JPS60819A - Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method - Google Patents
Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption methodInfo
- Publication number
- JPS60819A JPS60819A JP58110617A JP11061783A JPS60819A JP S60819 A JPS60819 A JP S60819A JP 58110617 A JP58110617 A JP 58110617A JP 11061783 A JP11061783 A JP 11061783A JP S60819 A JPS60819 A JP S60819A
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- pressure
- gas
- tower
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、圧力変動式吸着分離方法(以後PSA法と呼
ぶ)によって、製鉄所排ガス主として転炉又は高炉ガス
等の主として二酸化炭素、−酸化炭素、窒素及び水素ガ
スを含む混合ガスより二酸化炭素を数1o o o p
prnまで除去する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a pressure fluctuation type adsorption separation method (hereinafter referred to as PSA method) to remove mainly carbon dioxide, -carbon oxide, nitrogen and hydrogen gas from steelworks exhaust gas, mainly converter or blast furnace gas. Several 1 o o o p of carbon dioxide from the mixed gas containing
This relates to a method for removing even prn.
従来、ガス中の二酸化炭素を除去する方法として溶媒中
に溶解させる湿式溶解法と合成ゼオライトのような二酸
化炭素に対して吸着能を有する吸着剤を使用した吸着法
を使用した除去方法が一般的に採用されている。溶媒中
に二酸化炭素を溶解させる方法は二酸化炭素を除去する
効率は高いがガスが水分等で飽和状態になり製品ガスを
乾燥させる必要がある上にメンテナスがやっかいである
。Traditional methods for removing carbon dioxide from gas include a wet dissolution method in which it is dissolved in a solvent, and an adsorption method that uses an adsorbent that has the ability to adsorb carbon dioxide, such as synthetic zeolite. has been adopted. Although the method of dissolving carbon dioxide in a solvent has a high efficiency in removing carbon dioxide, the gas becomes saturated with moisture, etc., and the product gas needs to be dried, and maintenance is troublesome.
又吸着法による二酸化炭素の除去には二酸化炭素を吸着
した吸着剤な加熱、冷却による温度変動式吸着法(TS
A法)と、吸着剤の雰囲気ガス圧力差による圧力変動式
吸着法(PSA法)の2通りの方法がある。In addition, to remove carbon dioxide by adsorption method, temperature fluctuation adsorption method (TS
There are two methods: method A) and pressure fluctuation adsorption method (PSA method) using a pressure difference in the atmospheric gas of the adsorbent.
温度変動式吸着法は吸着塔加熱・冷却のためエネルギー
が必要で吸着塔切替時間が長くなり、吸着剤の必要量も
多くなる等の欠点がある。これにくらべて圧力変動式吸
着法は加熱・冷却のエネルギーが不要で吸着塔切替時間
も短か(することが出来るため吸着剤の必要量も少なく
て良い等の利点がある。この圧力変動式吸着法も今迄は
空気中の二酸化炭素或は水素、ヘリウム等の吸着剤に対
する離吸着ガス成分中の二酸化炭素の除去が目的であっ
た。The temperature fluctuation type adsorption method requires energy to heat and cool the adsorption tower, and has disadvantages such as a long adsorption tower switching time and a large amount of adsorbent. In comparison, the pressure fluctuation type adsorption method has advantages such as not requiring energy for heating and cooling, and requiring a shorter adsorption tower switching time (as it is possible to do so, the amount of adsorbent required is small. Up until now, the purpose of the adsorption method has been to remove carbon dioxide in the air, or carbon dioxide in the adsorbed gas component by adsorbents such as hydrogen and helium.
