JPS59227701A - Method for selective concentration and separative purification of hydrogen gas - Google Patents
Method for selective concentration and separative purification of hydrogen gasInfo
- Publication number
- JPS59227701A JPS59227701A JP58103418A JP10341883A JPS59227701A JP S59227701 A JPS59227701 A JP S59227701A JP 58103418 A JP58103418 A JP 58103418A JP 10341883 A JP10341883 A JP 10341883A JP S59227701 A JPS59227701 A JP S59227701A
- Authority
- JP
- Japan
- Prior art keywords
- bed
- adsorption
- gas
- hydrogen
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は吸着法を利用する水素ガスの選択的濃縮および
分離精製法に関するものである。さらに詳しくは本発明
は水素ガスを含む混合気体を所謂圧力サイクル方式(以
下PSAと呼称する)で処理することにより、高純度水
素を得る経済的な方法を提供するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for selectively concentrating and separating and purifying hydrogen gas using an adsorption method. More specifically, the present invention provides an economical method for obtaining high purity hydrogen by treating a gas mixture containing hydrogen gas using a so-called pressure cycle method (hereinafter referred to as PSA).
(ロ)従来技術
水素を含む気体源は多くの工業的分野で広汎に存在して
おり、これを原料ガスとして水素を濃縮したり、また分
離〜精製することはエネルギー回収の工業的見地より見
ても意義深いものである。(b) Prior art Gas sources containing hydrogen are widely available in many industrial fields, and from the industrial standpoint of energy recovery, it is difficult to use them as a raw material gas to concentrate hydrogen, or to separate and purify it. It is also very meaningful.
さて水素源となる原料ガスは廃ガスをはじめとして多く
存在するが、それの組成は複雑である。水素原料ガス中
には種々の炭化水素系のCI4.C2Ht、 、 C
3He 、 C2H4、C2+12等の気体や、また
Co、 Co 2 、SO2、N2 、 NH3,
t■20等の無機系の気体が含まれる場合がかなり多く
存在している。水素源として有用な原料ガス源の組成は
、はなはな複雑であり、これを用いて吸着法により水素
ガスの精製や濃縮を経済的に実施するためには、有効な
吸着剤の選定とこれを用いての効率の高い水素の精製や
濃縮のプロセスの確立が技術的にも重要である。There are many raw material gases that can be used as hydrogen sources, including waste gas, but their compositions are complex. The hydrogen raw material gas contains various hydrocarbons such as CI4. C2Ht, , C
Gases such as 3He, C2H4, C2+12, Co, Co2, SO2, N2, NH3,
In many cases, inorganic gases such as t20 are included. The composition of a raw material gas source useful as a hydrogen source is extremely complex, and in order to economically purify and concentrate hydrogen gas by adsorption, it is necessary to select an effective adsorbent and use it. It is also technologically important to establish highly efficient hydrogen purification and concentration processes.
(ハ)目的
本発明は高純度の水素ガスを効率よく得ることができる
水素ガスの選択的濃縮および分離精製法を提供すること
を主たる目的としている。(c) Objective The main object of the present invention is to provide a method for selectively concentrating and separating and purifying hydrogen gas, which can efficiently obtain high-purity hydrogen gas.
(ニ)構成
本発明にかがる水素ガスの選択的濃縮または分離精製法
は、
水素を含む混合ガス中の水素を吸着法により選択的に濃
縮または分離、精製するに際して、該混合ガスの少なく
とも一成分に対して選択吸着性を有する、主としてゼオ
ライト(Z)−−活性U (A)の複合体の焼成物がら
なり、それのZ/Aの重量比が0.25〜8.0の範囲
内にある活性化された吸着物質を充填した吸着床を加圧
下に保持した状態で該混合ガスを通ずることにより、不
純成分を選択的に吸着除去して水素ガスを濃縮〜精製し
て製品ガスとして取り出す第1の吸着工程、第1工程終
了後の加圧下の状態の吸着床と水素濃縮系を構成してい
る製品水素ガスによる加圧工程を終了した吸着床とを連
結して床間圧力の平均化を実施して、前者より並流方向
に放出される水素富化部を後者に並流方向に回収して同
法の加圧用に使用する平均化工程、所謂均圧の第2工程
、第2工程終了後の吸着床を向流方向に減圧して大気圧
付近に保持して床内の残留ガスを放出する第3の減圧工
程、
さらに床内を向流方向に低真空に排気して少なくとも2
00トール(torr)以下に保持する第4の排気工程
、
同工程を終了した吸着床に対して少なくとも2゜Oトー
ル(torr)以下の排気と&す品水素ガスによる洗浄
(パージ)の併用工程を向流方向に実施する第5の工程
、
同工程を終了した床に対して製品水素ガスによる向流方
向の加圧を実施する第6の製品水素ガス加圧工程、
同工程終了後の床と前述の吸着工程終了後の加圧下の吸
着床とを連結して床間圧力の平均化を実施して後者の床
より亜流方向に放出される水素ガス冨化部を前者の床の
加圧用ガスとして並流方向に使用する所謂第7の床間圧
力の平均化工程、並びに第7エ程終了後の吸着床に対し
て水素を含む原料ガスを並流方向に導入して所定の吸着
圧まで加圧する第8の原料ガスの加圧工程の8工程より
なるサイクルを実施することを特徴としている。(D) Structure The method for selectively concentrating or separating or purifying hydrogen gas according to the present invention includes at least one step in selectively concentrating, separating, or purifying hydrogen in a mixed gas containing hydrogen by an adsorption method. It mainly consists of a fired product of a composite of zeolite (Z)--active U (A), which has selective adsorption properties for one component, and the weight ratio of Z/A is in the range of 0.25 to 8.0. By passing the mixed gas under pressure through an adsorption bed filled with an activated adsorption material in the interior, impurity components are selectively adsorbed and removed, and hydrogen gas is concentrated and purified to produce product gas. In the first adsorption step, the adsorption bed under pressure after the end of the first step is connected to the adsorption bed that has completed the pressurization step with the product hydrogen gas that constitutes the hydrogen concentration system, and the inter-bed pressure is The second step is the so-called pressure equalization step, in which the hydrogen-enriched part released in the cocurrent direction from the former is collected in the cocurrent direction to the latter and used for pressurization in the same method. , a third depressurization step in which the adsorption bed after the second step is depressurized in the countercurrent direction and maintained near atmospheric pressure to release residual gas in the bed, and the bed is further evacuated in the countercurrent direction to a low vacuum. and at least 2
4th evacuation step to maintain the temperature at 0.00 Torr or less; a combined step of exhausting the adsorption bed that has completed the same step at a pressure of at least 2.0 Torr or less and cleaning (purging) with hydrogen gas; A fifth step of pressurizing the product hydrogen gas in a countercurrent direction with the product hydrogen gas on the bed after completing the step; a sixth step of pressurizing the bed after the step in the countercurrent direction; The pressure between the beds is averaged by connecting the adsorption bed under pressure after the completion of the adsorption process described above, and the hydrogen gas enriched part released from the latter bed in the substream direction is used to pressurize the former bed. The so-called seventh inter-bed pressure averaging step is used as a gas in the co-current direction, and after the completion of the seventh step, a raw material gas containing hydrogen is introduced in the co-current direction to the adsorption bed to maintain a predetermined adsorption pressure. The present invention is characterized in that a cycle consisting of eight steps is carried out, including an eighth step of pressurizing the raw material gas.
