JPS6139089B2 - - Google Patents

Info

Publication number
JPS6139089B2
JPS6139089B2 JP58205591A JP20559183A JPS6139089B2 JP S6139089 B2 JPS6139089 B2 JP S6139089B2 JP 58205591 A JP58205591 A JP 58205591A JP 20559183 A JP20559183 A JP 20559183A JP S6139089 B2 JPS6139089 B2 JP S6139089B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
adsorption tower
carbon dioxide
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58205591A
Other languages
Japanese (ja)
Other versions
JPS6097020A (en
Inventor
Toshikazu Sakuratani
Makoto Tanaka
Setsu Takeo
Shigeo Matsui
Shigeki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58205591A priority Critical patent/JPS6097020A/en
Publication of JPS6097020A publication Critical patent/JPS6097020A/en
Publication of JPS6139089B2 publication Critical patent/JPS6139089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

製鉄所副生ガス、特に転炉ガスは一酸化炭素を
多量に含んでおり化学原料ガスとして注目されて
いる。本発明は主として転炉ガスの様な組成の即
ち少なくともCO、CO2およびN2等を含有するガ
スを原料として高純度一酸化炭素ガスを圧力変動
式吸着法(PSA法)により精製する方法に関する
ものである。 一酸化炭素の濃縮分離法として深冷分離法と溶
液吸収法とがある。 深冷分離法は−165℃〜−210℃まで冷却し、一
酸化炭素を液化させて分離する方法で一酸化炭素
と沸点の近い窒素に多量に共存する場合は分離が
困難で、本方式には低温と高圧を必要とするため
液化設備が高価になる欠点がある。 溶液吸収法には、銅液法とCOSORB法とがあ
り、銅液法はギ酸第一銅のアンモニア水溶液を吸
収剤に用いる方法で、20℃ 150〜200Kg/cm2Gの
高い圧力で行われる。 又COSORB法は、テトラクロロアルミン酸第
一銅のトルエン溶液を吸収剤として用いる方法で
約40℃ 5.4Kg/cm2Gで行われるが吸収液は水と反
応するため原料ガス中の水分を1ppm以下にしな
ければならない。これらの方法は量産を目的とし
た高濃度ガスの製造には最適と考えられるが装置
が複雑で設備が高価になる欠点がある。 しかるに吸着法による一酸化炭素の分離・精製
法は使用する装置自身の経済性や、吸着塔内に充
填する吸着剤の再生可能な点よりみて好ましい方
法の一つと考えられる。 混合ガス吸着法(PAS法)による吸着分離は公
知であり、吸着剤に吸着しにくいガス成分(以後
難吸着成分と云う)の回収を目的としたものに特
公昭38−23928および特公昭43−15045等が基本発
明として種々公告あるいは出願されている又吸着
剤に吸着しやすいガス成分(以後易吸着成分と云
う)を吸着剤に吸着させ脱着して分離回収するこ
とにより易吸着成分を高純度で分離する方法も古
くから実施されている。例えばエチレンを易吸着
成分とした具体例および窒素分離への応用につい
て等がある。 従来から行なわれている混合ガス中の吸着剤に
易吸着成分を回収する方法は通常次の操作を含ん
だものである。吸着加圧工程−還流工程−脱着工
程を順次繰返すことによつて吸着剤に易吸着成分
に富んだガスを取出すことが出来る。 しかし今回の混合ガスの様に共吸着しやすいガ
ス成分の一酸化炭素を混合ガスより二酸化炭素及
び窒素を除去し、高濃度の一酸化炭素として回収
精製することは行なわれていない。 本出願人は、先に少なくともCO N2及びCOを
含む原料ガスからPSA法によりCOを分離する方
法について出願を行なつた(特願昭58−110616号
参照)。 本発明は特願昭58−110616号の発明の改良に関
する。すなわち本発明では、第1段階として吸着
法による二酸化炭素除去段階(以下脱CO2 PSA
という)を行ない、その脱着操作時に再生パージ
ガスとして脱窒素段階(以下脱N2 PSAという)
の廃棄ガスを使用し、更に二酸化炭素の脱着を円
滑にするため脱CO2 PSA吸着槽を脱N2 PSA廃棄
ガスを使つて加温することを組合せた結果二酸化
炭素含有量の少い高純度一酸化炭素を精製できる
ことを見出した。 以下に本発明の細部を説明する。 本発明は、少なくとも一酸化炭素、二酸化炭素
及び窒素等を含む原料ガスから一酸化炭素を精製
する方法において (a) 第一段階処理として原料ガス中のCO2に対し
選択吸着性を有する吸着剤、例えば活性アルミ
ナ、活性炭、モレキユラーシーブ、陽イオン置
換ゼオライト等の合成または天然ゼオライトの
いずれかまたは複数の組合せからなる吸着剤を
収納した2つ以上の吸着塔を使用し、その方法
は各吸着塔で吸着及び脱着を繰返す圧力変動式
吸着分離によつてその原料ガスから二酸化炭素
を除去することからなり、そして (b) 第二段階の吸着操作は、第一段階の吸着工程
から排出されたガス(以下第一段階製品ガスと
いう)中の一酸化炭素に対して選択性を有する
吸着物質例えば活性炭、モレキユラーシーブ、
陽イオン置換ゼオライト等の合成ゼオライトま
たは天然ゼオライトを充填した2つ以上の吸着
塔を使用し、その方法は (i) 第一段階製品ガスによる吸着塔の加圧及び
吸着工程、 (ii) その吸着塔の減圧、 (iii) その吸着塔のパージ、 (iv) 製品ガスの脱着からなる少なくとも4工程
を定期的に吸着塔間の流れを変えて、繰返す
ことからなり第二段階における二酸化炭素の
含有量の少ない廃棄ガスを加温して第一段階
処理における吸着塔の再生工程に利用するこ
とを特徴とする高純度一酸化炭素製造方法に
関する。 第1段階における原料ガスから二酸化炭素ガス
を除去する工程は、通常のPSA法すなわち吸着、
減圧、製品ガスによるパージおよび製品ガスによ
る加圧の繰返しにより実施しても良く、又他の方
法であつても良い。二酸化炭素を除去する好まし
い方法は次の通りである。 二酸化炭素に対して選択性を有する吸着物質を
充填した2つ以上の吸着塔を使用し、その方法は (i) 好ましくは向流方向に第1段階製品ガスによ
る吸着塔を加圧する加圧工程、好ましくは0.2
〜3Kg/cm2・Gまで加圧する、 (ii) 原料ガスを吸着塔に流して主として二酸化炭
素を吸着物質に吸着させる吸着工程、 (iii) 好ましくは向流方向に次いで吸着を一定圧力
まで減圧する減圧工程、 (iv) 次いで、脱N2 PSA装置からの廃棄ガスを加
温(好ましくは40〜100℃の範囲)して吸着塔
に導入し、吸着剤より昇温させる常圧パージ工
程、 (v) 好ましくは向流方向に吸着塔を大気圧以下に
排気する排気工程、そして (vi) 好ましくは向流方向に脱N2 PSA装置の廃棄
ガスを用いて、排気を行ないながらパージす
る、パージ工程、該廃棄ガスを40〜100℃の範
囲に加温して用いても良い。 から成り、定期的に吸着塔間の流れを変えて、上
記操作を繰返することから成る方法である。 本発明の好ましい第2段階は次の通りである。 第1段階の吸着工着から排出されたガス(以
下、第1段製品ガスという)中の一酸化炭素に対
して選択性を有する吸着物質を充填した2つ以上
の吸着塔を使用し、その方法は (i) 第1段階製品ガスにより吸着塔を加圧する加
圧工程、 (ii) さらに第1段階製品ガスを吸着塔に流して、
吸着塔出口における易吸着成分の濃度が吸着塔
入口における易吸着成分の濃度に達するかある
いは達した後適当な時間あるいは量まで又は両
者の濃度が等しくなる点の少し前まで吸着剤に
易吸着成分を吸収させる吸着()工程、 (iii) 吸着()工程終了後、その吸着塔を吸着圧
力と大気圧との間の任意圧力まで減圧する工
程、 (iv) 減圧工程終了後その吸着塔と真空脱着が終つ
た吸着塔とを連続し、前者の吸着塔からガスを
後者の吸着塔に導入し、前者の吸着塔の圧力を
大気圧は大気圧近くまで降下させる減圧放圧工
程、この場合両者の圧力がほぼ同圧となるまで
前者の圧力を降下させても良い、又は前者の圧
力を大気圧以下で停止させても良い。 (v) 減圧した吸着塔に第2段階製品ガスを並流に
導入して難吸着成分をパージするパージ工程、
この場合吸着塔上部より流出してくるガスを工
程(vii)が終つた吸着塔に導入してその吸着塔の加
圧に使用してもよい。 (vi) パージ工程が終つた吸着塔を大気圧以下に排
気して吸着剤に吸着されている易吸着成分を脱
着させ製品ガスを回収する回収工程、及び、 (vii) 製品ガス回収が終つた吸着塔と吸着()工
程又は減圧工程が終つた吸着塔とを連結して後
者の吸着塔からのガスを前者の吸着塔に導入す
る吸着()工程、 (viii) 他の吸着塔のパージ工程からのガスによる吸
着()工程、 から成り、定期的に吸着塔間の流れを変えて、上
記操作を繰返すことを特徴とする。 本発明の第2段階の好ましい態様について説明
する。 この態様の工程(i)は吸着塔に原料ガスを導入す