製鉄所排ガス主として転炉又は高炉ガス等の主として一
酸化炭素、二酸化炭素、窒素及び水素ガスを含む該混合
ガスよりPSA法により二酸化炭素を除去することを試
みたが、通常のPSA法では吸着塔の再生が不充分で高
濃度の酸素ガスが得られないことがわかった。これは−
酸化炭素と二酸化炭素、窒素がともにゼオライト系吸着
剤に対して易吸着ガス成分であるため共吸着を行い吸着
剤からの脱着が窒素・−酸化炭素・二酸化炭素の順に行
なわれるためと吸着剤に対する吸着速度及び脱着速度が
異なり二酸化炭素の脱着には常圧パージでは再生ができ
ないことによるものである。An attempt was made to remove carbon dioxide from steelworks exhaust gas, mainly converter or blast furnace gas, which mainly contains carbon monoxide, carbon dioxide, nitrogen, and hydrogen gas, using the PSA method. It was found that high concentration oxygen gas could not be obtained due to insufficient regeneration. This is-
Since carbon oxide, carbon dioxide, and nitrogen are gas components that are easily adsorbed to zeolite adsorbents, they are co-adsorbed and desorbed from the adsorbent in the order of nitrogen, carbon oxide, and carbon dioxide. This is because the adsorption rate and desorption rate are different, and desorption of carbon dioxide cannot be regenerated by normal pressure purge.
本発明は易吸着ガス成分或は吸着剤に対する共吸着ガス
成分における二酸化炭素を数100 PP”に除去する
ことが可能な圧力変動式吸着法を提供することにある。The object of the present invention is to provide a pressure fluctuation type adsorption method capable of removing carbon dioxide in easily adsorbed gas components or co-adsorbed gas components to an adsorbent to several 100 PP''.
一酸化炭素を含む製鉄所排ガスの如き混合ガスより炭酸
ガスを除去することに圧力変動式吸着法を使用すること
は再生が困難であったり再生用に製品ガスを3D〜40
%も使用するなど不経済で実用に供されていない。しか
しながら本発明者は実験、研究の結果、−酸化炭素を含
む混合ガスより二酸化炭素を数1o o pprnに除
去する方法を見出し本発明を完成したものである。It is difficult to use the pressure fluctuation adsorption method to remove carbon dioxide gas from a mixed gas such as steelwork exhaust gas containing carbon monoxide, but it is difficult to regenerate the product gas for regeneration.
%, it is uneconomical and is not put to practical use. However, as a result of experiments and research, the present inventors discovered a method for removing carbon dioxide to several tens of pprn from a mixed gas containing -carbon oxide, and completed the present invention.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
吸着法を使用して製鉄所排ガス中の二酸化炭素を分離除
去するに際し、ゼオライト系吸着剤を充填した2つ以上
の吸着塔を使用その方法は、I)再生が完了した1つの
塔に該混合ガスを導入して、吸着工程の終点又は終点近
くまで吸着剤に主として二酸化炭素を吸着させて製品ガ
スを得る吸着工程、
11)吸着工程終了後、好ましくは向流方向に吸着塔の
圧力を大気圧又は大気圧近くまで降下させる減圧放圧工
程、
111)減圧放圧終了後、好ましくは向流方向に塔内を
真空近くまで排気ポンプを使用して塔内ガスを排気する
減産排気工程、
lv) 減圧排気した吸着塔に製品ガス或は窒素ガスを
向流に導入しながら減圧排気を行う排気パージ工程、
■)排気パージが終った塔に好ましくは向流方向に製品
ガスを流してその塔の加圧を行う製品加圧工程、
から成り定期的に吸着塔間の流れを変えて、全ての吸着
塔において上記操作を繰返すことを特徴とした方法に関
する。When separating and removing carbon dioxide from steelworks exhaust gas using the adsorption method, two or more adsorption towers filled with zeolite-based adsorbents are used. An adsorption step in which gas is introduced and the adsorbent mainly adsorbs carbon dioxide until the end point or near the end point of the adsorption step to obtain a product gas; 11) After the adsorption step, the pressure of the adsorption tower is increased, preferably in the countercurrent direction. 111) After the completion of depressurization and depressurization, a production reduction exhausting step in which the gas inside the tower is exhausted to near vacuum using an exhaust pump, preferably in the countercurrent direction, lv ) An exhaust purge step in which the product gas or nitrogen gas is introduced countercurrently into the adsorption tower that has been depressurized and exhausted, and ■) Product gas is preferably flowed countercurrently into the tower after exhaust purging. A product pressurizing step of pressurizing the product, and the above operation is repeated in all the adsorption towers by periodically changing the flow between the adsorption towers.