具体的にこの方法を実施する場合は水素の濃縮系を構成
しているゼオライト(Z)−活性炭(A)の複合体(Z
/A=0.25〜8.0)よりなる各床に対して本発明
のサイクルを構成する各工程を好ましい条件下で順次実
施すればよい。Specifically, when carrying out this method, the zeolite (Z)-activated carbon (A) complex (Z
/A=0.25 to 8.0)), each step constituting the cycle of the present invention may be sequentially carried out under preferable conditions.
本発明のサイクル構成は下記の如く要約される。The cycle configuration of the present invention is summarized as follows.
「吸着工程−均圧放出工程(並流方向)−減圧工程(向
流方向)−排気工程(向流方向)−排気・パージ工程(
向流方向)−製品水素ガス加圧工程(向流方向)−均圧
加圧工程(並流方向)−原料水素ガス加圧工程(並流方
向)」
但し、上記のサイクル構成をしている各工程の括弧内に
示した気体の床内の流れの方向は原料水素ガスの吸着工
程における床内の流れの方向を基準にしている。さらに
均圧は既述の如く床間圧力の平均化の操作であって、均
圧放出は均圧操作実施時のガスの放出を、さらに均圧加
圧は均圧操作時に放出されるガスによる加圧を表してい
る。"Adsorption process - Pressure equalization release process (co-current direction) - Depressurization process (counter-current direction) - Exhaust process (counter-current direction) - Exhaust/purge process (
Countercurrent direction) - Product hydrogen gas pressurization process (countercurrent direction) - Equal pressure pressurization process (cocurrent direction) - Raw material hydrogen gas pressurization process (cocurrent direction)" However, if the above cycle configuration is used. The direction of gas flow within the bed shown in parentheses for each step is based on the direction of flow within the bed during the adsorption step of raw material hydrogen gas. Furthermore, as mentioned above, pressure equalization is an operation to average the inter-bed pressure, and pressure equalization release is the release of gas during pressure equalization operation, and pressure equalization is the operation of the gas released during pressure equalization operation. It represents pressurization.
(ホ)実施例
本発明の方法に従って連続的に効率よく少なくとも99
.4%以上に水素をえる目的に対しては既述の8工程よ
りなるサイクルを水素濃縮系を構成している各吸着床に
好ましい条件下で実施すればよい。第1吸着工程は再生
済みの吸着床を所定の吸着圧に保持して、原料水素ガス
中の不純成分を選択的に吸着除去して少なくとも99.
4%以上、通常の場合99.9%以上の製品水素ガスを
濃縮・精製して水素濃縮系外に製品ガスとして取り出す
工程である。本吸着工程の吸着圧は少なくとも3 kg
/ cJ・G以上に保持することが好ましい。吸着圧
をより大きくすることにより、粗水素ガスの処理容量は
増大し単位時間当たりの製品水素量も多くなる利点があ
るが、反面PSAの高圧運転はそれの低圧運転に比較し
て動力消費を増大する傾向になる。(E) Examples Continuously and efficiently according to the method of the present invention, at least 99%
.. For the purpose of obtaining 4% or more hydrogen, the cycle consisting of the eight steps described above may be carried out under conditions suitable for each adsorption bed constituting the hydrogen concentration system. In the first adsorption step, the regenerated adsorption bed is maintained at a predetermined adsorption pressure, and impurity components in the raw hydrogen gas are selectively adsorbed and removed to at least 99.9%.
This is a process of concentrating and refining product hydrogen gas of 4% or more, usually 99.9% or more, and taking it out of the hydrogen concentration system as product gas. The adsorption pressure in the main adsorption step is at least 3 kg.
It is preferable to maintain it at or above /cJ・G. Increasing the adsorption pressure has the advantage of increasing the processing capacity of crude hydrogen gas and increasing the amount of hydrogen product per unit time, but on the other hand, the high pressure operation of PSA requires less power consumption than its low pressure operation. It tends to increase.
粗水素ガス源として加圧状態のガスの使用が可能であれ
ば、この点は問題にならない。If pressurized gas can be used as the crude hydrogen gas source, this will not be a problem.
