JPS6097020A - Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method - Google Patents

Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Info

Publication number
JPS6097020A
JPS6097020A JP58205591A JP20559183A JPS6097020A JP S6097020 A JPS6097020 A JP S6097020A JP 58205591 A JP58205591 A JP 58205591A JP 20559183 A JP20559183 A JP 20559183A JP S6097020 A JPS6097020 A JP S6097020A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorption tower
pressure
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58205591A
Other languages
Japanese (ja)
Other versions
JPS6139089B2 (en
Inventor
Toshikazu Sakuratani
桜谷 敏和
Makoto Tanaka
信 田中
Setsu Takeo
竹尾 節
Shigeo Matsui
松井 滋夫
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
JFE Steel Corp
Osaka Oxygen Industries Ltd
Kawatetsu Kagaku KK
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Kawasaki Steel Corp
Kawatetsu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd, Kawasaki Steel Corp, Kawatetsu Kagaku KK filed Critical OSAKA OXGEN IND Ltd
Priority to JP58205591A priority Critical patent/JPS6097020A/en
Publication of JPS6097020A publication Critical patent/JPS6097020A/en
Publication of JPS6139089B2 publication Critical patent/JPS6139089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To obtain high purity CO by purification, by removing CO2 by pressure variation type adsorptive separation as a first stage while using the waste gas of a N2-removal stage as regeneration pure gas during the desorptive operation of CO. CONSTITUTION:Stock gas is successively introduced into adsorbing towers A, B to adsorb CO2 and the other gases are exhausted. After an adsorbing process is finished, the adsorbing towers are released under reduced pressure. When pressure in the towers is reduced to the vicinity of atmospheric pressure, the heated waste gas of a N2-removal stage is introduced to raise the temp. of an adsorbent and, thereafter, evacuating exhausion is performed to desorb CO2 while purging the same by the above mentioned waste gas. The gas, from which CO2 is removed, is introduced into an adsorbing tower C to adsorb CO and CO2 while waste gas is used as the above mentioned purge gas. After the adsorbing process is finished, the adsorbing tower C is evacuated and discharged gas is adsorbed with an adsorbing tower D and, after a purge process is performed, said tower D is exhausted under reduced pressure to recover CO as product gas.

Description

【発明の詳細な説明】 製鉄所副生ガス、特に転炉ガスは一酸化炭素を多量に含
んでおり化学原料ガスとして注目されている。本発明は
主として転炉ガスの様な組成の即ち少なくともGO1C
02およびN2等を含有するガスを原料として高純度−
酸化炭素ガスを圧力変動式吸着法(PSA法)により精
製する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Steel mill byproduct gas, especially converter gas, contains a large amount of carbon monoxide and is attracting attention as a chemical raw material gas. The present invention primarily focuses on the composition of converter gas, i.e. at least GO1C.
High purity - using gas containing 02 and N2 as raw materials
The present invention relates to a method for purifying carbon oxide gas using a pressure swing adsorption method (PSA method).

一酸化炭素の濃縮分離法として深冷分離法と俗液吸収法
とがある。
There are two methods for concentrating and separating carbon monoxide: a cryogenic separation method and a common liquid absorption method.

保冷分離法は一165℃〜−210℃まで冷却し、−酸
化炭素を液化させて分離する方法で一酸化炭素と沸点の
近い窒素に多量に共存する場合は分離が困難で、本方式
には低温と高圧を必要とするため液化設備が高価になる
欠点がある。
The cold separation method is a method in which carbon oxide is separated by cooling it to -165°C to -210°C and liquefying it. If carbon monoxide and nitrogen, which has a boiling point close to each other, coexist in large quantities, it is difficult to separate it. The disadvantage is that the liquefaction equipment is expensive because it requires low temperature and high pressure.

溶液吸収法には、調液法とC08ORB法とがあり、調
液法はギ酸第一銅のアンモニア水浴液を吸収剤に用いる
方法で、20℃ 150〜200kg/crn2G の
高い圧力で行われる。
Solution absorption methods include the liquid preparation method and the C08ORB method.The liquid preparation method uses an ammonia water bath solution of cuprous formate as an absorbent, and is carried out at 20°C and a high pressure of 150 to 200 kg/crn2G.

又C08ORB法は、テトラクロロアルミン酸第−銅の
トルエン浴液を吸収剤として用いる方法で約40℃ 5
.4 kg/cIn2G で行われるが吸収液は水と反
応するため原料ガス中の水分を1 ppm 以下にしな
ければならない。これらの方法は量産を目的とした高濃
度ガスの製造には最適と考えられるが装置が複雑で設備
が高価になる欠点がある。
The C08ORB method uses a toluene bath solution of cupric tetrachloroaluminate as an absorbent, and the temperature is about 40°C.
.. The absorption rate is 4 kg/cIn2G, but since the absorption liquid reacts with water, the water content in the source gas must be reduced to 1 ppm or less. Although these methods are considered to be optimal for producing highly concentrated gas for mass production, they have the disadvantage that the equipment is complicated and the equipment is expensive.

しかるに吸着法による一酸化炭素の分離・精製法は使用
する装置自身の経済性や、吸着塔内に充填する吸着剤の
再生可能な点よりみて好ましい方法の一つと考えられる
However, the method of separating and purifying carbon monoxide by adsorption is considered to be one of the preferable methods from the viewpoint of the economic efficiency of the equipment used and the possibility of regenerating the adsorbent packed in the adsorption column.