る吸着塔の加圧工程である、本発明では回収すべ
きガスは易吸着成分であるので高い吸着圧は必要
ではなく、0Kg/cm2・G以上であれば良く、一般に
1Kg/cm2・G程度の吸着圧で十分であり、それより
低い吸着圧であつても良い。 工程(ii)は吸着()工程である、吸着塔出口に
おける易吸着成分(+酸化炭素ガス、二酸化炭素
ガス)の濃度が吸着塔入口における易吸着成分の
濃度と等しくなつた点というのは、吸着剤の破過
点を意味する。回収すべき成分が難吸着成分(例
えば空気から酸素ガスを分離する場合においては
酸素ガス)であるならば、高純度の難吸着成分を
得るためには破過点よりも上の水準で吸着工程を
終了することが望ましい。しかしこの態様では、
回収すべき成分は易吸着成分であるから破過点ま
たは破過点に達する少し前まで吸着を行なう。さ
らに破過点を越える迄吸着を行なつても良い。 工程(iii)は、吸着工程終了後吸着圧と大気圧との
間の任意の圧力まで好ましくは並流方向に減圧し
て吸着塔の出口附近に残留している難吸着成分を
廃棄する。この工程は必ずしも行なわなくても良
い。 工程(iv)は吸着()工程又は減圧工程が終つた
吸着塔と真空脱着が終つた吸着塔とを連結し、好
ましくは並流方向に前者の吸着塔からガスを後者
の吸着塔に導入し、前者の吸着塔の圧力を大気圧
または大気圧近くまで降下させる。又は両者の吸
着塔の圧がほぼ等しくなるまで前者の圧力を降下
させても良い。この工程で吸着塔に収納されてい
る吸着剤間の空間中のガスが放出され、真空脱着
が終つた吸着塔の吸着()加圧に使用される。
前者の吸着塔の圧力がほぼ大気圧になるまでこの
操作を維持する。 工程(v)は減圧した吸着塔に並流に製品ガスを導
入して吸着塔内に残つている難吸着成分(窒素ガ
ス等)をパージする。この場合の製品ガスの導入
圧は吸着圧力より低く、大気圧より高い方が望ま
しく、この場合ポンプ等を使用する必要がなく、
製品ガスタンクと吸着塔を連結することによつて
パージを実施する。又このとき吸着塔出口のパー
ジガス濃度は製品ガス濃度に吸着塔内に残つてい
る難吸着成分が加わるのみで製品ガス濃度より少
し低下するのみで原料混合ガスよりも充分に一酸
化炭素に富んだ部分(製品ガス濃度に近い部分)
である。この部分を回収利用して連続的に一酸化
炭素ガスを濃縮する際の、他塔の加圧用ガス(吸
着()として使用する。このパージガスを利用
しなくも良い。 工程(vi)はパージ工程が終つた吸着塔を真後ポン
プ、エゼクター、ブロワー等を用いて大気圧以
下、好ましくは300Torr以下もつとも好ましくは
30〜60Torrの範囲まで排気し、吸着剤に吸着さ
れていた成分(−酸化炭素ガス等)を脱着させ製
品ガスとして回収する。 工程(vii)は製品回収が終つた吸着塔と吸着()
工程又は減圧工程が終つた吸着塔とを連結し、後
者の吸着塔からのガスによつて前者の吸着塔を加
圧吸着させる。この工程で前者の吸着塔の圧力は
大気圧に達しない。 工程(viii)は、他の吸着塔のパージ工程からのガス
による吸着()からなる。この工程(viii)は任意で
ある。 以下本発明の代表的な具体例である転炉排ガス
中の窒素ガスを除去し、一酸化炭素を分離回収す
る方法に基づいて、本発明を詳しく説明するが本
発明の方法は、これらの具体例に限定されるもの
ではない。 図は吸着法により連続的に転炉排ガスから二酸
化炭素と窒素を除去し、一酸化炭素ガスを分離濃
縮するフローシートである。 吸着搭A,Bは二酸化炭素を選択的に吸着する
吸着剤が収納されている。吸着塔A,Bを真空ポ
ンプを用いて減圧排気を300Torr好ましくは
60Tprrまで行つた後吸着塔Aを原料ガスで常圧
迄加圧しておく。この時バルブ1以外はすべて閉
の状態になつている。吸着塔Bはこのステツプで
は、まだ真空状態を保持している。吸着塔Aに原
料ガスを導入、吸着圧力0.01Kg/cm2・Gから3.0Kg/
cm2・G好ましくは0.2Kg/cm2・Gから1.0Kg/cm2・Gの吸
着圧力を保ち、バルブ2は開かれ二酸化炭素と一
酸化炭素その他の含有ガスも一部は吸着剤に吸着
し残りは吸着塔の他の端部より排出する。一定時
間或は一定量の吸着工程終了後原料供給バルブ1
及び出口バルブ2は閉じ、バルブ3を開き、吸着
塔Aの塔内圧力を大気圧附近まで減圧放圧させ
る。吸着塔Aが大気圧附近になるとバルブ5を開
き低圧蒸気を熱源とする熱交換器HE−1を通し
一定量の加温した脱N2 PSA廃棄ガスを吸着塔A
に導入し吸着剤を昇温させた後、バルブ5は閉じ
られた吸着塔下部よりバルブ4を開にし真空ポン
プを用いて減圧排気を行い吸着剤に吸着している
二酸化炭素成分を脱着させるこの際の排気圧力は
300Torr好ましくは60Torrまで行う。減圧排気が
終了するとバルブ5を開にする(この時手動バル
ブ14でパージガス量を調節する。)ことによつ
て脱N2装置からの廃棄ガスを利用して吸着剤に
脱着しきれずに吸着している二酸化炭素をパージ
ガスとの同伴脱着により吸着剤より追い出す。こ
の時熱交換器HE−1はバイパスさせても良い。
排気パージが終了するとバルブ4とバルブ5は閉
じられ、バルブ6を開にして脱CO2ガス(吸着塔
B通過ガス)でもつて吸着塔内に吸着圧力まで加
圧を行う。 上記操作をそれぞれの吸着塔において順次繰返
すことによつて連続的に吸着剤CO2を吸着させ除
去しようとするものである。一段目の脱CO2
PSAで二酸化炭素が除去されたガスは二段目の脱
N2 PSAをもつて水素・酸素・窒素を除去し一酸
化炭素の濃度を高濃度に濃縮分離しようとするも
ので、その方法は吸着塔CDEFは易吸着成分
(こゝでは一酸化炭素と二酸化炭素)を選択的に
吸着する吸着剤が収納されている。吸着塔CDEF
を真空ポンプ41を用いて減圧排気を300Torr好
ましくは60torrまで行い、今吸着塔Cに原料ガス
(一段目の脱CO2 PSA装置で二酸化炭素を除去し
たもの)を加圧導入する。再生済の真空状態より
昇圧させるためバルブ16を開くことによつて行
う。このときの昇圧速度はバルブ15によつて調
節される昇圧後バルブ17,18を開にすると同
時にバルブ16は閉になり該混合ガスが吸着塔内
を通過する。このとき吸着塔に易吸着成分である
一酸化炭素と二酸化炭素が吸着され、他のガスは
吸着塔内を通過しその一部は脱CO2 PSA装置の
パージガスとして加温された上で使用される。残
りは水素、一酸化炭素がまだかなり含まれている
ので燃料ガス等に再利用するためにタンク43に
回収する。 一定時間或は一定量の吸着工程終了後原料供給
バルブ18及び出口バルブ17は閉じ、吸着塔D
への連結パイプにあるバルブ19を開き、吸着塔
Cの塔内圧力を大気圧附近まで減圧放出させ、吸
着塔Dの吸着剤に減圧放圧されたガスを吸着させ
る。吸着塔Aが大気圧附近になると吸着塔内の空
隙(吸塔剤間の空間)にたまつている難吸着成分
ガスを追出するために製品ガスタンク42により
バルブ20を開いて吸着塔Cの下部よりパージ工
程を行う。このパージ工程で吸着塔から排出され
るガスを吸着塔Dに導入し先の減圧加圧工程に引
き続き、吸着剤に易吸着成分を吸着させる。この
時点で吸着塔Dは大気圧近くまで減圧された状態
になつている。 パージ工程が終了するとバルブ19及び20は
閉じられ吸着塔下部よりバルブ21を開にし真空
ポンプを用いて減圧排気を行い吸着剤に吸着して
いる易吸着成分を脱着させるこの際の排気圧力は
300Torr好ましくは60Torrまで行つて易吸着成分
であるCOを製品ガスとして回収するものであ
る。 上記操作をそれぞれの吸着塔において順次繰返
すことによつて連続的に吸着剤に易吸着成分であ
るCOガスを吸着させて分離精製することが出来
る。なお43は廃ガスタンクである。 上記の様に一段目の脱CO2 PSAに於いて二酸
化炭素の脱着操作に先だつて吸着塔内に熱を与え
吸着剤温度を意識的に高く保つことにより二酸化
炭素の脱着速度を大きくとれる効果が得られ、限
られた時間内の操作において大きな動的吸着容量
を確保できる。圧力変動式吸着分離法は基本的に
は断熱操作であり系外から与熱した場合、通過ガ
スが持去る熱量以外は吸着塔の温度上昇をもたら
す。そしてその温度上昇は吸着塔表面からの放散
熱量の増加とバランスするものである。 しかしながら与熱量が大きい場合には吸着塔の
温度上昇が著しく吸着剤の静的吸着容量の低下が
動的吸着容量の向上効果を上廻り、二酸化炭素吸
着分離効果を低下させることになるので吸着塔の
吸着、脱着開始温度を20℃〜50℃好ましくは25〜
35゜になる様与熱しなければならない。従つて本
発明の効果は冬期に於いて極めて著しくなる。加
熱エネルギー源として大きなポテンシヤルを必要
とせず、低圧蒸気、温廃水、加熱廃ガス等であ
り、極めて安価なユーテイリテイーで工業的な実
施が可能である。 又前記具体例に於いては脱着のための減圧操作
に先だつて脱N2 PSA廃棄ガスを昇温し、それを
もつて吸着塔を加温したか、同様な効果を得る方
法として原料ガスを加温し吸着塔温度を高くして
脱CO2 PSAを行うことも可能である。この場合
種々の吸脱着工程の操作時間にしばられず、しか
もより少い加温で済むので、前記方法に比較しよ
りポテンシヤルの低いエネルギー源で目的を達す
ることができるが、動的吸着容量の向上は脱着操
作に先だつて昇温する方法には及ばない。 脱CO2 PSA再生操作に於いて脱N2 PSA廃棄ガ
スを加温して導入する操作については吸着塔が常
圧になるのを待つてから行う必要は必ずしもなく
廃棄ガスの圧力よりも吸着塔圧力が低くなつた時
点で導入可能であり、その導入量はガスの加温量
と再生操作に於ける許容時間の制約の中で最適化
を行う必要がある。 本発明による当該脱CO2 PSAと二段目の脱N2