さて、前述の吸着工程において、加圧下で水素混合ガス
を処理して一定純度の水素ガスを製品水素ガスとして取
り出した後の吸着床内には、原料ガスより水素純度に冨
んだ部分の残留ガスがかなりの量存在しているので、こ
の水素富化部を池床へ回収して収率を上昇させる必要が
ある。このために上記の吸着工程を終了した床と水素濃
縮系を構成している床であって、既に製品水素ガスによ
る加圧工程を終えた床とを互いに連結して、前者の床よ
り並流方向に放出される気体成分を後者の床の加圧用ガ
スとして並流方向に回収する操作が実施される。例えば
水素を約50%含有する粗水素ガスを原料として本発明
のサイクル構成で吸着圧を4. kg / ca・G付
近に保持して、正常状態で運転して製品水素ガスとして
99.9%以上の水素を収率80%で取り出しているP
SA系では、前述の均圧工程(第2工程)終了時の平衡
圧は通常1.6〜2.0kg/c艷・G付近に存在する
。Now, in the adsorption process mentioned above, after the hydrogen mixed gas is processed under pressure and hydrogen gas of a certain purity is extracted as product hydrogen gas, a portion with higher hydrogen purity than the raw material gas remains in the adsorption bed. Since there is a significant amount of gas present, it is necessary to recover this hydrogen-enriched portion to the pond bed to increase the yield. For this purpose, the bed that has completed the above adsorption process and the bed that constitutes the hydrogen concentrating system and that has already completed the pressurization process with product hydrogen gas are connected to each other, and a co-current flow is started from the former bed. An operation is carried out in which the gaseous components released in the direction are recovered in the co-current direction as gas for pressurizing the latter bed. For example, with the cycle configuration of the present invention using crude hydrogen gas containing about 50% hydrogen as a raw material, the adsorption pressure is set to 4. kg/ca・G and operates under normal conditions to extract more than 99.9% of hydrogen as product hydrogen gas with a yield of 80%.
In the SA system, the equilibrium pressure at the end of the above-mentioned pressure equalization step (second step) is usually around 1.6 to 2.0 kg/c/g.
次に、上記の均圧放出の処理を終えた床は、それの再生
のための第3の向流方向の減圧工程に入る。本工程は排
気工程へ入る前の予備的段階であり、この工程では単に
弁を開放することにより床内圧力より機械的に減圧して
大気圧付近に床内を保つ単純な操作を機械的に実施して
いる。この工程で放出される気体成分は水素濃縮系に回
収されることなしに系外へ放出される。引続き真空ポン
プを用いて床内を向流方向に排気する第4の排気工程を
実施する。この場合は床の予備的な再生を実施するので
床内の真空度は必ずしも高真空を必要とせず、動力の経
済性を考慮して本方式では少なくとも200 torr
以下であればよくミ最も好ましい範囲は150 tor
r以下である。上記の工程を終了後床内は向流方向の排
気とパージを併用した再生法、所謂排気・パージの第5
工程が行われる。The bed, which has undergone the above-mentioned pressure equalization discharge treatment, then enters a third countercurrent depressurization step for its regeneration. This process is a preliminary step before entering the exhaust process, and in this process, the pressure in the bed is mechanically reduced by simply opening the valve to maintain the pressure in the bed near atmospheric pressure. It is being implemented. The gaseous components released in this step are released outside the hydrogen concentrating system without being recovered. Subsequently, a fourth evacuation step is performed in which the inside of the bed is evacuated in a countercurrent direction using a vacuum pump. In this case, preliminary regeneration of the bed is carried out, so the degree of vacuum in the bed does not necessarily need to be high, and in consideration of the economy of power, this method uses at least 200 torr.
The most preferable range is 150 torr.
r or less. After completing the above steps, the inside of the bed is regenerated using a combination of countercurrent exhaust and purge, the so-called fifth phase of exhaust and purge.
The process is carried out.
この場合、パージに使用される水素ガス量は床の排気の
程度により当然異なってくる。例えば本発明の方式で製
品水素ガスの純度を99.9%とし、水素収率を少なく
とも75%以上に保つためには上記の工程の排気を10
0 torr付近で実施した場合、これと併用するパー
ジの水素量は製品水素ガス量の30%以下の使用が好ま
しく、7〜25%の範囲の使用は最も望ましいパージ量
である。第5の排気・パージ工程を上述の如〈実施する
ことにより床の再生は終了する。In this case, the amount of hydrogen gas used for purging will naturally vary depending on the degree of bed evacuation. For example, in order to achieve a purity of product hydrogen gas of 99.9% using the method of the present invention and to maintain a hydrogen yield of at least 75%, the exhaust gas in the above process must be reduced to 10%.
When carried out at around 0 torr, the amount of hydrogen in the purge used in conjunction with this is preferably 30% or less of the amount of product hydrogen gas, and the most desirable purge amount is in the range of 7 to 25%. By carrying out the fifth exhaust/purge step as described above, the bed regeneration is completed.
次に、第6の製品水素ガス加圧工程では製品水素ガスの
一部を用いて、これを向流方向に床内に導入して加圧が
行われる。かかる操作を実施することにより床内に残留
している若干の不純成分はより床の入り口付近に移動し
て、これの吸着帯を形成するので不純成分の不規則的な
拡散を防止する効果がある。引続き前述の均圧放出の第
2工程で床内より並流方向に放出される水素富化部の気
体を利用して、床を並流方向に加圧する第7の均圧加圧
工程が実施され床はさらに加圧状態になる。Next, in the sixth product hydrogen gas pressurization step, a part of the product hydrogen gas is introduced into the bed in a countercurrent direction to perform pressurization. By performing this operation, some impurity components remaining in the bed move closer to the entrance of the bed and form an adsorption zone, which is effective in preventing irregular diffusion of impurity components. be. Subsequently, a seventh equalization pressurization step is carried out in which the bed is pressurized in the cocurrent direction using the gas in the hydrogen enrichment section released in the cocurrent direction from within the bed in the second step of pressure equalization release described above. The floor becomes even more pressurized.
上記の第7エ程を終了した床に対しては第8の原料水素
ガス加圧工程を実施する。即ち、原料水素ガスを並流方
向に導入して床内は最終的に所定の吸着圧に保持される
ようになっている。The eighth raw material hydrogen gas pressurization step is performed on the bed that has completed the seventh step. That is, the raw material hydrogen gas is introduced in a parallel flow direction so that the inside of the bed is ultimately maintained at a predetermined adsorption pressure.