混合ガスの吸着法(PSA法)による吸着分離は公知で
あり、吸着剤に吸着しにくいガス成分(以後難吸着成分
と云う)の回収を目的としたものに特公昭38−239
28および特公昭43−15045等が基本発明として
種々公告あるいは出願されている又吸着剤に吸着しやす
いガス成分(以後易吸着成分と云う)を吸着剤に吸着さ
せ脱着して分離回収することにより易吸着成分を高純度
で分離する方法も古くから実施されている。例えばエチ
レンを易吸着成分とした具体例および窒素分離への応用
について等がある。
Adsorption separation using the adsorption method (PSA method) for mixed gases is well known, and was developed in Japanese Patent Publication No. 38-239 for the purpose of recovering gas components that are difficult to adsorb to adsorbents (hereinafter referred to as difficult-to-adsorb components).
28 and Japanese Patent Publication No. 43-15045, various basic inventions have been announced or filed as basic inventions.In addition, gas components that are easily adsorbed to an adsorbent (hereinafter referred to as easily adsorbed components) are adsorbed onto an adsorbent, desorbed, and separated and recovered. A method of separating easily adsorbable components with high purity has also been practiced for a long time. For example, there are specific examples using ethylene as an easily adsorbed component and applications to nitrogen separation.

従来から行なわれている混合ガス中の吸着剤に易吸着成
分を回収する方法は通常次の操作を含んだものである。
Conventional methods for recovering components easily adsorbed onto an adsorbent in a mixed gas usually include the following operations.

吸着加圧工程−還流工程−脱着工程を順次繰返すことに
よって吸着剤に易吸着成分に富んだガスを取出すことが
出来る。
By sequentially repeating the adsorption pressurization process, the reflux process, and the desorption process, a gas rich in easily adsorbable components can be extracted from the adsorbent.

しかし今回の混合ガスの様に共吸着しやすいガス成分の
一酸化炭素を混合ガスより二酸化炭素及び窒素を除去し
、高濃度の一酸化炭素として回収精製することは行なわ
れていない。
However, carbon monoxide, a gas component that is easily co-adsorbed, is removed from the mixed gas to recover and purify it as highly concentrated carbon monoxide, as in the present mixed gas.

本出願人は、先に少な(ともco、 N2及びGOを含
む原料ガスからPSA法によりGOを分離する方法につ
いて出願を行なった(I¥j願昭58−110.61.
6号参照)。
The present applicant previously filed an application for a method for separating GO from a raw material gas containing a small amount of CO, N2, and GO by the PSA method (Ijj Application No. 58-110.61.
(See No. 6).

本発明は特願昭58−110,646号の発明の改良に
関する。すなわち本発明では、第1段階として吸着法に
よる二酸化炭素除去段階(以下脱C02PSAという)
を行ない、その脱着操作時に再生パージガスとして脱窒
素段階(以下脱N2PSAという)の廃棄ガスを使用し
、更に二酸化炭素の脱着を円滑にするため脱C02PS
A吸着槽を脱N2PSA廃棄ガスを使って加温すること
を組合せ境果二酸化炭素含有量の少い高純度−酸化炭素
を精製できることを見出した。
The present invention relates to an improvement of the invention disclosed in Japanese Patent Application No. 58-110,646. That is, in the present invention, the first step is a carbon dioxide removal step by adsorption method (hereinafter referred to as de-CO2PSA).
During the desorption operation, the waste gas from the denitrification stage (hereinafter referred to as deN2PSA) is used as a regenerated purge gas, and in order to facilitate the desorption of carbon dioxide, the waste gas from the denitrification stage (hereinafter referred to as deN2PSA) is used as a regeneration purge gas.
It has been found that by combining the A adsorption tank with heating using the de-N2PSA waste gas, it is possible to purify high purity carbon oxide with a low carbon dioxide content.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、少なくとも一酸化炭素、二酸化炭素及び窒素
等を含む原料ガスから一酸化炭素を精製する方法におい
て (a) 第一段階処理として原料ガス中の002に対し
選択吸着性を有する吸着剤、例えば活性アルミナ、活性
炭、モレキュラーシーズ、陽イオン置換ぜオライド等の
合成または天然ゼオライトのいずれかまたは複数の組合
せからなる吸着剤を収納した2つ以上の吸着塔を使用し
、その方法は各吸着塔で吸着及び脱着を繰返す圧力変動
式吸着分離によってその原料ガスから二酸化炭素を除去
することからなり、そして fbl 第二段階の吸着操作は、第一段階の吸着工程か
ら排出されたガス(以下第一段階製品ガスという)中の
一酸化炭素に対して選択性を有する吸着物質例えば活性
炭、モレキュラーシープ、陽イオン置換ゼオライト等の
合成ゼオライトまたは天然ゼオライトを充填した2つ以
上の吸着塔を使用し、その方法は (1)第一段階製品ガスによる吸着塔の加圧及び吸着工
程、 (11)その吸着塔の減圧、 (ll+1 その吸着塔のノージ、 (1v)製品ガスの脱着からなる少なくとも4工程を定
期的に吸着塔間の流れを変えて、繰返すことからなり第
二段階における二酸化炭素の含有量の少ない廃棄ガスを
加温して第一段階処理における吸着塔の再生工程に利用
することを特徴とする高純度−酸化炭素製造方法に関す
る。
The present invention provides a method for purifying carbon monoxide from a raw material gas containing at least carbon monoxide, carbon dioxide, nitrogen, etc., including (a) an adsorbent having selective adsorption properties for 002 in the raw material gas as a first stage treatment; For example, two or more adsorption towers containing adsorbents made of any one or a combination of synthetic or natural zeolites such as activated alumina, activated carbon, molecular seeds, and cation-substituted zeolides are used, and the method is such that each adsorption tower The second stage adsorption operation consists of removing carbon dioxide from the raw material gas by pressure fluctuation adsorption separation that repeats adsorption and desorption at fbl. Using two or more adsorption columns filled with synthetic or natural zeolites, such as activated carbon, molecular sheets, and cation-substituted zeolites, which are selective for carbon monoxide in the stage product gas), The method includes at least four steps consisting of (1) pressurization and adsorption of the adsorption tower with the first stage product gas, (11) depressurization of the adsorption tower, (ll+1 nozzle of the adsorption tower), and (1v) desorption of the product gas. It is characterized by periodically changing the flow between adsorption towers and repeating the process, heating the waste gas with low carbon dioxide content in the second stage and using it for the regeneration process of the adsorption tower in the first stage treatment. The present invention relates to a method for producing high-purity carbon oxide.