本発明の工程(1)は吸着塔に該混合ガスを導入して吸
着剤に二酸化炭素等の易吸着成亦ガスを加圧状態で吸着
させる吸着工程で塔内圧力は一定に保たれ、塔の底部よ
り該混合ガスは導入され、精製されたガスは製品ガスと
して上部より出る。Step (1) of the present invention is an adsorption step in which the mixed gas is introduced into the adsorption tower and the adsorbent adsorbs easily adsorbable gases such as carbon dioxide under pressure. The mixed gas is introduced from the bottom of the tank, and the purified gas exits from the top as a product gas.
工程(11)は減圧工程で原料ガスの塔内への導入を停
止後塔内を減圧して向流方向にガスを流出させ大気圧又
は大気圧近くで減圧ガス放出弁を閉じる。Step (11) is a pressure reduction step in which the introduction of raw material gas into the column is stopped, the pressure is reduced in the column, the gas flows out in the countercurrent direction, and the reduced pressure gas release valve is closed at or near atmospheric pressure.
■程Qii)は排気工程である。減圧工程のみでは二酸
化炭素等の吸着成分の脱着が充分でないため向流方向の
真空排気により残留二酸化炭素を脱着させる。この場合
の吸着塔の真空度は目的とする製品ガス中に含まれる二
酸化炭素の分圧附近に保たれる様にすればよい。■Progress Qii) is the exhaust process. Since the depressurization step alone is not enough to desorb adsorbed components such as carbon dioxide, residual carbon dioxide is desorbed by evacuation in the countercurrent direction. In this case, the degree of vacuum in the adsorption tower may be kept close to the partial pressure of carbon dioxide contained in the target product gas.
この真空排気と、上述の減圧或は減圧工程と常圧でのパ
ージを用いた従来のPSA法による二酸化炭素の除去方
法では脱着が充分に行なわれないか、再生が出来るにし
ても精製した製品ガスの40〜50%をパージガスとし
て使用して製品ガスの回収率が悪いため回収率を向上さ
せると共、に吸着剤より二酸化炭素の脱着効果を充分に
指揮させるべ〈発明者は吸着、減圧排気等の諸工程共吸
着が行なわれる混合ガス中の吸・脱着速度等を鋭意検討
した結果、製品ガスによる・ξ−ジを真空排気中で行う
排気、パージを排気工程の後に実施することで良好な結
果を得ることを見いだした。With this vacuum evacuation and the conventional PSA method of removing carbon dioxide using the above-mentioned depressurization or depressurization step and purge at normal pressure, desorption may not be sufficiently performed, or even if regeneration is possible, the purified product 40 to 50% of the gas should be used as purge gas to improve the recovery rate since the product gas recovery rate is poor, and to allow the adsorbent to fully control the desorption effect of carbon dioxide. Various processes such as evacuation As a result of careful consideration of the adsorption and desorption speed in the mixed gas where co-adsorption is performed, we found that by performing evacuation and purging in vacuum evacuation after the evacuation process, It was found that good results were obtained.
工程(1v)は排気パージ工程である。減圧排気を行っ
た吸着塔に製品ガス或は窒素ガスを向流に導入し吸着剤
に脱着されずに残っている二酸化炭素を製品ガスの二酸
化炭素の分圧或は窒素ガスによって同伴脱着効果によっ
て、吸着剤より二酸化炭素を脱着させようとするもので
ある。Step (1v) is an exhaust purge step. Product gas or nitrogen gas is introduced countercurrently into the adsorption tower that has been evacuated to reduce pressure, and the remaining carbon dioxide that has not been desorbed by the adsorbent is removed by the entrainment-desorption effect by the partial pressure of carbon dioxide in the product gas or nitrogen gas. , which attempts to desorb carbon dioxide from an adsorbent.