上述の第7及び第8の工程では製品水素ガスで加圧状態
に保持されている床に対して水素純度の高い順序でガス
による並流方向の加圧が行われるので不純成分の吸着帯
の乱れは極力防止されるようになっている。In the seventh and eighth steps described above, the bed, which is kept under pressure with the product hydrogen gas, is pressurized in the cocurrent direction with gases in the order of hydrogen purity, so that the adsorption zone of impurity components is Disturbances are prevented as much as possible.
第1図は、ゼオライト−活性炭の複合体を水素の精製〜
濃縮剤として使用し、これを用いて8工程からなる本発
明のPSA方式で水素の精製〜濃縮を完全自動方式で具
体的に実施する一例として4分切り替えの5塔構成の水
素濃縮系の配置図を示している。また、関連の工程を第
1表に示した。Figure 1 shows the zeolite-activated carbon complex used for hydrogen purification.
As an example of using this as a concentrator and specifically carrying out purification and concentration of hydrogen in a fully automatic manner using the PSA method of the present invention which consists of 8 steps, the arrangement of a hydrogen concentration system with a 5-column configuration with 4-minute switching is shown. The figure shows. Further, related steps are shown in Table 1.
吸着塔46について以下に工程の説明を行うと、時間0
〜240秒の間バルブ1とバルブ2が開き原料ガス配管
53を通して粗水素ガスが加圧状態で吸着塔46に導入
され、製品水素ガス配管55を通して製品ガスが取り出
される。The process for the adsorption tower 46 will be explained below.
Valve 1 and valve 2 are opened for ~240 seconds, crude hydrogen gas is introduced into the adsorption tower 46 under pressure through raw material gas piping 53, and product gas is taken out through product hydrogen gas piping 55.
時間240〜270秒の間、バルブ3が開き吸着塔46
と水素加圧が終了した吸着塔48が均圧され、水素富化
ガスが吸着塔48に回収される。During the time period 240 to 270 seconds, the valve 3 opens and the adsorption tower 46
After hydrogen pressurization, the adsorption tower 48 is pressure-equalized, and the hydrogen-enriched gas is recovered into the adsorption tower 48.
時間270〜330秒の間、バルブ4が開き吸着塔46
は向流方向に大気圧まで減圧される。Between 270 and 330 seconds, valve 4 opens and adsorption tower 46
is depressurized countercurrently to atmospheric pressure.
時間330〜570秒の間バルブ5が開き吸着塔46は
向流方向に所定圧まで真空ポンプ51を用いて排気され
る。The valve 5 is opened for a time period of 330 to 570 seconds, and the adsorption tower 46 is evacuated in the countercurrent direction to a predetermined pressure using the vacuum pump 51.
時間570〜810秒の間、バルブ6とバルブ7が開き
、吸着塔46は真空ポンプ52を用いて所定圧を保持し
たままで、水素製品ガスの一部で向流方向に洗浄される
。During a period of time 570 to 810 seconds, valves 6 and 7 are opened, and the adsorption column 46 is flushed countercurrently with a portion of the hydrogen product gas while maintaining a predetermined pressure using the vacuum pump 52.
時間810〜960秒の間、バルブ8が開き吸着塔46
は製品水素ガスの一部を用いて所定圧まで加圧される。During the time period 810 to 960 seconds, the valve 8 is opened and the adsorption tower 46
is pressurized to a predetermined pressure using a portion of the product hydrogen gas.
時間960〜990秒の間、バルブ30が開き、吸着塔
46は吸着が終了した塔49と均圧化され、水素富化ガ
スを回収する。During a time period of 960 to 990 seconds, the valve 30 is opened, the pressure of the adsorption tower 46 is equalized with the tower 49 where adsorption has been completed, and hydrogen-enriched gas is recovered.
時間990〜1200秒の間、バルブ9が開き、吸着塔
46は吸着圧まで原料ガスで加圧される。During the time period of 990 to 1200 seconds, the valve 9 is opened and the adsorption tower 46 is pressurized with the raw material gas to the adsorption pressure.
以上の8工程を第1表に示す。タイムシーケンスで5塔
工程をずらしながら並行して行っている。The above eight steps are shown in Table 1. The five tower processes are carried out in parallel while being staggered in a time sequence.
次に、本発明の具体的実施例を説明するが、本発明はそ
の要旨を越えぬ限り本実施例に限定されるものではない
。Next, specific examples of the present invention will be described, but the present invention is not limited to these examples unless the gist thereof is exceeded.
まず、本発明の水素ガスの精製・濃縮に使用した吸着剤
の製造方法について説明する。First, a method for producing an adsorbent used for purifying and concentrating hydrogen gas according to the present invention will be explained.
A−型合成ゼオライドの微粉末(1,08Na20
・八1203 ・2.02Si02 ・xH2O)乾
燥品をそれの無水物として5 kg採取し、これに活性
炭粉末(藤沢薬品:B−CW;平均粒子径100 pm
) 5 kgを加えてVミキサーで混合した。次に得
られた混合物に対して無機系の結合剤としてベントナイ
ト微粉末を20%(2kg)と有機系の結合剤としてメ
チルセルロースを2%[7,000〜10,000cp
s (2%水溶液:20℃)]とを加えて水の存在下
に湿式混和を3時間30分行った。A-type synthetic zeolide fine powder (1,08Na20
・81203 ・2.02Si02 ・xH2O) 5 kg of the dried product was collected as its anhydride, and activated carbon powder (Fujisawa Pharmaceutical: B-CW; average particle size 100 pm) was collected.
) 5 kg was added and mixed using a V-mixer. Next, to the obtained mixture, 20% (2 kg) of bentonite fine powder was added as an inorganic binder and 2% methyl cellulose was added as an organic binder [7,000 to 10,000 cp].
s (2% aqueous solution: 20° C.)] and wet mixing was performed for 3 hours and 30 minutes in the presence of water.
