 (ハ) 薬剤を使用することなく、 精製することができる。
[Advantages of the Invention] In removing carbon dioxide from a hydrocarbon reformed gas according to the present invention, (a) it is possible to easily respond in an emergency, (b) without damaging the pressure of the raw material gas, It can be purified without use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を説明するための系統図であり、 第2図はモレキュラシーブの吸着平衡図であり、 第3図は吸着塔の破過状態を示す説明図であり、 第4図は実施例1の操作条件を示す模式図であり、 第5図は実施例3の操作条件を示す模式図である。 A,B,C……吸着塔、1〜15……開閉弁 16〜21……調節弁、31〜37……管 51……減圧ポンプ、61……CO2濃度計FIG. 1 is a system diagram for explaining the present invention, FIG. 2 is an adsorption equilibrium diagram of molecular sieves, FIG. 3 is an explanatory diagram showing a breakthrough state of an adsorption tower, and FIG. It is a schematic diagram which shows the operating conditions of Example 1, and FIG. 5 is a schematic diagram which shows the operating conditions of Example 3. A, B, C ... Adsorption tower, 1-15 ... Open / close valve 16-21 ... Control valve, 31-37 ... Pipe 51 ... Decompression pump, 61 ... CO 2 concentration meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二酸化炭素を選択的に吸着する吸着剤を充
填した3基の吸着塔を用いて、これらの吸着塔に二酸化
炭素を含有する炭化水素改質ガスである原料ガスを流通
させて、二酸化炭素を吸着除去することにより、炭化水
素改質ガスを精製する方法であって、第1の吸着塔にお
いて、順次に、 (1) 加圧状態の原料ガスを原料端部へ供給し、塔内
を一定の圧力に保持しながら、製品端部から炭化水素改
質ガスを精製ガスとして導出し、この精製ガスの一部
を、第3の吸着塔からの炭化水素改質ガスの流入によっ
て均圧化が行なわれつつある第2の吸着塔の製品端部へ
供給する工程、 (2) 加圧状態の原料ガスを原料端部へ供給し、塔内
を一定の圧力に保持しながら、製品端部から炭化水素改
質ガスを精製ガスとして導出し、この精製ガスの一部
を、既に第3の吸着塔からの炭化水素改質ガス流入によ
って均圧化が行なわれた第2の吸着塔の製品端部へ供給
して第2の吸着塔を昇圧する工程、 (3) 加圧状態の原料ガスを原料端部へ供給し、塔内
を一定の圧力に保持しながら、製品端部から炭化水素改
質ガスを精製ガスとして導出し、この精製ガスの一部
を、第2の吸着塔の製品端部へ供給して第2の吸着塔を
昇圧すると同時に、既に排気された第3の吸着塔へも供
給して第3の吸着塔を掃気洗浄する工程、 (4) 原料ガスの流入を停止し、製品端部から炭化水
素改質ガスを導出し、この炭化水素改質ガスを既に掃気
された第3の吸着塔へ供給して均圧化する工程、 (5) 原料端部より排気する工程、 (6) 炭化水素改質ガスを精製ガスとして導出してい
る第2の吸着塔から、その精製ガスの一部を製品端部よ
り流入させて塔内を洗浄掃気する工程、 (7) 原料ガスの流入を停止した第2の吸着塔から導
出する炭化水素改質ガスと、炭化水素改質ガスを精製ガ
スとして導出している第3の吸着塔からの精製ガスの一
部を製品端部より流入させて均圧化させる工程、及び (8) 炭化水素改質ガスを精製ガスとして導出してい
る第3の吸着塔からの精製ガスの一部を製品端部より流
入させて昇圧させる工程、 を実施し、更にその間に前記工程サイクルを第2及び第
3の吸着塔のそれぞれにおいて位相を変えて実施するこ
とを特徴とする炭化水素改質ガスの精製方法。
1. A three-piece adsorption tower filled with an adsorbent that selectively adsorbs carbon dioxide is used, and a raw material gas, which is a hydrocarbon reforming gas containing carbon dioxide, is passed through these adsorption towers. A method for purifying a hydrocarbon reformed gas by adsorbing and removing carbon dioxide, comprising: (1) supplying a raw material gas in a pressurized state to a raw material end in sequence in a first adsorption tower; While maintaining a constant pressure in the tower, the hydrocarbon reformed gas is discharged as a purified gas from the end of the product, and a part of this purified gas is introduced by the inflow of the hydrocarbon reformed gas from the third adsorption tower. Supplying to the product end of the second adsorption tower where pressure equalization is being performed, (2) supplying pressurized raw material gas to the raw material end and maintaining the inside of the tower at a constant pressure, The hydrocarbon reformed gas is derived from the end of the product as a purified gas, and this purified gas is discharged. A part of the above is supplied to the product end of the second adsorption tower where pressure equalization has already been performed by the hydrocarbon reforming gas inflow from the third adsorption tower to pressurize the second adsorption tower, (3) The pressurized raw material gas is supplied to the raw material end, and the hydrocarbon reformed gas is discharged as a purified gas from the product end while maintaining a constant pressure in the tower, and a part of this purified gas Is supplied to the product end of the second adsorption tower to pressurize the second adsorption tower and at the same time is also supplied to the already exhausted third adsorption tower to scavenge-clean the third adsorption tower, (4) A step of stopping the inflow of the raw material gas, deriving the hydrocarbon reformed gas from the product end, and supplying this hydrocarbon reformed gas to the already adsorbed third adsorption tower to equalize the pressure. (5) A step of exhausting from the end of the raw material, (6) Is it a second adsorption tower that delivers hydrocarbon reformed gas as a purified gas? A step of flowing a part of the purified gas from the end of the product to wash and scavenging the inside of the tower, (7) a hydrocarbon reformed gas derived from the second adsorption tower in which the flow of the raw material gas is stopped, and a hydrocarbon A step of causing a part of the purified gas from the third adsorption tower, which has derived the reformed gas as the purified gas, to flow from the end of the product to equalize the pressure, and (8) use the hydrocarbon reformed gas as the purified gas. A step of causing a part of the derived purified gas from the third adsorption tower to flow from the end of the product to raise the pressure, and further, during that time, the process cycle is performed in each of the second and third adsorption towers. A method for purifying a hydrocarbon reformed gas, which is performed by changing the phase.
【請求項2】特許請求の範囲第1項において (5) の工程が減圧ポンプによって大気圧以下に吸引
排気し、 (6) の工程が減圧ポンプによって大気圧以下に吸引
掃気する、 ことを特徴とする特許請求の範囲第1項記載の炭化水素
改質ガスの精製方法。
2. The method according to claim 1, wherein the step (5) sucks and exhausts to a pressure below atmospheric pressure by a decompression pump, and the step (6) sucks and scavenges to a pressure below atmospheric pressure by a decompression pump. The method for purifying a hydrocarbon reformed gas according to claim 1.
JP62208284A 1987-08-24 1987-08-24 Refining method of hydrocarbon reformed gas Expired - Lifetime JPH07165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62208284A JPH07165B2 (en) 1987-08-24 1987-08-24 Refining method of hydrocarbon reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62208284A JPH07165B2 (en) 1987-08-24 1987-08-24 Refining method of hydrocarbon reformed gas