工程(v)は製品ガス加圧工程である。排気パージ工程
が終った塔に製品ガスを導入して吸着塔内の吸着剤のガ
ス濃度分布を均一にするために製品ガスでもって吸着塔
を加圧する工程である。Step (v) is a product gas pressurization step. This is a step in which the product gas is introduced into the tower after the exhaust purging step and the adsorption tower is pressurized with the product gas in order to make the gas concentration distribution of the adsorbent in the adsorption tower uniform.
本発明で使用される吸着剤として活性アルミナで該混合
ガス中の水分を、ゼオライト主吸着剤、活性炭系吸着剤
で該混合ガス中の二酸化炭素を吸着させ除去するが該混
合ガス中の二酸化炭素の濃度によって、それぞれ吸着剤
を便い分けることによって製品ガス中の二酸化炭素の濃
度を変えることが出来る。As the adsorbent used in the present invention, activated alumina is used to remove moisture in the mixed gas, and zeolite main adsorbent and activated carbon adsorbent are used to adsorb and remove carbon dioxide in the mixed gas. The concentration of carbon dioxide in the product gas can be changed by selecting different adsorbents depending on the concentration of carbon dioxide.
以下本発明の代表的な具体例である転炉排ガス。The following is a converter exhaust gas that is a typical example of the present invention.
中の二酸化炭素を除去する方法について詳しく説明する
が本発明の方法はこれらの具体例に限定されるものでは
ない。A method for removing carbon dioxide therein will be explained in detail, but the method of the present invention is not limited to these specific examples.
本発明において使用できる吸着剤は、天然又は合成ゼオ
ライト、活性炭、シリカゲル等である。Adsorbents that can be used in the present invention include natural or synthetic zeolites, activated carbon, silica gel, and the like.
活性アルミナ層とゼオライト系吸着剤層との組合せ、活
性アルミナ層と活性炭系吸着剤層との組合せ或は活性ア
ルミナ層と活性炭吸着剤およびゼオライト系吸着剤との
組合せが好ましく、吸着塔において下から記載の順序で
これらの層を設ける。A combination of an activated alumina layer and a zeolite adsorbent layer, a combination of an activated alumina layer and an activated carbon adsorbent layer, or a combination of an activated alumina layer, an activated carbon adsorbent, and a zeolite adsorbent is preferable. These layers are applied in the order listed.
第1図は吸着法により連続的に転炉排ガスから二酸化炭
素を除去するためのフローシートでアル。Figure 1 is a flow sheet for continuously removing carbon dioxide from converter flue gas by adsorption method.
吸着塔A、Bは二酸化炭素等の易吸着成分を選択的に吸
着する吸着剤が収納されている。吸着塔A、Bを真空ポ
ンプ(16)を用いて減圧排気、100Torr以下好
ましくは6oTorr以下まで行い、今吸着塔Aに原料
ガスを加圧導入し、真空状態より吸着圧力まで昇圧させ
るためにバルブ(2)を開くことによって行う。このと
きバルブ(2)以外のバルブはすべて閉である。吸着塔
Bはこのステップでは、まだ真空状態を保持している。Adsorption towers A and B house adsorbents that selectively adsorb easily adsorbable components such as carbon dioxide. Adsorption towers A and B are depressurized and evacuated to 100 Torr or less, preferably 6 oTorr or less, using a vacuum pump (16), and now the raw material gas is introduced into adsorption tower A under pressure, and a valve is used to increase the pressure from the vacuum state to the adsorption pressure. (2) This is done by opening. At this time, all valves other than valve (2) are closed. Adsorption tower B still maintains a vacuum state at this step.