第1段階における原料ガスから二酸化炭素ガスを除去す
る工程は、通常のPSA法すなわち吸着、減圧、製品ガ
スによるパージおよび製品ガスによる加圧の繰返しによ
り実施しても良く、又他の方法であっても良い。二酸化
炭素を除去する好ましい方法は次の通りである。
The step of removing carbon dioxide gas from the raw material gas in the first stage may be carried out by the usual PSA method, that is, repeating adsorption, depressurization, purging with product gas, and pressurization with product gas, or may be carried out by other methods. It's okay. A preferred method of removing carbon dioxide is as follows.

二酸化炭素に対して選択性を有する吸着物質を充填した
2つ以上の吸着塔を使用し、その方法は(1)好ましく
は向流方向に第1段陶製品ガスによる吸着塔を加圧する
加圧工程、好ましくは0.2〜3ゆ7cm2・Gまで加
圧する、 (II) 原料ガスを吸着塔に流して主として二酸化炭
素を吸着物質に吸着させる吸着工程、tiil) 好ま
しくは向流方向に次いで吸着を一定圧力まで減圧する減
圧工程、 (1■)次いで、脱N2 PSA装置からの廃棄ガスを
(7) 加温(好ましくは40〜100℃の範囲)して吸着塔に
導入し、吸着剤より昇温させる常圧パージ工程、 (v)好ましくは向流方向に吸着塔を大気圧以下に排気
する排気工程、そして (vl)好ましくは向流方向に脱N2PSA装置の廃棄
ガスを用いて、排気を行ないながらパージする、ノξ−
ジ工程、該廃棄ガスを40〜100℃ の範囲に加温し
て用いても良い。
Two or more adsorption towers filled with an adsorption material having selectivity for carbon dioxide are used, and the method includes (1) pressurizing the adsorption tower with the first stage ceramic gas, preferably in a countercurrent direction; (II) An adsorption step in which the raw material gas is passed through an adsorption tower and mainly carbon dioxide is adsorbed onto the adsorbent material, preferably in a countercurrent direction followed by adsorption. (1) Next, the waste gas from the N2 deN2 PSA device is heated (preferably in the range of 40 to 100°C) and introduced into the adsorption tower, where it is removed from the adsorbent. (v) an evacuation step in which the adsorption column is evacuated below atmospheric pressure, preferably in a countercurrent direction; Purge while performing ノξ−
In the second step, the waste gas may be heated to a temperature in the range of 40 to 100°C.

から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことから成る方法である。
This method consists of repeating the above operation by periodically changing the flow between the adsorption towers.

本発明の好ましい第2段階は次の通りである。The preferred second stage of the invention is as follows.

第1段階の吸着工程から排出されたガス(以下、第1段
陶製品ガスという)中の一酸化炭素に対して選択性を有
する吸着物質を充填した2つ以上の吸着塔を使用し、そ
の方法は (1) 第1段陶製品ガスにより吸着塔を加圧する加圧
工程、 (11)さらに第1段陶製品ガスを吸着塔に流して、吸
着塔出口における易吸着成分の濃度が吸着塔人(8)。
Two or more adsorption towers filled with an adsorption material that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage ceramic product gas) are used. The method is (1) a pressurizing step of pressurizing the adsorption tower with the first-stage ceramic product gas, (11) the first-stage ceramic product gas is further passed through the adsorption tower, and the concentration of easily adsorbable components at the outlet of the adsorption tower is person (8).

口における易吸着成分の濃度に達するかあるいは達した
後適当な時間あるいは量まで又は両者の濃度が等しくな
る点の少し前まで吸着剤に易吸着成分を吸着させる吸着
(1)工程、 fil++ 吸着(1)工程終了後、その吸着塔を吸着
圧力と大気圧との間の任意圧力まで減圧する工程、(1
v)減圧工程終了後その吸着塔と真空脱着が終った吸着
塔とを連結し、前者の吸着塔からガスを後者の吸着塔に
導入し、前者の吸着塔の圧力を大気圧又は大気圧近くま
で降下させる減圧放圧工程、この場合両者の圧力がほぼ
同圧となるまで前者の圧力を降下させても良い、又は前
者の圧力を大気圧以上で停止させても良い。
Adsorption (1) step in which the easily adsorbable component is adsorbed on the adsorbent until the concentration of the easily adsorbable component in the mouth is reached, or for an appropriate amount of time or amount after reaching the concentration, or until a little before the point where both concentrations become equal, fil++ adsorption ( 1) After the process is completed, the pressure of the adsorption tower is reduced to an arbitrary pressure between the adsorption pressure and atmospheric pressure, (1)
v) After the pressure reduction process is completed, connect the adsorption tower with the adsorption tower that has undergone vacuum desorption, introduce gas from the former adsorption tower into the latter adsorption tower, and reduce the pressure of the former adsorption tower to atmospheric pressure or near atmospheric pressure. In this case, the former pressure may be reduced until both pressures become approximately the same pressure, or the former pressure may be stopped at atmospheric pressure or higher.

(■)減圧した吸着塔に第2段陶製品ガスを並流に導入
して難吸着成分を/ぐ−ジするパージ工程、この場合吸
着塔上部より流出してくるガスを工程(vll)が終っ
た吸着塔に導入してその吸着塔の加圧に使用してもよい
(■) A purge process in which the second-stage ceramic product gas is introduced in parallel flow into the depressurized adsorption tower to remove the difficult-to-adsorb components.In this case, the gas flowing out from the top of the adsorption tower is It may be introduced into the finished adsorption tower and used to pressurize the adsorption tower.