湿式混和時の含水率は44.3%であった。かがる方法
で得られた混和物を成型機により1/8〃ペレツトに成
型後、それの乾燥を100〜1]0”Cで行った。引続
きフラッシャ−を用いて乾燥ペレットの長さの調整を行
って一定の長さの分布に入るようにしてから、最終的に
チン素雰囲気中で470〜475℃に3時間30分焼成
されて本発明の水素濃縮に関する実施例に使用される1
/8”ペレットの焼成体が得られた。The moisture content during wet mixing was 44.3%. The mixture obtained by the darning method was molded into 1/8 pellets using a molding machine, and then dried at 100-1]0"C. Subsequently, a flasher was used to reduce the length of the dried pellets. After adjustment to obtain a certain length distribution, the sample was finally calcined at 470 to 475°C for 3 hours and 30 minutes in a tin atmosphere to be used in the hydrogen enrichment example of the present invention.
A fired body of /8" pellets was obtained.
これによりえられた水素精製〜濃縮用の1/8“ペレッ
ト(焼成済み)のゼオライト(Z)と活性炭(八)の重
量比は、Z /A−0,96であり、それの平均硬度は
7.l3kg/ベレットであった。The weight ratio of zeolite (Z) and activated carbon (8) of the 1/8" pellets (calcined) for hydrogen purification and concentration obtained in this way was Z/A-0.96, and its average hardness was It was 7.l3kg/bellet.
しかして、本実施例では主としてゼオライト(Z)と活
性炭(八)の複合体より構成される水素の精製・濃縮剤
(上述の製造例より得られた1/8 “ペレット吸着剤
Z /A −0,96)を使用して既述した本発明の8
工程よりなるPSA方式による水素の精製・濃縮が実施
された。Therefore, in this example, a hydrogen purification/concentration agent mainly composed of a composite of zeolite (Z) and activated carbon (8) (1/8" pellet adsorbent Z/A- 8 of the present invention already described using
Hydrogen purification and concentration was carried out using the PSA method, which consists of several steps.
第2図は本試験に使用した2塔構成の手動式の水素濃縮
試験装置の配置図である。FIG. 2 is a layout diagram of a manual hydrogen concentration test device with a two-column configuration used in this test.
1の吸着塔(内径42.6龍;長さ2,000龍)に対
しては上述の製造例より得られた水素精製剤l/8 “
ペレットが各基当たり1.47kg充填された。For the adsorption tower No. 1 (inner diameter: 42.6 mm; length: 2,000 mm), the hydrogen purifying agent l/8" obtained from the above production example was used.
Each group was loaded with 1.47 kg of pellets.
吸着塔の下部より過熱チッ素ガス(150°C)が導入
されて塔の上部よりの放出ガスの露点が一65°Cに達
するまで塔内は活性化された。Superheated nitrogen gas (150°C) was introduced from the bottom of the adsorption tower to activate the inside of the tower until the dew point of the gas released from the top of the tower reached 165°C.
本実施例に使用された原料水素ガス(Hz=54.5%
;CH4=19.3%i C2H6=19.2%1c
3H1]−5,8%; C4If to =1.2%
)は配管71を経て2塔構成の吸着塔61へ導入される
。62は製品水素ガス用流量計であり、63は減圧用の
流量計、64は湿式流量計、65は水素分析計、66は
真空ポンプ、67は連成計、さらに68は精密圧力計で
ある。Raw material hydrogen gas used in this example (Hz = 54.5%
;CH4=19.3%i C2H6=19.2%1c
3H1]-5,8%; C4If to =1.2%
) is introduced into an adsorption tower 61 having a two-column configuration through a pipe 71. 62 is a flow meter for product hydrogen gas, 63 is a flow meter for pressure reduction, 64 is a wet flow meter, 65 is a hydrogen analyzer, 66 is a vacuum pump, 67 is a compound meter, and 68 is a precision pressure gauge. .
本発明の水素ガス濃縮のプロセスで必要とする加圧用の
水素は69の水素ボンベに貯蔵されており、これは70
のチャージタイクを経て2塔構成の吸着塔へ導入される
ようになっている。72は真空ポンプよりの排ガスの放
出配管である。本実施例では前述の「吸着工程−均圧放
出工程(並流方向)−減圧工程(向流方向)−排気工程
(向流方向)−排気・パージ工程(向流方向)−製品水
素ガス加圧工程(向流方向)−均圧加圧工程(並流方向
)−原料水素ガス加圧工程(並流方向)」の8工程より
なるサイクルが順次実施された。The hydrogen for pressurization required in the hydrogen gas concentration process of the present invention is stored in 69 hydrogen cylinders, which is equivalent to 70
It is designed to be introduced into a two-column adsorption tower through a charge tank. Reference numeral 72 is a pipe for discharging exhaust gas from the vacuum pump. In this example, the above-mentioned "adsorption process - pressure equalization release process (cocurrent direction) - depressurization process (countercurrent direction) - exhaust process (countercurrent direction) - exhaust/purge process (countercurrent direction) - product hydrogen gas addition" A cycle consisting of 8 steps of "pressure step (countercurrent direction) - equal pressure pressurization step (cocurrent direction) - raw material hydrogen gas pressurization step (cocurrent direction)" was sequentially carried out.
実施例の細部を第2表に示す。Details of the examples are shown in Table 2.
実施例1〜3は吸着塔の圧力を4 kg/ cA・Gに
保持し、且つ、排気工程ならびに排気・パージ工程の塔
内の真空度を何れも100 torrに保持した場合で
ある。この場合、均圧工程終了時の塔内の圧力は約1.
8 kg/cf・Gであった。また、水素ガスの加圧工
程の水素使用量は何れの例でも2.IN<!であった。Examples 1 to 3 are cases where the pressure of the adsorption tower was maintained at 4 kg/cA·G, and the degree of vacuum inside the tower was maintained at 100 torr in both the exhaust process and the exhaust/purge process. In this case, the pressure inside the column at the end of the pressure equalization step is about 1.