吸着塔Aは吸着圧力まで昇圧後、吸着圧力0.0 、1
kg/am2Gから3、 Okg/am2Gまで好ま
L < k’r、 0.5 k+1?/c+a2G カ
ラ1、Okg/cTLGの吸着圧力を保つ様にバルブ(
5)が開かれ、易吸着ガス成分である二酸化炭素と一酸
化炭素及び窒素の一部が吸着剤に吸着し、残りは製品ガ
スとして回収される。一定時間或は一定量の吸着工程終
了後、該混合ガス導入パルプ(2)及び出ロバルプ(5
)は閉じバルブ(3)を開き、吸着塔Aの塔内圧力を大
気圧力附近まで減圧放出させる。吸着塔Aが大気圧付近
になるとバルブ(3)は閉じられ吸着塔下部よりバルブ
(4)を開にし真空ポンプを用いて減圧排気を行い吸着
剤に吸着している易吸着ガス成分の二酸化炭素を脱着さ
せる。この際の排気圧力は100 Torr以下好まし
くは60TOrr以下まで行う。減圧排気終了後バルブ
(6)(4)を開き製品ガスを導入しながら真空排気を
行いつS、吸着剤に残存している二酸化炭素の脱着を行
う。このときバルブ(4)はパージ量に比しいだけ開か
れている。After increasing the pressure of adsorption tower A to the adsorption pressure, the adsorption pressure is 0.0, 1
From kg/am2G to 3, Okg/am2G preferred L <k'r, 0.5 k+1? /c+a2G Cara 1, valve (to maintain Okg/cTLG adsorption pressure)
5) is opened, and a portion of carbon dioxide, carbon monoxide, and nitrogen, which are easily adsorbed gas components, are adsorbed by the adsorbent, and the rest is recovered as product gas. After completion of the adsorption process for a certain period of time or a certain amount, the mixed gas introduced pulp (2) and the output robulp (5
) opens the closing valve (3) and releases the internal pressure of the adsorption tower A to near atmospheric pressure. When the adsorption tower A reaches near atmospheric pressure, the valve (3) is closed, and the valve (4) is opened from the bottom of the adsorption tower to perform reduced pressure exhaust using a vacuum pump to remove carbon dioxide, an easily adsorbed gas component adsorbed on the adsorbent. Attach and detach. The exhaust pressure at this time is 100 Torr or less, preferably 60 TOrr or less. After the evacuation is completed, the valves (6) and (4) are opened and the product gas is introduced while evacuation is performed and carbon dioxide remaining in the adsorbent is desorbed. At this time, the valve (4) is opened by an amount relative to the purge amount.
一定時間或は一定量の製品ガスパーン工程終了後バルブ
(4)及び(6)は閉じ、バルブ(力を閉にして製品ガ
スを吸着塔に導入し、塔内圧力を吸着圧力にまで高める
。After completing the product gas purging process for a certain period of time or a certain amount, the valves (4) and (6) are closed, the valve (forced) is closed, and the product gas is introduced into the adsorption tower, and the pressure inside the tower is increased to the adsorption pressure.
上記操作をそれぞれの吸着塔において順次繰返すことに
よって連続的に吸着剤に二酸化炭素を吸着させ除去しよ
うとするものである。By sequentially repeating the above operations in each adsorption tower, carbon dioxide is continuously adsorbed onto the adsorbent and removed.
実施例 (1)
以下さらに本発明を具体的に説明するためco−C02
の混合ガスによる二酸化炭素の分離・除去を行った結果
である。Example (1) To further specifically explain the present invention, co-C02
This is the result of separating and removing carbon dioxide using a mixed gas.
分離・除去工程として既述の如く「原料加圧−減圧一排
気一排気パージー製品加圧」の精製サイクルにもとづい
て実施した。As described above, the separation/removal step was carried out based on the purification cycle of "raw material pressurization - depressurization, exhaust, exhaust purging, product pressurization".
活性化したゼオハーブ1/8“投レットヲ一塔当り0.
5 kgを充填した鋼製の吸着塔(IBXlm)を真空
排気し6Q Torrに保った後Go2=3.8%GO
=96.2%を線速6.6 cm/seCで塔下部より
導入して二酸化炭素の除去実験を実施した。Activated Zeo Herb 1/8 "0.
After a steel adsorption tower (IBXlm) filled with 5 kg was evacuated and maintained at 6Q Torr, Go2 = 3.8% GO.