[vl) パージ工程が終った吸着塔を大気圧以下に排
気して吸着剤に吸着されている易吸着成分を脱着させ製
品ガスを回収する回収工程、及び、(vll 製品ガス
回収が終った吸着塔と吸着(1)工程又は減圧工程が終
った吸着塔とを連結して後者の吸着塔からのガスが前者
の吸着塔に導入する吸着fll)工程、 (vlli) 他の吸着塔のパージ工程からのガスによ
る吸着(I)工程、 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことを特徴とする。
[vl] A recovery process in which the adsorption tower after the purge process is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed by the adsorbent and product gas is recovered; (vlli) an adsorption step in which the tower is connected to the adsorption tower that has completed the adsorption (1) step or the decompression step, and gas from the latter adsorption tower is introduced into the former adsorption tower; (vlli) a purge step for the other adsorption tower; adsorption (I) step using gas from the adsorption column, and is characterized in that the above operation is repeated by periodically changing the flow between the adsorption towers.

本発明の第2段階の好ましい態様について説明する。A preferred embodiment of the second stage of the present invention will be described.

この態様の工程(1)は吸着塔に原料ガスを導入する吸
着塔の加圧工程である1、本発明では回収すべきガスは
易吸着成分であるので高い吸着圧は必要ではなく、Ok
g / can 2・0以上であれば良く、一般に1に
9/cIrL2・G程度の吸着圧で十分であり、それよ
り低い吸着圧であっても良い。
Step (1) of this embodiment is an adsorption tower pressurization step in which the raw material gas is introduced into the adsorption tower.
g/can 2.0 or more, and generally an adsorption pressure of about 1 to 9/cIrL2.G is sufficient, and a lower adsorption pressure may be used.

工程(11)は吸着(1)工程である、吸着塔出口にお
ける易吸着成分(−酸化炭素ガス、二酸化炭素ガス)の
@度が吸着塔入口における易吸着成分の濃度と等しくな
った点というのは、吸着剤の破過点を意味する。回収す
べき成分が難吸着成分(例えば空気から酸素ガスを分離
する場合においては酸素ガス)であるならば、高純度の
難吸着成分を得るためには破過点よりも上の水準で吸着
工程を終了することが望ましい。しかしこの態様では、
回収すべき成分は易吸着成分であるから破過点または破
過点に達する少し前まで吸着を行なう。さらに破過点を
越える迄吸着7行なっても良い。
Step (11) is the adsorption (1) step, which is the point at which the concentration of easily adsorbed components (-carbon oxide gas, carbon dioxide gas) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower. means the breakthrough point of the adsorbent. If the component to be recovered is a difficult-to-adsorb component (for example, oxygen gas in the case of separating oxygen gas from air), the adsorption process must be carried out at a level above the breakthrough point in order to obtain a high-purity difficult-to-adsorb component. It is desirable to terminate. However, in this aspect,
Since the component to be recovered is a component that is easily adsorbed, adsorption is carried out until the breakthrough point or just before the breakthrough point is reached. Further, seven adsorption operations may be performed until the breakthrough point is exceeded.

工程fl)は、吸着工程終了後吸着圧と大気圧との間の
任意の圧力まで好ましくは並流方向に減圧して吸着塔の
出口附近に残留している難吸着成分を廃棄する。この工
程は必ずしも行なわなくても良い。
In step fl), after the adsorption step is completed, the pressure is reduced preferably in the parallel flow direction to an arbitrary pressure between the adsorption pressure and atmospheric pressure, and the hardly adsorbable components remaining near the outlet of the adsorption tower are discarded. This step does not necessarily have to be performed.

工程(1■)は吸着(1)工程又は減圧工程が終った吸
着塔と真空脱着が終った吸着塔とを連結し、好ましくは
並流方向に前者の吸着塔からガスを後者の吸着塔に導入
し、前者の吸着塔の圧力を大気圧または大気圧近くまで
降下させる。又は両者の吸着塔の圧がほぼ等しくなるま
で前者の圧力を降下させても良い。この工程で吸着塔に
収納されている吸着剤間の空間中のガスが放出され、真
空脱着が終った吸着塔の吸着(Il)加圧に使用される
。前者の吸着塔の圧力がほぼ大気圧になるまでこの操作
を維持する。
Step (1) connects the adsorption tower that has undergone the adsorption (1) step or the depressurization step with the adsorption tower that has undergone vacuum desorption, and preferably flows the gas from the former adsorption tower to the latter adsorption tower in a cocurrent direction. The pressure in the former adsorption tower is reduced to atmospheric pressure or near atmospheric pressure. Alternatively, the pressure of the former may be lowered until the pressures of both adsorption towers become approximately equal. In this step, the gas in the space between the adsorbents housed in the adsorption tower is released and is used to pressurize the adsorption (Il) of the adsorption tower after vacuum desorption. This operation is maintained until the pressure in the former adsorption tower reaches approximately atmospheric pressure.

工程(v)は減圧した吸着塔に並流に製品ガスを導入し
て吸着塔内に残っている難吸着成分(窒素ガス等)をパ
ージする。この場合の製品ガスの導入圧は吸着圧力より
低く、大気圧より高い方が望ましく、この場合ポンプ等
を使用する必要がな(、製品ガスタンクと吸着塔を連結
することKよってパージを実施する。又このとき吸着塔
出口のパージガス濃度は製品ガス濃度に吸着塔内に残っ
ている難吸着成分が加わるのみで製品ガス濃度より少し
低下するのみで原料混合ガス濃度よりも充分に一酸化炭
素に富んだ部分(製品ガス濃度に近い部分)である。こ
の部分を回収利用して連続的に一酸化炭素ガスを濃縮す
る際の、他塔の加圧用ガス(吸着(nilとして使用す
る。このパージガスを利用しなくも良い。
In step (v), the product gas is cocurrently introduced into the depressurized adsorption tower to purge the difficult-to-adsorb components (nitrogen gas, etc.) remaining in the adsorption tower. In this case, the introduction pressure of the product gas is preferably lower than the adsorption pressure and higher than atmospheric pressure, and in this case there is no need to use a pump, etc. (Purge is performed by connecting the product gas tank and the adsorption tower. Also, at this time, the purge gas concentration at the outlet of the adsorption tower is only slightly lower than the product gas concentration due to the addition of the difficult-to-adsorb components remaining in the adsorption tower to the product gas concentration, and is sufficiently rich in carbon monoxide than the raw material mixed gas concentration. This is the purge gas (the part close to the product gas concentration). When this part is recovered and used to continuously concentrate carbon monoxide gas, the pressurizing gas (adsorption (nil) in other towers is used. This purge gas is You don't have to use it.