It was 8 kg/cf・G. In addition, the amount of hydrogen used in the hydrogen gas pressurization process is 2. IN<! Met.
上記8工程の一サイクル終了時の製品水素ガスの収率は
、実施例1では78.1%、実施例2では82.2%、
また実施例3では85.0%に達している。何れの実施
例でも表記した如く、水素ガス純度は99.8%に達し
ている。なお、本発明で使用した水素精製剤1 kg当
たりの製品水素ガス量は大であり、23〜25隊を示し
た。The yield of hydrogen gas product at the end of one cycle of the above eight steps was 78.1% in Example 1, 82.2% in Example 2,
Further, in Example 3, it reached 85.0%. As stated in all Examples, the hydrogen gas purity reached 99.8%. In addition, the amount of product hydrogen gas per 1 kg of the hydrogen purifying agent used in the present invention was large, showing 23 to 25 units.
かかる結果は上記の精製剤とPSAを絹み合わせた本発
明の水素精製〜濃縮法が高能率を発揮することを表して
いるに外ならない。These results clearly demonstrate that the hydrogen purification and concentration method of the present invention, which combines the above-mentioned purification agent and PSA, exhibits high efficiency.
次に実施例4〜5は吸着圧を4kg/cJ−Gに保持し
、且つ排気工程ならびに排気・、パージ工程の塔内の真
空度を何れも200 torrに設定した場合である。Next, Examples 4 and 5 are cases in which the adsorption pressure is maintained at 4 kg/cJ-G, and the degree of vacuum in the column is set at 200 torr in both the exhaust process and the exhaust/purge process.
関連の細部データは第2表に記載されている。上記の2
例の実施例では製品水素ガスの収率は74〜79%であ
り、また得られた水素ガス純度は何れも99.5%に達
している。The relevant detailed data are listed in Table 2. 2 above
In the Examples, the yield of the product hydrogen gas was 74 to 79%, and the purity of the obtained hydrogen gas reached 99.5% in all cases.
尚、上述の実施例では、水素ガスの選択的濃縮または分
離・精製に際しては主としてゼオライト(Z)−活性炭
(A)の複合体の焼成物がらなり、それのZ/A重量比
が0.25〜8.0の範囲内にある活性化された吸着物
質を充填した吸着床が使用されるとして説明したが、こ
の床の代わりに処理対象とする水素原料ガスの種類と組
成によっては、下記の床構成で合ってもよい。In the above-mentioned embodiment, the selective concentration or separation/purification of hydrogen gas mainly consists of a fired product of a zeolite (Z)-activated carbon (A) composite, whose Z/A weight ratio is 0.25. Although it has been explained that an adsorption bed filled with an activated adsorption material within the range of ~8.0 is used, the following may be used instead of this bed depending on the type and composition of the hydrogen raw material gas to be treated. May be matched with floor configuration.
即ち、上述のゼオライト−活性炭の複合体よりなる床を
主な床とし、これにシリカゲルまたはアルミナゲル、或
いはシリカゲル及びアルミナゲルを充填した床を側床と
して併用して本発明の方法を実施して99.9%以上の
水素ガスを得ることも可能である。この場合、主床構成
に使用するゼオライト−活性炭の複合吸着剤に対して側
床構成に使用する前記シリカゲル、アルミナゲル等の吸
着剤の使用量は30%以下が吸着床の効率を上げるため
にも適当である。That is, the method of the present invention is carried out using a bed made of the above-mentioned zeolite-activated carbon composite as the main bed, and a bed filled with silica gel, alumina gel, or silica gel and alumina gel as a side bed. It is also possible to obtain 99.9% or more hydrogen gas. In this case, in order to increase the efficiency of the adsorption bed, the amount of the adsorbent such as silica gel or alumina gel used in the side bed structure should be 30% or less of the zeolite-activated carbon composite adsorbent used in the main bed structure. is also appropriate.
(へ)効果
この発明にかかる水素ガスの選択的濃縮及び分離法によ
れば次のような効果を得ることができる。(f) Effects According to the method for selectively concentrating and separating hydrogen gas according to the present invention, the following effects can be obtained.
ta>粗水素混合ガス(Hz#50%)を処理して少な
くとも99.5%以上の水素を得ることは極めて容易で
あり、また、水素収率を上げることができる。ta> It is extremely easy to obtain at least 99.5% or more hydrogen by processing a crude hydrogen mixed gas (Hz #50%), and the hydrogen yield can be increased.
(b)使用するゼオライト−活性炭複合体よりなる吸着
剤単位重量あたりの精製水素ガスの収量を極めて高くす
ることができる(例えば、水素収量は19〜24Nil
l/kg吸着剤に達している)。(b) The yield of purified hydrogen gas per unit weight of the adsorbent made of the zeolite-activated carbon composite used can be extremely high (for example, the hydrogen yield is 19 to 24 Nil).
l/kg adsorbent).
(C1本発明ではゼオライト−活性炭の複合体を充填し
た吸着床をしようしているので、ゼオライトのみで構成
される吸着塔や、活性炭とゼオライトの2層で構成され
る吸着塔に比較して、塔内の熱伝導度が著しく改善され
、また、塔内の温度分布もより均一になる。それ故、本
発明で提案したPSAに基づく水素:a紬糸では極めて
安定した運転が完全自動で行える利点がある。(C1 Since the present invention uses an adsorption bed filled with a zeolite-activated carbon composite, compared to an adsorption tower composed only of zeolite or an adsorption tower composed of two layers of activated carbon and zeolite, Thermal conductivity within the column is significantly improved, and the temperature distribution within the column is also more uniform.Therefore, the hydrogen:a pongee yarn based on PSA proposed in the present invention has the advantage that extremely stable operation can be performed completely automatically. There is.