= 96.2% was introduced from the bottom of the column at a linear velocity of 6.6 cm/sec to conduct a carbon dioxide removal experiment.
実験条件
吸着剤充填量 ゼオハーブ ZE−501500g操作
温度 25U 吸着圧力 1.0kg/cIn2G原料
供給量 291ノ
排気パージガス量 3.41
パージ真空度 150 TO7−r
製品N、x、C○2濃度400 ppm製品ガス量 2
2.611
従来技術の常圧パージ法では二酸化炭素吸着後の再生に
使用するパージガス量は精製処理済の製品ガスの40〜
50係、真空排気法のみの場合には、処理量が排気パー
ジ法にくらべ1/3〜1/4であった。Experimental conditions Adsorbent filling amount Zeoherb ZE-501500g Operating temperature 25U Adsorption pressure 1.0kg/cIn2G raw material supply amount 291 Exhaust purge gas amount 3.41 Purge vacuum degree 150 TO7-r Product N, x, C○2 concentration 400 ppm Product Gas amount 2
2.611 In the conventional normal pressure purge method, the amount of purge gas used for regeneration after carbon dioxide adsorption is 40 to 40% of the purified product gas.
In the case of only the vacuum evacuation method, the throughput was 1/3 to 1/4 of that of the exhaust purge method.
実施例 (2)
実施例(1)と同一装置を用いて下記実験条件で分離除
去を行った結果である。Example (2) These are the results of separation and removal using the same apparatus as in Example (1) under the following experimental conditions.
実験条件
ガス組成 C0=96.6% Go2=3.7%吸着剤
充填量 シラサギG ろ00U
操作温度 25、C
吸着圧力 1.0 kg/CTL2G
吸着速度 6.5優/ s e c
原料供給量 31.i
排気パージ量 6.51
パージ真空度 135 ’forr
製品ガスCO2濃度 ろ30 PPm
製品ガス量 21.7A’
実施例 (3)
実施例(1)と同一装置を用いて下記実験条件で分離除
去を行った結果である。Experimental conditions Gas composition C0 = 96.6% Go2 = 3.7% Adsorbent filling amount Shirasagi G Filter 00U Operating temperature 25, C Adsorption pressure 1.0 kg/CTL2G Adsorption rate 6.5 Excel/sec Raw material supply amount 31. i Exhaust purge amount 6.51 Purge vacuum degree 135'forr Product gas CO2 concentration Filtration 30 PPm Product gas amount 21.7A' Example (3) Separation and removal was carried out under the following experimental conditions using the same equipment as Example (1). This is the result.
実験条件
ガス組成 GO=96.3% C02=6.7%吸着剤
充填量 活性炭 シラサギG 200.!7ゼオーハー
ズZE−501130,9’操作温度 25C吸着圧力
1.OI’vcIIL2G吸着速度 6.5 cm/
Se ’
原料供給量 30.31
排気パージ量 。6.6ノ
パージ真空度 200 Torr
製品ガス濃度 380 ppm
製品ガス量 20.7#
実施例 (4)
活性化した吸着剤を鋼製の吸着塔(12BX2.7m)
2塔に充填、転炉排ガスを使用して二酸化炭素の分離除
去実験を実施した。Experimental conditions Gas composition GO = 96.3% CO2 = 6.7% Adsorbent filling amount Activated carbon Shirasagi G 200. ! 7 Zeohers ZE-501130, 9' Operating temperature 25C Adsorption pressure 1. OI'vcIIL2G adsorption speed 6.5 cm/
Se' Raw material supply amount 30.31 Exhaust purge amount. 6.6 Nopurge vacuum degree 200 Torr Product gas concentration 380 ppm Product gas amount 20.7 # Example (4) The activated adsorbent was transferred to a steel adsorption tower (12 B x 2.7 m)
Two towers were filled and an experiment was conducted to separate and remove carbon dioxide using converter exhaust gas.