Publications (2)

Publication Number Publication Date
JPS6451120A JPS6451120A (en) 1989-02-27
JPH07165B2 true JPH07165B2 (en) 1995-01-11

Family

ID=16553696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62208284A Expired - Lifetime JPH07165B2 (en) 1987-08-24 1987-08-24 Refining method of hydrocarbon reformed gas

Country Status (1)

Country Link
JP (1) JPH07165B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW274055B (en) * 1994-04-05 1996-04-11 Sumitomo Seika Chemicals
US6558451B2 (en) * 2000-05-10 2003-05-06 Airsep Corporation Multiple bed pressure swing adsorption method and apparatus
JP4758394B2 (en) * 2007-05-30 2011-08-24 住友精化株式会社 Method for purifying mixed gas, and mixed gas recycling system
CN102921271B (en) * 2012-11-07 2015-04-29 四川天一科技股份有限公司 Improved process for recovering non-methane alkane in polyolefin tail gas by adsorption method
US20220145201A1 (en) * 2019-06-19 2022-05-12 Jgc Corporation Natural gas pretreatment system and method for pretreating natural gas

Also Published As

Publication number Publication date
JPS6451120A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
CA1336041C (en) Separation of gas mixtures including hydrogen
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US5234472A (en) Separation of gas mixtures including hydrogen
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
US5707425A (en) Helium recovery from higher helium content streams
KR970025675A (en) Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air
JP2006239692A (en) Pressure swing adsorption process and apparatus
US20110223100A1 (en) Production of hydrogen from a reforming gas and simultaneous capture of co2 co-product
AU649567B2 (en) Recovery of flammable materials from gas streams
GB2155805A (en) Gas separation process and apparatus
IN158005B (en)
JPH02129014A (en) Production of carbon monoxide gas
CN108236829B (en) From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus
NO854134L (en) GAS PRODUCTION.
JPH07165B2 (en) Refining method of hydrocarbon reformed gas
JP4316386B2 (en) Method and apparatus for producing hydrogen from hydrogen rich feed gas
JPS6137970B2 (en)
JPH04200713A (en) Manufacture of high-purity carbon monoxide
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JPS62279823A (en) Purification and recovery of methane from reclaimed garbage gas
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JPS60239309A (en) Process for recovering argon
JPS625645B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 13