工程(vOは・ξ−ジ工程が終った吸着塔を真空ポンズ
エゼクター、ノロワー等を用いて大気圧以下、好ましく
は300 Torr以下もつとも好ましくは30〜60
 Torrの範囲まで排気し、吸着剤に吸着されていた
成分(−酸化炭素ガス等)を脱着させ製品ガスとして回
収する。
The adsorption tower after the process (vO is .
The gas is evacuated to a range of Torr, and components adsorbed by the adsorbent (-carbon oxide gas, etc.) are desorbed and recovered as a product gas.

工程(viDは製品回収が終った吸着塔と吸着(1)工
程又は減圧工程が終った吸着塔とを連結し、後者の吸着
塔からのガスによって前者の吸着塔を加圧吸着させる。
In the step (viD), the adsorption tower that has completed product recovery is connected to the adsorption tower that has completed the adsorption (1) step or the pressure reduction step, and the former adsorption tower is pressurized and adsorbed by the gas from the latter adsorption tower.

この工程で前者の吸着塔の圧力は大気圧に達しない。In this step, the pressure in the former adsorption tower does not reach atmospheric pressure.

工程(vililは、他の吸着塔のパージ工程からのガ
スによる吸着(Illかもなる。この工程(vtl)は
任意である。
The step (viril) can also be adsorption (Ill) with gas from the purge step of another adsorption column. This step (vtl) is optional.

以下本発明の代表的な具体例である転炉排ガス中の窒素
ガスを除去し、−酸化炭素を分離回収する方法に基づい
て、本発明の詳細な説明するが本発明の方法は、これら
の具体例に限定されるものではない。
The present invention will be described in detail below based on a typical example of the present invention, which is a method for removing nitrogen gas from converter exhaust gas and separating and recovering carbon oxide. It is not limited to specific examples.

図は吸着法により連続的に転炉排ガスから二酸化炭素と
窒素を除去し、−酸化炭素ガスを分離濃縮するフローシ
ートである。
The figure is a flow sheet in which carbon dioxide and nitrogen are continuously removed from converter exhaust gas using an adsorption method, and -carbon oxide gas is separated and concentrated.

吸着塔A、Bは二酸化炭素を選択的に吸着する吸着剤が
収納されている。吸着塔A、Bを真空ポンプを用いて減
圧排気を300 Torr好ましくは60 Tprrま
で行った後吸着塔Aを原料ガスで常圧迄加圧しておく。
Adsorption towers A and B house adsorbents that selectively adsorb carbon dioxide. After the adsorption towers A and B are evacuated to 300 Torr, preferably 60 Tprr, using a vacuum pump, the adsorption tower A is pressurized to normal pressure with raw material gas.

この時パルプ(1)以外はすべて閉の状態になっている
。吸着塔Bはこのステップでは、まだ真空状態を保持し
ている。吸着塔Aに原料ガスを導入、吸着圧力0.01
 kg/cm2・Gかも3.0に9/cm2・G好まし
くは0.21g7 Cm2・Gから1、、 Ok+? 
/ cyn2− Gの吸着圧力を保ち、バルブ(2)は
開かれ二酸化炭素と一酸化炭素そのイtjl、の含有ガ
スも一部は吸着剤に吸着し残りは吸着塔の他の端部より
排出する。一定時間或は一定量の吸着工程終了後原料供
給バルブ(1)及び出ロバルプ(2)は閉じ、バルブ(
3)を開き、吸着塔Aの塔内圧力を大気圧附近まで減圧
放圧させる。吸着塔Aが大気圧附近になるとパル/(5
)を開き低圧蒸気を熱源とする熱交換器HE−1を通し
一定量の加温した脱N2PSA廃棄ガスを吸着塔Aに導
入し吸着剤を昇温させた後、バルブ(5)は閉じられた
吸着塔下部よりバルブ(4)を開にし真空ポンプを用い
て減圧排気を行い吸着剤に吸着している二酸化炭素成分
を脱着させるこの際の排気圧力は300 Torr好ま
しくは60 Torrまで行う。減圧排気が終了すると
バルブ(5)を開にする(この時手動バルブθaでパー
ジガス量を調節する。)ことによって脱N2装置からの
廃棄ガスを利用して吸着剤に脱着しきれずに吸着してい
る二酸化炭素をパージガスとの同伴脱着により吸着剤よ
り追い出す。この時熱交換器HE−1はバイパスさせて
も良い。排気パージが終了するとバルブ(4)とバルブ
(5)は閉じられ、バルブ(6)を開にして脱CO2ガ
ス(吸着塔B通過ガス)でもって吸着塔内に吸着圧力ま
で加圧を行う。
At this time, everything except pulp (1) is in a closed state. Adsorption tower B still maintains a vacuum state at this step. Introducing raw material gas into adsorption tower A, adsorption pressure 0.01
kg/cm2・G maybe 3.0 to 9/cm2・G preferably 0.21g7 Cm2・G to 1,, Ok+?
/cyn2- G adsorption pressure is maintained, valve (2) is opened, and part of the gas containing carbon dioxide and carbon monoxide is adsorbed to the adsorbent, while the rest is discharged from the other end of the adsorption tower. do. After completion of the adsorption process for a certain period of time or a certain amount, the raw material supply valve (1) and the output valve (2) are closed, and the valve (
3) is opened and the internal pressure of adsorption tower A is reduced to near atmospheric pressure. When adsorption tower A reaches atmospheric pressure, Pal/(5
) is opened and a certain amount of heated N2PSA waste gas is introduced into the adsorption tower A through the heat exchanger HE-1 which uses low pressure steam as a heat source to raise the temperature of the adsorbent, and then the valve (5) is closed. The valve (4) is opened from the bottom of the adsorption tower, and a vacuum pump is used to perform evacuation under reduced pressure to desorb the carbon dioxide component adsorbed on the adsorbent.The evacuation pressure at this time is 300 Torr, preferably 60 Torr. When the decompression exhaustion is completed, the valve (5) is opened (at this time, the amount of purge gas is adjusted with the manual valve θa). By using the waste gas from the deN2 equipment, the waste gas that has not been completely desorbed to the adsorbent is adsorbed. The carbon dioxide contained in the adsorbent is expelled from the adsorbent by entrainment desorption with the purge gas. At this time, heat exchanger HE-1 may be bypassed. When the exhaust purge is completed, the valves (4) and (5) are closed, and the valve (6) is opened to pressurize the inside of the adsorption tower to the adsorption pressure with the deCO2 gas (gas passing through the adsorption tower B).