PSAを組合せることにより一段目の脱CO2 PSA
CO2分離効果を高めることができ、それが2段目
の脱N2 PSA廃棄ガス中の二酸化炭素濃度を低く
保つことになり、当該廃棄ガスによる脱CO2
PSA再生操作効果を更に高めるという極めて大き
な相剰効果を得ることができた。ひいては二酸化
炭素含有量の少い高純度一酸化炭素ガスの製造と
一酸化炭素の回収率を向上させることができた。 実施例1−4および比較例1 脱CO2 PSA操作として「吸着−減圧放圧−常
圧パージ−真空排気−パージ−製品加圧」と脱
N2 PSA操作として「原料加圧−吸着−減圧加圧
(−)−パージ加圧(−)−真空排気−減圧加圧
(+)−パージ加圧(+)」のサイクルに基づい
て、次の組成の原料ガスから一酸化炭素の精製を
試みた。 CO N2 CO2 H2 85.8% 4.0% 3.6% 6.6% 本発明による実施例は、下表より明らかなよう
に、パージ用廃棄ガスを加温しない比較例に比
し、CO純度およびCO収率が高いことが明らかで
ある。
Steelworks byproduct gas, especially converter gas, contains a large amount of carbon monoxide and is attracting attention as a chemical raw material gas. The present invention mainly relates to a method for purifying high-purity carbon monoxide gas using a pressure fluctuation adsorption method (PSA method) using a gas having a composition similar to converter gas, that is, containing at least CO, CO 2 and N 2 as a raw material. It is something. There are two methods for concentrating and separating carbon monoxide: a cryogenic separation method and a solution absorption method. The cryogenic separation method is a method in which carbon monoxide is cooled to -165℃ to -210℃ to liquefy and separate the carbon monoxide.It is difficult to separate carbon monoxide and nitrogen, which has a boiling point close to each other, when large amounts coexist. has the disadvantage that liquefaction equipment is expensive because it requires low temperature and high pressure. Solution absorption methods include the copper liquid method and the COSORB method. The copper liquid method uses an ammonia aqueous solution of cuprous formate as an absorbent, and is carried out at a high pressure of 150 to 200 Kg/cm 2 G at 20°C. . The COSORB method uses a toluene solution of cuprous tetrachloroaluminate as an absorbent and is carried out at approximately 40℃ and 5.4Kg/cm 2 G, but since the absorbent reacts with water, the moisture in the raw material gas is reduced to 1ppm. Must be as follows. Although these methods are considered to be optimal for producing high concentration gas for mass production, they have the disadvantage that the equipment is complicated and the equipment is expensive. However, the method of separating and purifying carbon monoxide by adsorption is considered to be one of the preferable methods from the viewpoint of the economic efficiency of the equipment used and the possibility of regenerating the adsorbent packed in the adsorption column. Adsorption separation using the mixed gas adsorption method (PAS method) is well known, and is used for the purpose of recovering gas components that are difficult to adsorb to adsorbents (hereinafter referred to as difficult-to-adsorb components). 15045 etc. are variously announced or filed as basic inventions.In addition, gas components that are easily adsorbed to an adsorbent (hereinafter referred to as easily adsorbed components) are adsorbed onto an adsorbent, desorbed, and separated and recovered to obtain highly purified easily adsorbed components. The separation method has also been practiced for a long time. For example, there are specific examples using ethylene as an easily adsorbed component and applications to nitrogen separation. Conventional methods for recovering components easily adsorbed onto an adsorbent in a mixed gas usually include the following operations. By sequentially repeating the adsorption pressurization process, the reflux process, and the desorption process, a gas rich in easily adsorbable components can be extracted from the adsorbent. However, carbon monoxide, a gas component that is easily co-adsorbed, is removed from the mixed gas to recover and purify it as highly concentrated carbon monoxide, as in the present mixed gas. The present applicant previously filed an application for a method for separating CO from a raw material gas containing at least CO N 2 and CO by the PSA method (see Japanese Patent Application No. 110616/1982). The present invention relates to an improvement of the invention disclosed in Japanese Patent Application No. 110616/1982. That is, in the present invention, the first step is a carbon dioxide removal step (hereinafter referred to as CO 2 PSA removal step) by adsorption method.