実験条件
ガス組成 C0−85%、N2=4%、C02=4%、
H,ニア%
吸着剤充填量 イオノ1−ブZE−50166kfil
塔吸着速度 6.6crrv’se’
原料供給量 48.9M3/H
排気パージ量 4.4M3/H
パージ真空度 100TOrr
製品ガス濃度 Go2=400ppm C0=87.5
5%N2=4.3% H2=8.0%
製品ガス量 42.9M37Hを得た。Experimental conditions Gas composition C0-85%, N2=4%, C02=4%,
H, Near% Adsorbent filling amount Iono 1-bu ZE-50166kfil
Column adsorption rate 6.6crrv'se' Raw material supply amount 48.9M3/H Exhaust purge amount 4.4M3/H Purge vacuum degree 100TOrr Product gas concentration Go2=400ppm C0=87.5
5% N2 = 4.3% H2 = 8.0% Product gas amount 42.9M37H was obtained.
以上述べたように本発明によれば、今迄共吸着が存在す
るガス組成では困難であった圧力変動式吸着法による二
酸化炭素の除去を数100 ppmまで分離除去するこ
とが出来た。。As described above, according to the present invention, it has been possible to separate and remove carbon dioxide down to several hundred ppm by the pressure fluctuation adsorption method, which has been difficult with gas compositions in which co-adsorption exists. .
図は本発明を実施するフロシートを示す。 特許出願人 川崎製鉄株式会社 同 大阪酸素工業株式会社 (外4名) The figure shows a flowsheet implementing the invention. Patent applicant: Kawasaki Steel Corporation Osaka Sanso Kogyo Co., Ltd. (4 other people)
Claims (1)
吸着工程の終点又は終点近くまで吸着圧力に於て吸着剤
に主として二酸化炭素を吸着させて製品ガスを得る吸着
工程、 (b)吸着工程終了後吸着塔の圧力を大気圧又は大気圧
近くまで降下させる減圧放圧工程、(C)塔内を大気圧
力より真空近くまで排気する排気工程、 (d)減圧排気した吸着塔に製品ガス或は製品ガスに近
い二酸化炭素の少くないガス又は蟹素ガスを向流に導入
しながら吸着剤に吸着している二酸化炭素を排気を行い
ながらパージする排気パージ工程、 (e) 排気・ξ−ジ工程が終った塔に製品ガスを流し
てその塔を加圧する、製品加圧工程、から成り定期的に
吸着塔間の流れを変えて全ての吸着塔において、上記操
作を繰返すことを特徴とした方法。[Scope of Claims] (α) The mixed gas is introduced into one tower that has completed regeneration, and the adsorbent mainly adsorbs carbon dioxide at the adsorption pressure until the end point or near the end point of the adsorption process, thereby producing a product gas. (b) a depressurization and release step in which the pressure of the adsorption tower is lowered to atmospheric pressure or near atmospheric pressure after the adsorption step is completed; (C) an exhaust step in which the inside of the tower is evacuated to near vacuum below atmospheric pressure; (d) Exhaust purge step in which carbon dioxide adsorbed on the adsorbent is purged while exhausting while introducing the product gas, a gas with low carbon dioxide close to the product gas, or crab gas in a countercurrent flow into the adsorption tower that has been exhausted under reduced pressure. , (e) A product pressurization step in which the product gas is passed through the tower after the exhaust/ξ-di step and the tower is pressurized, and the flow between the adsorption towers is periodically changed to ensure that all adsorption towers A method characterized by repeating the above operations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58110617A JPS60819A (en) | 1983-06-20 | 1983-06-20 | Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58110617A JPS60819A (en) | 1983-06-20 | 1983-06-20 | Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60819A true JPS60819A (en) | 1985-01-05 |
JPS621766B2 JPS621766B2 (en) | 1987-01-16 |
Family
ID=14540348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58110617A Granted JPS60819A (en) | 1983-06-20 | 1983-06-20 | Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60819A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4657450A (en) * | 1985-03-19 | 1987-04-14 | Kraftwerk Union Aktiengesellschaft | Machining tool for pipes |
JPS6427614A (en) * | 1987-07-21 | 1989-01-30 | Kansai Coke & Chemicals | Separation and removal of co2 |
JPH0412582A (en) * | 1990-05-01 | 1992-01-17 | Sangyo Souzou Kenkyusho | Co laser apparatus |