上記操作をそれぞれの吸着塔において順次繰返すことに
よって連続的に吸着剤KCO2を吸着させ除去しようと
するものである。一段目の脱cO2PSAで二酸化炭素
が除去されたガスは二段目の脱N2PSAをもって水素
・酸素・窒素を除去し一一化炭素の濃度を高濃度に濃縮
分離しようとするもので、その方法は吸着塔CDEFは
易吸着成分に匁では一酸化炭素と二酸化炭素)を選択的
に吸着する吸着剤が収納されている。吸着塔CDEF 
を真空ポンプ(41)を用いて減圧排気を300 To
rr好の)を加圧導入する。再生済の真空状態より昇圧
させるためバルブ(16)を開くことKよって行う。こ
のときの昇圧速度はバルブ(+5)によって調節される
昇圧後バルブaηα槌を開にすると同時にバルブ06)
は閉になり該混合ガスが吸着塔内を通過する。このとき
吸着剤に易吸着成分である一酸化炭素と二酸化炭素が吸
着され、他のガスは吸着塔内を通過しその一部は脱C0
2PSA装置のパージガスとして加温された上で使用さ
れる。残りは水素、−酸化炭素がまだかなり含まれてい
るので燃料ガス等に再利用するためにタンク(4りに回
収する。
The above operation is repeated in each adsorption tower in order to continuously adsorb and remove the adsorbent KCO2. The gas from which carbon dioxide has been removed in the first-stage de-CO2 PSA is subjected to the second-stage de-N2 PSA to remove hydrogen, oxygen, and nitrogen, thereby concentrating and separating the carbon monoxide to a high concentration. The adsorption tower CDEF contains an adsorbent that selectively adsorbs easily adsorbable components (carbon monoxide and carbon dioxide). Adsorption tower CDEF
300 To
rr) is introduced under pressure. This is done by opening the valve (16) to increase the pressure from the regenerated vacuum state. The pressure increase rate at this time is adjusted by the valve (+5).After the pressure increase, the valve aηα is opened at the same time as the valve 06).
is closed and the mixed gas passes through the adsorption tower. At this time, carbon monoxide and carbon dioxide, which are easily adsorbed components, are adsorbed by the adsorbent, and other gases pass through the adsorption tower and some of them are de-CO
It is used after being heated as a purge gas for 2PSA equipment. The remainder still contains a considerable amount of hydrogen and carbon oxide, so it is collected in a tank (4 tanks) for reuse as fuel gas, etc.

一定時間或は一定量の吸着工程終了後原料供給バルブ(
II’0及び出ロバルプ07)は閉じ、吸着塔りへの連
結パイプにあるバルブHな開き、吸着塔Cの塔内圧力を
大気圧附近まで減圧放出させ、吸着塔りの吸着剤に減圧
放圧されたガスを吸着させる。吸着塔Aが大気圧附近に
なると吸着塔内の空隙(吸着剤間の空間)にたまってい
る難吸着成分ガスを追出すために製品ガスタンク(42
1より)々ルブ(イ)を開いて吸着塔Cの下部よりパー
ジ工程を行う。このパージ工程で吸着塔から排出される
ガスを吸着塔りに導入し先の減圧加圧工程に引き続き、
吸着剤に易吸着成分を吸着させる。この時点で吸着塔り
は大気圧近くまで減圧された状態になっている。
After the adsorption process for a certain time or a certain amount, the raw material supply valve (
II'0 and output valve 07) are closed, and the valve H in the connecting pipe to the adsorption tower is opened to release the internal pressure of the adsorption tower C to near atmospheric pressure, and release the reduced pressure to the adsorbent in the adsorption tower. Adsorbs pressurized gas. When adsorption tower A reaches atmospheric pressure, the product gas tank (42
1) Open the valve (a) and perform the purge process from the bottom of the adsorption tower C. In this purge step, the gas discharged from the adsorption tower is introduced into the adsorption tower, and following the previous depressurization and pressurization step,
Allow the adsorbent to adsorb easily adsorbable components. At this point, the pressure in the adsorption tower is reduced to near atmospheric pressure.