The denitrification stage (hereinafter referred to as deN2 PSA) is carried out as a regenerated purge gas during the desorption operation.
As a result of using this waste gas and heating the CO 2 PSA adsorption tank with the N 2 PSA waste gas to facilitate the desorption of carbon dioxide, the result is a high purity product with low carbon dioxide content. It was discovered that carbon monoxide can be purified. The details of the invention will be explained below. The present invention provides a method for purifying carbon monoxide from a raw material gas containing at least carbon monoxide, carbon dioxide, nitrogen, etc. (a) As a first stage treatment, an adsorbent having a selective adsorption property for CO 2 in the raw material gas is used. For example, two or more adsorption towers containing adsorbents made of any one or a combination of synthetic or natural zeolites such as activated alumina, activated carbon, molecular sieves, and cation-substituted zeolites are used; (b) The second stage adsorption operation consists of removing carbon dioxide from the feed gas by pressure fluctuation adsorption separation that repeats adsorption and desorption in an adsorption tower, and (b) the second stage adsorption operation consists of removing carbon dioxide from the gas discharged from the first stage adsorption process. Adsorbent materials that are selective for carbon monoxide in the produced gas (hereinafter referred to as first stage product gas), such as activated carbon, molecular sieves, etc.
Two or more adsorption towers filled with synthetic or natural zeolites, such as cation-substituted zeolites, are used, and the method includes (i) pressurization of the adsorption tower with the first stage product gas and an adsorption step; (ii) its adsorption. It consists of repeating at least four steps consisting of depressurizing the tower, (iii) purging the adsorption tower, and (iv) desorption of the product gas by periodically changing the flow between the adsorption towers, and reducing the carbon dioxide content in the second stage. The present invention relates to a method for producing high-purity carbon monoxide, characterized in that a small amount of waste gas is heated and used in the regeneration step of an adsorption tower in the first stage treatment. The step of removing carbon dioxide gas from the raw material gas in the first stage is the usual PSA method, that is, adsorption,
This may be carried out by repeating depressurization, purging with product gas, and pressurization with product gas, or other methods may be used. A preferred method of removing carbon dioxide is as follows. Using two or more adsorption columns filled with an adsorption material selective for carbon dioxide, the method comprises (i) a pressurizing step of pressurizing the adsorption columns with the first stage product gas, preferably in a countercurrent direction; , preferably 0.2
(ii) An adsorption step in which the raw material gas is passed through an adsorption tower to mainly adsorb carbon dioxide onto the adsorbent material; (iii) Preferably in a countercurrent direction, the adsorption is then reduced to a constant pressure. (iv) Next, a normal pressure purge step in which the waste gas from the N 2 PSA device is heated (preferably in the range of 40 to 100°C) and introduced into the adsorption tower to raise the temperature above the adsorbent; (v) an evacuation step, preferably in a countercurrent direction, to evacuate the adsorption column to below atmospheric pressure; and (vi) purging, preferably in a countercurrent direction, with waste gas from the deN2 PSA unit while evacuation. In the purging step, the waste gas may be heated to a temperature in the range of 40 to 100°C. This method consists of repeating the above operation by periodically changing the flow between the adsorption towers. The preferred second stage of the invention is as follows. Two or more adsorption towers filled with an adsorption material that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas) are used. The method includes (i) a pressurizing step of pressurizing the adsorption tower with the first stage product gas, (ii) further flowing the first stage product gas into the adsorption tower,
The concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or the easily adsorbed component is added to the adsorbent until an appropriate time or amount after reaching the concentration of the easily adsorbed component at the outlet of the adsorption tower, or until a little before the point where the concentrations of the two become equal. (iii) After the adsorption () process, the adsorption tower is depressurized to an arbitrary pressure between the adsorption pressure and atmospheric pressure; (iv) After the depressurization process, the adsorption tower and vacuum are removed. A depressurization and release process in which the adsorption tower that has completed desorption is connected to the adsorption tower, the gas is introduced from the former adsorption tower to the latter adsorption tower, and the pressure in the former adsorption tower is lowered to near atmospheric pressure, in which case both The pressure of the former may be lowered until the pressures of the two become approximately the same pressure, or the pressure of the former may be stopped below atmospheric pressure. (v) a purge step in which the second-stage product gas is introduced in parallel flow into the depressurized adsorption tower to purge difficult-to-adsorb components;
In this case, the gas flowing out from the upper part of the adsorption tower may be introduced into the adsorption tower after step (vii) and used to pressurize the adsorption tower. (vi) A recovery step in which the adsorption tower after the purge step is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed by the adsorbent and product gas is recovered; and (vii) After the product gas recovery is completed. an adsorption () process in which the adsorption tower is connected to an adsorption tower that has completed the adsorption () process or the depressurization process, and gas from the latter adsorption tower is introduced into the former adsorption tower; (viii) a purge process for other adsorption towers; The process consists of an adsorption step using gas from the adsorption tower, and is characterized in that the above operation is repeated by periodically changing the flow between the adsorption towers. A preferred embodiment of the second stage of the present invention will be described. Step (i) of this embodiment is an adsorption tower pressurization step in which the raw material gas is introduced into the adsorption tower.In the present invention, since the gas to be recovered is an easily adsorbed component, a high adsorption pressure is not necessary, and 0 Kg/cm It is sufficient if the adsorption pressure is 2.G or more, and generally an adsorption pressure of about 1 kg/cm 2.G is sufficient, and an adsorption pressure lower than that is also acceptable. Step (ii) is an adsorption () step. The point at which the concentration of easily adsorbed components (+ carbon oxide gas, carbon dioxide gas) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower is as follows. It means the breakthrough point of the adsorbent. If the component to be recovered is a difficult-to-adsorb component (for example, oxygen gas in the case of separating oxygen gas from air), the adsorption process must be carried out at a level above the breakthrough point in order to obtain a high-purity difficult-to-adsorb component. It is desirable to terminate. However, in this aspect,
Since the component to be recovered is an easily adsorbed component, adsorption is carried out until the breakthrough point or just before the breakthrough point is reached. Furthermore, adsorption may be performed until the breakthrough point is exceeded. In step (iii), after the adsorption step is completed, the pressure is reduced preferably in the parallel flow direction to an arbitrary pressure between the adsorption pressure and atmospheric pressure, and the hardly adsorbed components remaining near the outlet of the adsorption tower are discarded. This step does not necessarily have to be performed. In step (iv), the adsorption tower that has undergone the adsorption () step or the depressurization step is connected to the adsorption tower that has undergone the vacuum desorption, and gas is preferably introduced from the former adsorption tower into the latter adsorption tower in a cocurrent direction. , the pressure in the former adsorption tower is lowered to atmospheric pressure or near atmospheric pressure. Alternatively, the pressure of the former may be lowered until the pressures of both adsorption towers become approximately equal. In this step, the gas in the space between the adsorbents housed in the adsorption tower is released and is used for adsorption () pressurization of the adsorption tower after vacuum desorption.