(d)本発明で使用する水素精製用吸着剤を構成する素
材の活性炭(A)の真密度は通常1.9〜2,2g /
c+J (見掛密度: 0.8〜1.0g/cJ)程度
であり、一方、天然または合成ゼオライl−(Z)の真
密度は通常2.0〜2.3g/cJ (見掛密度: 0
.8〜1.3g/cJ)程度であるので、両者の混合物
を用いて結合剤存在下に湿式混和を実施した後、成型、
乾燥、焼成することにより活性炭とゼオライトが均一に
分散した状態の好ましい複合体組成物が得られる。(d) The true density of activated carbon (A), which is the material constituting the hydrogen purification adsorbent used in the present invention, is usually 1.9 to 2.2 g /
c+J (apparent density: 0.8 to 1.0 g/cJ), while the true density of natural or synthetic zeolite l-(Z) is usually 2.0 to 2.3 g/cJ (apparent density: 0
.. 8 to 1.3 g/cJ), so after carrying out wet mixing using a mixture of both in the presence of a binder, molding,
By drying and firing, a preferred composite composition in which activated carbon and zeolite are uniformly dispersed can be obtained.
それ故、本発明の水素濃縮系で使用するゼオライト−活
性炭複合吸着剤の見掛は密度、機械的強度は大である。Therefore, the zeolite-activated carbon composite adsorbent used in the hydrogen concentrating system of the present invention has a high apparent density and mechanical strength.
またその発火点は、ゼオライトの含有に応じて上昇する
ので活性炭のみで吸着剤を構成した場合等と比較して使
用上の安全性が優れている。In addition, the ignition point increases with the content of zeolite, so it is safer to use than when the adsorbent is made of activated carbon alone.
fe)複合吸着剤を構成している活性炭−ゼオライドの
分散は均一に行われるで、この吸着剤より構成される吸
着床の熱伝導性は良好である。そのため、本発明によれ
ば、効率の高いPSA運転が可能である。fe) Since the activated carbon-zeolide constituting the composite adsorbent is uniformly dispersed, the adsorption bed made of this adsorbent has good thermal conductivity. Therefore, according to the present invention, highly efficient PSA operation is possible.
(f1本発明で使用する活性体−ゼオライド複合体より
構成される吸着床のガスの吸着、脱着は迅速に行われる
。また、それの再生は容易である。7疋って、本発明の
8工程よりなるサイクルの所要時間も短縮できるという
利点がある。換言すれば、本発明にかかる方法によれば
、水素の精製・濃縮効率も当然大きくするとかできる。(f1) The adsorption and desorption of gas in the adsorption bed composed of the active substance-zeolide complex used in the present invention is carried out rapidly. In addition, it is easy to regenerate it. There is an advantage that the time required for a cycle consisting of steps can also be shortened.In other words, according to the method according to the present invention, hydrogen purification and concentration efficiency can naturally be increased.
(g1本発明は活性炭−ゼオライド複合体よりなる吸着
床を用いるから、ゼオライトのみの床やゼオライトと活
性炭の2層構成床に比較しで、ガスの吸着〜脱着はより
迅速に且つ床全体を通じて均一に行えて床の効率を高く
なる利点がある。(g1) Since the present invention uses an adsorption bed made of an activated carbon-zeolide composite, gas adsorption to desorption is more rapid and uniform throughout the bed compared to a zeolite-only bed or a two-layer bed of zeolite and activated carbon. This has the advantage of increasing the efficiency of the floor.
従って、本発明に使用する吸着剤は前述のゼオライトの
みの床やゼオライトと活性炭の2M構成床に比較して、
水素を含有する混合気体より水素を分離、精製、または
濃縮する際に必要とするMTZ(マストランスファーシ
ン)の長さをより短縮する方向に作用する効果がある。Therefore, compared to the zeolite-only bed or the 2M bed of zeolite and activated carbon, the adsorbent used in the present invention has
This has the effect of further shortening the length of MTZ (mass transfer thinner) required when separating, purifying, or concentrating hydrogen from a hydrogen-containing mixed gas.
それ故、実際に水素混合ガスを精製、濃縮する際に前述
のゼオライトのみの床や、ゼオライトと活性炭との2N
構成の床で必要とする床の高さに比較して、本発明で使
用する前述の構成をとる吸着床ではそれをより、軽減で
きる利点がある。これはPSA方式で例えば、気体を処
理して精製する際の排気工程等で見られる床の抵抗をよ
り小さくすることが可能であり、電力消費を軽減する利
点がある。従って、この吸着床より水素濃縮系を構成さ
せて8工程よりなるPSA号イクイクルり返す本発明に
よれば、電力消費の少ない経済的な水素濃縮が可能であ
る。Therefore, when actually refining and concentrating hydrogen mixed gas, it is recommended to use the aforementioned zeolite-only bed or the 2N bed of zeolite and activated carbon.
The adsorption bed having the above-mentioned structure used in the present invention has the advantage of being able to further reduce the required height of the bed. This has the advantage of reducing the floor resistance, which is seen in the exhaust process during gas processing and purification, in the PSA system, for example, and reduces power consumption. Therefore, according to the present invention, where a hydrogen concentration system is constructed from this adsorption bed and the PSA No. 1 is repeatedly cycled through eight steps, economical hydrogen concentration with low power consumption is possible.
第1図は本発明の8工程からなるPSAで水素の精製・
濃縮を具体的に完全自動方式で実施する際の一例として
5塔構成の水素濃縮系の配置図、第2図は本発明の8工
程からなるPSAで水素の精製・濃縮を手動で具体的に
実施する際の2塔構成の装置の配置図を示している。
1〜45・・・弁、46〜50は吸着塔、51・・・真
空ポンプ、52・・・排気・パージ用−の真空ポンプ、
53〜57・・・配管、61・・・吸着塔、62・・・
製品ガス用の流量計、63・・・減圧用の流量計、64
・・・湿式流量計、65・・・水素分析計、66・・・
真空ポンプ、67・・・連成計、68・・・精密圧力計
、69・・・水素加圧用の水素ボンベ、70・・・水素
チャージタンク、71.72・・・配管。
特許出願人 日本電子材料株式会社
同 萩原善次
代理人 弁理士 大 西 孝 治Figure 1 shows the 8-step PSA of the present invention for hydrogen purification and
As an example of concretely carrying out concentration in a fully automated manner, the layout of a hydrogen concentration system with five columns is shown. A layout diagram of a two-column configuration device during implementation is shown. 1 to 45... valves, 46 to 50 adsorption towers, 51... vacuum pumps, 52... vacuum pumps for exhaust/purge,
53-57... Piping, 61... Adsorption tower, 62...