パージ工程が終了するとバルブα9及び(頒は閉じられ
吸着塔下部よりバルブ(21)を開にし真空ポンプを用
いて減圧排気を行い吸着剤に吸着している易吸着成分を
脱着させるこの際の排気圧力は300Torr好ましく
は60 Torrまで行って易吸着成分であるCOを製
品ガスとして回収するものである。
When the purge process is completed, the valve α9 and (21) are closed and the valve (21) is opened from the bottom of the adsorption tower to perform depressurized exhaust using a vacuum pump. The pressure is increased to 300 Torr, preferably 60 Torr, and CO, which is an easily adsorbed component, is recovered as a product gas.

上記操作をそれぞれの吸着塔において順次繰返すことに
よって連続的に吸着剤に易吸着成分であるCOガスを吸
着させて分離精製することが出来る。なお(43は廃ガ
スタンクである。
By sequentially repeating the above operations in each adsorption tower, CO gas, which is an easily adsorbed component, can be continuously adsorbed onto the adsorbent for separation and purification. Note that (43 is a waste gas tank.

上記の様に一段目の脱002 PSAに於いて二酸化炭
素の脱着操作に先だって吸着塔内に熱を与え吸着剤温度
を意識的に高く保つことにより二酸化炭素の脱着速度を
大きくとれる効果が得られ、限られた時間内の操作にお
いて大きな動的吸着容量を確保できる。圧力変動式吸着
分離法は基本的には断熱操作であり系外から与熱した場
合、通過ガスが持去る熱量以外は吸着塔の温度上昇をも
たらす。そしてその温度上昇は吸着塔表面からの放散熱
量の増加とバランスするものである。
As mentioned above, in the first-stage desorption 002 PSA, the effect of increasing the desorption rate of carbon dioxide can be obtained by applying heat to the adsorption tower and intentionally keeping the adsorbent temperature high before the carbon dioxide desorption operation. , large dynamic adsorption capacity can be ensured in limited time operation. The pressure fluctuation type adsorption separation method is basically an adiabatic operation, and when heat is added from outside the system, the temperature of the adsorption tower increases except for the amount of heat carried away by the passing gas. This temperature increase is balanced by an increase in the amount of heat dissipated from the surface of the adsorption tower.

しかしながら与熱量が大きい場合には吸着塔の温度上昇
が著しく吸着剤の静的吸着容量の低下が動的吸着容量の
向上効果を上廻り、二酸化炭素吸着分離効果を低下させ
ることになるので吸着塔の吸着、脱着開始温度を20℃
〜50℃好ましくは25〜35°になる様与熱しなけれ
ばならない。
However, if the amount of heat given is large, the temperature of the adsorption tower will rise significantly, and the decrease in the static adsorption capacity of the adsorbent will outweigh the improvement in the dynamic adsorption capacity, reducing the carbon dioxide adsorption separation effect. Adsorption and desorption start temperature of 20℃
The temperature must be heated to ~50°C, preferably 25-35°C.

従って本発明の効果は冬期に於いて極めて著しくなる。Therefore, the effect of the present invention becomes extremely significant in the winter season.

加熱エネルギー源として大きなポテンシャルを必要とせ
ず、低圧蒸気、温廃水、加熱廃ガス等で充分であり、極
めて安価なユーアイリティーで工業的な実施が可能であ
る。
It does not require a large potential as a heating energy source; low-pressure steam, heated waste water, heated waste gas, etc. are sufficient, and it is extremely inexpensive and can be implemented industrially.

又前記具体例に於いては脱着のための減圧操作に先だっ
て脱N2PSA廃棄ガスを昇温し、それをもって吸着塔
を加温したか、同様な効果を得る方法として原料ガスを
加温し吸着塔温度を高くして脱C02PSAを行うこと
も可能である。この場合種々の吸脱着工程の操作時間に
しばられず、しかもより少い加温で済むので、前記方法
に比較しよりポテンシャルの低いエネルギー源で目的を
達することができるが、動的吸着容量の向上は脱着操作
に先だって昇温する方法には及ばない。
Furthermore, in the specific example described above, the temperature of the de-N2PSA waste gas was raised prior to the depressurization operation for desorption, and the adsorption tower was heated with it, or the raw material gas was heated and the adsorption tower was heated with the same effect. It is also possible to remove CO2PSA by increasing the temperature. In this case, the operating time of various adsorption/desorption processes is not limited, and less heating is required, so the objective can be achieved with an energy source with lower potential compared to the above method, but the dynamic adsorption capacity is The improvement does not extend to methods that increase the temperature prior to the desorption operation.

脱C02PSA再生操作に於いて脱NzPSA 廃棄ガ
スを加温して導入する操作については吸着塔が常圧にな
るのを待ってから行う必要は必ずしもなく廃棄ガスの圧
力よりも吸着塔圧力が低くなった時点で導入可能であり
、その導入量はガスの加温量と再生操作に於ける許容時
間の制約の中で最適化を行う必要がある。
In the de-C02PSA regeneration operation, it is not necessary to wait for the adsorption tower to reach normal pressure before heating and introducing the de-NzPSA waste gas, and the adsorption tower pressure is lower than the waste gas pressure. The introduction amount needs to be optimized within the constraints of the amount of gas heating and the allowable time for the regeneration operation.

本発明による当該脱C02PSA と二段目の脱N2P
SAを組合せることにより一段目の脱C○2PSAC0
2分離効果を高めることができ、それが2段目の脱N2
 PSA廃妻ガス中の二酸化炭素濃度を低く保つことに
なり、当該廃棄ガスによる脱C02PSA再生操作効果
を更に高めるという極めて大きな相剰効果を得ることが
できた。ひいては二酸化炭素含有量の少い高純度−酸化
炭素ガスの製造と一酸化炭素の回収率を向上させること
ができた。
The C02PSA and second N2P removal according to the present invention
By combining SA, the first stage can be removed from C○2PSAC0
2 The separation effect can be enhanced, which is the second stage of N2 removal.
By keeping the carbon dioxide concentration in the PSA waste gas low, we were able to obtain an extremely large mutual effect of further enhancing the effect of the CO2 removal PSA regeneration operation using the waste gas. As a result, it was possible to produce high-purity carbon oxide gas with a low carbon dioxide content and improve the recovery rate of carbon monoxide.