This operation is maintained until the pressure in the former adsorption tower reaches approximately atmospheric pressure. In step (v), the product gas is introduced in parallel to the reduced pressure adsorption tower to purge the difficult-to-adsorb components (nitrogen gas, etc.) remaining in the adsorption tower. In this case, the introduction pressure of the product gas is preferably lower than the adsorption pressure and higher than atmospheric pressure, and in this case, there is no need to use a pump, etc.
Purging is carried out by connecting the product gas tank and adsorption tower. Also, at this time, the purge gas concentration at the outlet of the adsorption tower is only slightly lower than the product gas concentration due to the addition of the difficult-to-adsorb components remaining in the adsorption tower to the product gas concentration, and is sufficiently rich in carbon monoxide than the raw material mixed gas. Part (part close to product gas concentration)
It is. When this part is recovered and used to continuously concentrate carbon monoxide gas, it is used as a pressurizing gas (adsorption ()) in another tower. There is no need to use this purge gas. Step (vi) is a purge process. It is preferable that the adsorption tower after the adsorption process is maintained at a pressure below atmospheric pressure, preferably below 300 Torr, using a pump, ejector, blower, etc.
The gas is evacuated to a range of 30 to 60 Torr, and components adsorbed by the adsorbent (carbon oxide gas, etc.) are desorbed and recovered as product gas. Step (vii) is the adsorption tower and adsorption () after product recovery.
The adsorption tower that has completed the process or the depressurization process is connected, and the gas from the latter adsorption tower is used to pressurize and adsorb the former adsorption tower. In this step, the pressure in the former adsorption tower does not reach atmospheric pressure. Step (viii) consists of adsorption () with gas from the purge step of another adsorption column. This step (viii) is optional. The present invention will be explained in detail below based on a typical example of the present invention, which is a method for removing nitrogen gas from converter exhaust gas and separating and recovering carbon monoxide. The examples are not limited. The figure is a flow sheet that continuously removes carbon dioxide and nitrogen from converter exhaust gas by adsorption method, and separates and concentrates carbon monoxide gas. Adsorption towers A and B house adsorbents that selectively adsorb carbon dioxide. Adsorption towers A and B are evacuated to 300 Torr using a vacuum pump, preferably
After reaching 60Tprr, adsorption tower A is pressurized to normal pressure with raw material gas. At this time, all valves except valve 1 are closed. Adsorption tower B still maintains a vacuum state at this step. Introducing raw material gas into adsorption tower A, adsorption pressure from 0.01Kg/cm 2・G to 3.0Kg/
cm 2・G Preferably, the adsorption pressure is maintained at 0.2Kg/cm 2・G to 1.0Kg/cm 2・G, and valve 2 is opened to partially adsorb carbon dioxide, carbon monoxide, and other gases contained in the adsorbent. The remainder is discharged from the other end of the adsorption tower. Raw material supply valve 1 after completion of adsorption process for a certain time or a certain amount
The outlet valve 2 is closed, the valve 3 is opened, and the internal pressure of the adsorption tower A is reduced to near atmospheric pressure. When adsorption tower A reaches near atmospheric pressure, valve 5 is opened and a certain amount of heated de - N2 PSA waste gas is transferred to adsorption tower A through heat exchanger HE-1 which uses low-pressure steam as a heat source.