CN101898066A (en) * | 2010-07-26 | 2010-12-01 | 成都嘉禾联创科技有限公司 | Method for finely removing carbon dioxide from carbon monoxide |
JP2013170102A (en) * | 2012-02-21 | 2013-09-02 | Sumitomo Seika Chem Co Ltd | Method and apparatus for separating and recovering carbon monoxide |
JP2021094490A (en) * | 2019-12-13 | 2021-06-24 | 株式会社豊田中央研究所 | Hydrocarbon production device, hydrocarbon production method, and computer program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3176444A (en) * | 1962-09-04 | 1965-04-06 | Union Carbide Corp | Adsorption separation process |
JPS4941292A (en) * | 1972-07-28 | 1974-04-18 |
-
1983
- 1983-06-20 JP JP58110617A patent/JPS60819A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3176444A (en) * | 1962-09-04 | 1965-04-06 | Union Carbide Corp | Adsorption separation process |
JPS4941292A (en) * | 1972-07-28 | 1974-04-18 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4657450A (en) * | 1985-03-19 | 1987-04-14 | Kraftwerk Union Aktiengesellschaft | Machining tool for pipes |
JPS6427614A (en) * | 1987-07-21 | 1989-01-30 | Kansai Coke & Chemicals | Separation and removal of co2 |
JPH0412582A (en) * | 1990-05-01 | 1992-01-17 | Sangyo Souzou Kenkyusho | Co laser apparatus |
CN101898066A (en) * | 2010-07-26 | 2010-12-01 | 成都嘉禾联创科技有限公司 | Method for finely removing carbon dioxide from carbon monoxide |
JP2013170102A (en) * | 2012-02-21 | 2013-09-02 | Sumitomo Seika Chem Co Ltd | Method and apparatus for separating and recovering carbon monoxide |
JP2021094490A (en) * | 2019-12-13 | 2021-06-24 | 株式会社豊田中央研究所 | Hydrocarbon production device, hydrocarbon production method, and computer program |
Also Published As
Publication number | Publication date |
---|---|
JPS621766B2 (en) | 1987-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI85953C (en) | FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT. | |
KR100254295B1 (en) | Pressure swing adsorption process with a single adsorbent bed | |
KR100524425B1 (en) | Pressure swing adsorption process and apparatus | |
EP0489555B1 (en) | Hydrogen and carbon monoxide production by pressure swing adsorption purification | |
CA2370873C (en) | High purity oxygen production by pressure swing adsorption | |
JPS6137968B2 (en) | ||
JPS6026571B2 (en) | Method and apparatus for increasing the proportion of component gases in a gas mixture | |
JPH0239294B2 (en) | ||
JPS6391120A (en) | Pressure change-over apparatus | |
JPS6137970B2 (en) | ||
JPS60819A (en) | Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method | |
JP2994843B2 (en) | Recovery method of low concentration carbon dioxide | |
JPS621767B2 (en) | ||
KR19980016382A (en) | Pressure swing adsorption method for producing high purity carbon dioxide | |
CA1182765A (en) | Repressurization for pressure swing adsorption system | |
JPH04227018A (en) | Manufacture of inert gas of high purity | |
JPS6097021A (en) | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method | |
JPS62117612A (en) | Regenerating method for adsorption tower | |
JPS6097022A (en) | Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method | |
JPS6078611A (en) | Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method | |
JP3369424B2 (en) | Mixed gas separation method | |
JPS6097020A (en) | Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method | |
JPS62241523A (en) | Separation and purification for carbon monoxide excellent in recovery efficiency | |
JPS6158804A (en) | Production of oxygen-enriched air | |
JPS62193623A (en) | Method for taking out easily-adsorbing substance as high-purity gas |