実施例1−4および比較例1 脱C02PSA操作として「吸着−減圧放圧−常圧パー
ジ−真空排気−パージ−製品加圧」と脱N2PSA操作
として[原料加圧−吸着−減圧加圧(−)−ノξ−ジ加
圧(−)−真空排気−減圧加圧(佳)−パージ加圧(ト
)」のサイクルに基づいて、次の組成の原料ガスから一
酸化炭素の精製を試みた。
Example 1-4 and Comparative Example 1 The C02 PSA operation is "adsorption - vacuum release - normal pressure purge - vacuum evacuation - purge - product pressurization" and the N2 PSA operation is [raw material pressurization - adsorption - vacuum pressurization (- ) - No ξ - Di pressurization (-) - Vacuum evacuation - Depressurization and pressurization (B) - Purge pressurization (G)" We attempted to purify carbon monoxide from the raw material gas with the following composition. .

co N2co2 H2 85,8% 4.0% 3.6% 6.6%本発明によ
る実施例は、下表より明らかなように、パージ用廃棄ガ
スを加温しない比較例に比し、CO線純度よびGO収率
が高いことが明らかである。
co N2co2 H2 85.8% 4.0% 3.6% 6.6%As is clear from the table below, the example according to the present invention has a higher CO ray It is clear that the purity and GO yield are high.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明を実施するための好ましい態様の装置のフロ
ーシートである。 特許出願人 大阪酸素工業株式会社 m 用璧笑イヒくPネ東j曳゛金宅り 同 川崎製鉄株式会社 (外4名)
The figure is a flow sheet of a preferred embodiment of the apparatus for carrying out the invention. Patent applicant Osaka Sanso Kogyo Co., Ltd. Kawasaki Steel Corporation (4 others)

Claims (1)

【特許請求の範囲】 少なくとも一酸化炭素、二酸化炭素、及び窒素等を含む
原料ガスから一酸化炭素を精製する方法において (at 第一段階処理として原料ガス中の二酸化炭素に
対して選択吸着性を有する吸着剤を収納した2つ以上の
吸着塔を使用し、その方法は各吸着塔で少なくとも吸着
及び脱着を繰返す圧力変動式吸着分離によってその原料
ガスから二酸化炭素を除去することからなり、そして (b) 第二段階の吸着操作は、第一段階の吸着工程か
ら排出されたガス(以下第一段階製品ガスという)中の
一酸化炭素に対して選択性を有する吸着物質を充填した
2つ以上の吸着塔を使用し、その方法は (1)第一段階製品ガスによる吸着塔の加圧及び吸着工
程、 (11)その吸着塔の減圧、 Il+1 その吸着塔のパージ、 (1v)製品ガスの脱着からなる少なくとも4工程を定
期的に吸着塔間の流れを変えて、繰返すことからなり第
二段階における二酸化炭素の含有量の少ない廃棄ガスを
加温して第一段階処理における吸着塔の再生工程に利用
することを特徴とする一酸化炭素精製方法。
[Scope of Claims] In a method for purifying carbon monoxide from a raw material gas containing at least carbon monoxide, carbon dioxide, nitrogen, etc. the method consists of removing carbon dioxide from the feed gas by pressure swing adsorptive separation with at least repeated adsorption and desorption in each adsorption tower, and ( b) The second stage adsorption operation is carried out using two or more adsorbents filled with adsorbent substances that are selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). The method includes (1) pressurization of the adsorption tower with the first stage product gas and adsorption step, (11) depressurization of the adsorption tower, Il+1 purging of the adsorption tower, and (1v) purging of the adsorption tower with the product gas. It consists of repeating at least four steps consisting of desorption by periodically changing the flow between the adsorption towers, heating the waste gas with low carbon dioxide content in the second stage, and regenerating the adsorption tower in the first stage treatment. A carbon monoxide purification method characterized by use in a process.
JP58205591A 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method Granted JPS6097020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205591A JPS6097020A (en) 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205591A JPS6097020A (en) 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Publications (2)

Publication Number Publication Date
JPS6097020A true JPS6097020A (en) 1985-05-30
JPS6139089B2 JPS6139089B2 (en) 1986-09-02

Family

ID=16509413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205591A Granted JPS6097020A (en) 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Country Status (1)

Country Link
JP (1) JPS6097020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245315A (en) * 1985-08-12 1987-02-27 リンデ・アクチエンゲゼルシヤフト Pressure swing adsorbing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245315A (en) * 1985-08-12 1987-02-27 リンデ・アクチエンゲゼルシヤフト Pressure swing adsorbing method
JPH0410365B2 (en) * 1985-08-12 1992-02-25

Also Published As

Publication number Publication date
JPS6139089B2 (en) 1986-09-02

Similar Documents

Publication Publication Date Title
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US5540758A (en) VSA adsorption process with feed/vacuum advance and provide purge
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
JPS6137968B2 (en)
JPS63230505A (en) Method of forming and recovering oxygen product
JPH04227812A (en) Method for recovering nitrogen gas from air
JPS61222905A (en) Manufacture of oxygen-rich air
JPS6297637A (en) Method and apparatus for oxidizing carbonaceous material
JPH0268111A (en) Improved pressure swing adsorbing method
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JP3169647B2 (en) Pressure swing type suction method and suction device
JPS6137970B2 (en)
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JPS6097020A (en) Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method
JPS607919A (en) Separating and removing method of carbon dioxide in mixed gas containing carbon monoxide by adsorption
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH0112529B2 (en)
JPS634824A (en) Impure gas adsorption bed
JPS6078611A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method
JPH0221285B2 (en)
JPS60155518A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process