After the temperature of the adsorbent is raised, the valve 5 is opened from the bottom of the adsorption tower, which is closed, and the vacuum pump is used to perform a reduced pressure exhaust to desorb the carbon dioxide component adsorbed on the adsorbent. The exhaust pressure is
Perform up to 300 Torr, preferably 60 Torr. When the decompression exhaustion is completed, valve 5 is opened (at this time, the amount of purge gas is adjusted with manual valve 14), and the waste gas from the deN2 equipment is used to absorb the undesorbed gas into the adsorbent. The carbon dioxide contained in the adsorbent is expelled from the adsorbent by entrainment desorption with the purge gas. At this time, the heat exchanger HE-1 may be bypassed.
When the exhaust purge is completed, valves 4 and 5 are closed, and valve 6 is opened to pressurize the inside of the adsorption tower to the adsorption pressure even with deCO 2 gas (gas passing through the adsorption tower B). By sequentially repeating the above operations in each adsorption tower, CO 2 is continuously adsorbed and removed using the adsorbent. First stage CO 2 removal
The gas from which carbon dioxide has been removed by PSA is passed through the second stage of desorption.
This method uses N 2 PSA to remove hydrogen, oxygen, and nitrogen, and concentrates and separates carbon monoxide to a high concentration. Contains an adsorbent that selectively adsorbs carbon. Adsorption tower CDEF
The vacuum pump 41 is used to perform evacuation under reduced pressure to 300 Torr, preferably 60 Torr, and the raw material gas (from which carbon dioxide has been removed in the first-stage CO 2 removal PSA device) is now introduced under pressure into the adsorption tower C. This is done by opening the valve 16 to increase the pressure from the regenerated vacuum state. The pressure increase rate at this time is adjusted by the valve 15. After the pressure increase, the valves 17 and 18 are opened and at the same time the valve 16 is closed and the mixed gas passes through the adsorption tower. At this time, carbon monoxide and carbon dioxide, which are easily adsorbed components, are adsorbed in the adsorption tower, and other gases pass through the adsorption tower, and some of them are heated and used as purge gas for the CO 2 PSA device. Ru. Since the remaining gas still contains a considerable amount of hydrogen and carbon monoxide, it is collected in the tank 43 for reuse as fuel gas or the like. After completion of the adsorption process for a certain period of time or a certain amount, the raw material supply valve 18 and the outlet valve 17 are closed, and the adsorption tower D
The valve 19 in the connecting pipe is opened to release the internal pressure of the adsorption tower C to near atmospheric pressure, and the adsorbent of the adsorption tower D adsorbs the gas that has been depressurized and released. When the adsorption tower A reaches near atmospheric pressure, the product gas tank 42 opens the valve 20 to expel the gas of the difficult-to-adsorb components accumulated in the voids in the adsorption tower (the spaces between the absorbing agents). Perform the purge process from the bottom. In this purge step, the gas discharged from the adsorption tower is introduced into the adsorption tower D, and following the previous depressurization and pressurization step, easily adsorbable components are adsorbed onto the adsorbent. At this point, the adsorption tower D is in a state where the pressure is reduced to near atmospheric pressure. When the purge process is completed, valves 19 and 20 are closed, and valve 21 is opened from the bottom of the adsorption tower to perform vacuum exhaust using a vacuum pump to desorb easily adsorbed components adsorbed on the adsorbent.The exhaust pressure at this time is
The temperature is increased to 300 Torr, preferably 60 Torr, and CO, which is an easily adsorbed component, is recovered as a product gas. By sequentially repeating the above operations in each adsorption tower, CO gas, which is an easily adsorbed component, can be continuously adsorbed onto the adsorbent for separation and purification. Note that 43 is a waste gas tank. As mentioned above, in the first stage of CO 2 PSA desorption, the rate of carbon dioxide desorption can be increased by applying heat to the adsorption tower and intentionally keeping the adsorbent temperature high prior to the carbon dioxide desorption operation. A large dynamic adsorption capacity can be obtained within a limited time period. The pressure fluctuation type adsorption separation method is basically an adiabatic operation, and when heat is added from outside the system, the temperature of the adsorption tower increases except for the amount of heat carried away by the passing gas. This temperature increase is balanced by an increase in the amount of heat dissipated from the surface of the adsorption tower. However, if the amount of heat given is large, the temperature of the adsorption tower will rise significantly, and the decrease in the static adsorption capacity of the adsorbent will outweigh the improvement in the dynamic adsorption capacity, reducing the carbon dioxide adsorption separation effect. Adsorption and desorption start temperature of 20℃~50℃, preferably 25~
It must be heated to 35°. Therefore, the effect of the present invention becomes extremely significant in the winter season. It does not require a large potential as a heating energy source; low-pressure steam, heated waste water, heated waste gas, etc. can be used as a heating energy source, and industrial implementation is possible with extremely inexpensive utilities. In the above specific example, the temperature of the de-N 2 PSA waste gas was raised prior to the depressurization operation for desorption, and the adsorption tower was heated with that, or the raw material gas was heated as a method to obtain the same effect. It is also possible to remove CO 2 PSA by heating and increasing the temperature of the adsorption tower. In this case, the operation time of various adsorption/desorption steps is not limited, and less heating is required, so the purpose can be achieved with a lower potential energy source compared to the above method, but the dynamic adsorption capacity is The improvement does not extend to methods that increase the temperature prior to the desorption operation. In the de-CO 2 PSA regeneration operation, it is not necessarily necessary to wait for the adsorption tower to reach normal pressure before introducing the de-N 2 PSA waste gas by heating it. It can be introduced when the pressure is low, and the amount of introduction needs to be optimized within the constraints of the amount of gas heating and the allowable time in the regeneration operation. The CO 2 removal PSA and the second stage N 2 removal according to the present invention
First stage CO 2 elimination by combining PSA
The CO 2 separation effect can be increased, which will keep the carbon dioxide concentration in the second-stage N 2 PSA waste gas low, and the CO 2 removal from the waste gas will be reduced.
We were able to obtain an extremely large mutual effect of further enhancing the PSA regeneration operation effect. As a result, it was possible to produce high-purity carbon monoxide gas with low carbon dioxide content and improve the recovery rate of carbon monoxide. Example 1-4 and Comparative Example 1 The deCO 2 PSA operation was "adsorption-depressurization release-normal pressure purge-vacuum exhaust-purge-product pressurization".
N 2 PSA operation is based on the cycle of "raw material pressurization - adsorption - depressurization pressurization (-) - purge pressurization (-) - vacuum evacuation - depressurization pressurization (+) - purge pressurization (+)". An attempt was made to purify carbon monoxide from a raw material gas with a composition of CO N 2 CO 2 H 2 85.8% 4.0% 3.6% 6.6% As is clear from the table below, the example according to the present invention has lower CO purity and CO yield than the comparative example in which the waste gas for purging is not heated. It is clear that the

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するための好ましい態様の装
置のフローシートである。
The figure is a flow sheet of a preferred embodiment of the apparatus for carrying out the invention.

Claims (1)

【特許請求の範囲】 1 少なくとも一酸化炭素、二酸化炭素、及び窒
素等を含む原料ガスから一酸化炭素を精製する方
法において (a) 第一段階処理として原料ガス中の二酸化炭素
に対して選択吸着性を有する吸着剤を収納した
2つ以上の吸着塔を使用し、その方法は各吸着
塔で少なくとも吸着及び脱着を繰返す圧力変動
式吸着分離によつてその原料ガスから二酸化炭
素を除去することからなり、そして (b) 第二段階の吸着操作は、第一段階の吸着工程
から排出されたガス(以下第一段階製品ガスと
いう)中の一酸化炭素に対して選択性を有する
吸着物質を充填した2つ以上の吸着塔を使用
し、その方法は (i) 第一段階製品ガスによる吸着塔の加圧及び
吸着工程、 (ii) その吸着塔の減圧、 (iii) その吸着塔のパージ、 (iv) 製品ガスの脱着からなる少なくとも4工程
を定期的に吸着塔間の流れを変えて、繰返す
ことからなり第二段階における二酸化炭素の
含有量の少ない廃棄ガスを加温して第一段階
処理における吸着塔の再生工程に利用するこ
とを特徴とする一酸化炭素精製方法。
[Claims] 1. In a method for purifying carbon monoxide from a raw material gas containing at least carbon monoxide, carbon dioxide, nitrogen, etc., (a) selective adsorption of carbon dioxide in the raw material gas as a first stage treatment; The method uses two or more adsorption towers containing adsorbents with different properties, and the method is to remove carbon dioxide from the raw material gas by pressure fluctuation adsorption separation in which at least adsorption and desorption are repeated in each adsorption tower. and (b) the second stage adsorption operation involves filling an adsorbent material that is selective for carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). using two or more adsorption towers, the process comprising: (i) pressurizing the adsorption tower with a first stage product gas and adsorption step; (ii) depressurizing the adsorption tower; (iii) purging the adsorption tower; (iv) At least four steps consisting of desorption of product gas are repeated by periodically changing the flow between the adsorption towers, and the waste gas with low carbon dioxide content in the second step is heated, and the waste gas with a low carbon dioxide content is heated in the first step. A carbon monoxide purification method characterized in that it is used in a regeneration step of an adsorption tower in treatment.
JP58205591A 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method Granted JPS6097020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205591A JPS6097020A (en) 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205591A JPS6097020A (en) 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Publications (2)

Publication Number Publication Date
JPS6097020A JPS6097020A (en) 1985-05-30
JPS6139089B2 true JPS6139089B2 (en) 1986-09-02

Family

ID=16509413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205591A Granted JPS6097020A (en) 1983-11-01 1983-11-01 Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method

Country Status (1)

Country Link
JP (1) JPS6097020A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3528908A1 (en) * 1985-08-12 1987-02-19 Linde Ag PRESSURE EXCHANGE ADDING METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Also Published As

Publication number Publication date
JPS6097020A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
KR960004606B1 (en) Process for producing high purity oxygen gas from air
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
JP2634138B2 (en) Separation method of gas components by vacuum swing adsorption method
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
JPS6137968B2 (en)
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
EP0349655A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
US5620501A (en) Recovery of trace gases from gas streams
AU649567B2 (en) Recovery of flammable materials from gas streams
JPS63278520A (en) Improved adsorptive refining method
JPS6297637A (en) Method and apparatus for oxidizing carbonaceous material
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JPS6137970B2 (en)
JP4070399B2 (en) Helium gas purification method
JPH01176416A (en) Purifying method for combustion exhaust gas
JPS6139089B2 (en)
JPS6139090B2 (en)
JPS621766B2 (en)
JPS59227701A (en) Method for selective concentration and separative purification of hydrogen gas
JPS621767B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPH0555171B2 (en)
JPS62117612A (en) Regenerating method for adsorption tower
JPH0112529B2 (en)