Flowmeter for product gas, 63...Flowmeter for pressure reduction, 64
...Wet flow meter, 65...Hydrogen analyzer, 66...
Vacuum pump, 67...Compound gauge, 68...Precision pressure gauge, 69...Hydrogen cylinder for pressurizing hydrogen, 70...Hydrogen charge tank, 71.72...Piping. Patent applicant: Japan Electronic Materials Co., Ltd. Agent: Zenji Hagiwara Patent attorney: Takaharu Ohnishi
Claims (2)
的に濃縮または分離精製するに際して、該混合ガスの少
なくとも一成分に対して選択吸着性を有する主としてゼ
オライト(Z)−活性炭(A)の複合体の焼成物からな
り、それのZ/A重量比が0.25〜8.0の範囲内に
ある活性化された吸着物質を充填した吸着床を加圧下に
保持した状態で該混合ガスを通ずることにより不純成分
を選択的に吸着除去して水素ガスを濃縮〜精製して製品
ガスとして取り出す第1の吸着工程、第1工程終了後の
加圧下の状態の吸着床と水素濃縮系を構成している製品
水素ガスによる加圧工程を終了した吸着床とを連結して
床間圧力の平均化を実施して、前者より並流方向に放出
される水素富化部を後者に並流方向に回収して、同法の
加圧用に使用する平均化工程、いわゆる均圧の第2工程
、 第2工程終了後の吸着床を向流方向に減圧して、大気圧
付近に保持して床内の残留ガスを放出する第3の減圧工
程、 さらに床内を向流方向に低真空に排気して少なくとも2
00トール(torr)以下に保持する第4の排気工程
、 第4の排気工程を終了した吸着床に対して少なくとも2
00トール(torr)以下の排気と製品水素ガスによ
る洗浄(パージ)の併用工程を向流方向に実施する第5
の工程、 第5の工程を終了した床に対して製品水素ガスによる向
流方向の加圧を実施する第6の製品水素ガス加圧工程、 第6エ程終了後の床と前述の吸着工程終了後の加圧下の
吸着床とを連結して床間圧力の平均化を実施して後者の
床より並流方向に放出される水素ガス冨化部を前者の床
の加圧用ガスとして並流方向に使用するいわゆる第7の
床間圧力の平均化工程、 ならびに第7エ程終了後の吸着床に対して水素を含む原
料ガスを並流方向に導入して所定の吸着圧まで加圧する
第8の原料ガスの加圧工程の8工程よりなるサイクルを
実施することを特徴とする水素ガスの選択的濃縮および
分離精製法。(1) When selectively concentrating or separating and purifying hydrogen in a mixed gas containing hydrogen by an adsorption method, mainly zeolite (Z)-activated carbon (A) that has selective adsorption properties for at least one component of the mixed gas The adsorption bed filled with an activated adsorption material consisting of a calcined composite of which Z/A weight ratio is within the range of 0.25 to 8.0 is mixed while maintaining the adsorption bed under pressure. The first adsorption step in which impurity components are selectively adsorbed and removed by passing the gas through, and the hydrogen gas is concentrated and purified to be taken out as a product gas, the adsorption bed under pressure after the first step and the hydrogen concentration system. The adsorption bed that has completed the pressurization process using the product hydrogen gas constituting the adsorption bed is connected to average the inter-bed pressure, and the hydrogen-enriched part released from the former in the cocurrent direction is parallel to the latter. In the second step of the so-called pressure equalization step, which is the averaging step used for pressurization in the same method, the adsorption bed after the second step is depressurized in the countercurrent direction and maintained near atmospheric pressure. a third depressurization step in which residual gas in the bed is released by
a fourth evacuation step to maintain the pressure below 0.00 torr; at least 2
A fifth step in which a combined step of exhausting at 00 Torr or less and cleaning (purging) with product hydrogen gas is carried out in the countercurrent direction.
a sixth product hydrogen gas pressurization step in which the bed that has completed the fifth step is pressurized in a countercurrent direction with product hydrogen gas; a bed that has completed the sixth step and the aforementioned adsorption step; After completion of the adsorption process, the adsorption bed under pressure is connected to average the inter-bed pressure, and the hydrogen gas enriched part released from the latter bed in the cocurrent direction is used as the pressurizing gas for the former bed. The so-called seventh inter-bed pressure averaging step used in the 7th step, and the 7th step in which a raw material gas containing hydrogen is introduced into the adsorption bed in parallel flow direction and pressurized to a predetermined adsorption pressure. 1. A method for selectively concentrating and separating and purifying hydrogen gas, characterized by carrying out a cycle consisting of 8 steps of pressurizing raw material gas.
/cIII−G以上に保持し、第4の排気工程を少な(
とも150トール(torr)以下に床内を保持するま
で実施し、さらに第5工程の排気・洗浄(パージ)の併
用工程を少なくとも150トール(torr)以下の真
空度に床内が保持されるようにしたことを特徴とする特
許請求の範囲第1項記載の水素ガスの選択的濃縮および
分離精製法。(2) The adsorption pressure in the first adsorption step is at least 3 kg.
/cIII-G or higher, and the fourth evacuation step was
Both are carried out until the inside of the bed is maintained at a vacuum level of 150 torr or less, and further, the combined process of exhausting and cleaning (purging) in the fifth step is carried out so that the inside of the bed is maintained at a vacuum level of at least 150 torr (torr) or less. A method for selectively concentrating and separating and purifying hydrogen gas according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103418A JPS59227701A (en) | 1983-06-09 | 1983-06-09 | Method for selective concentration and separative purification of hydrogen gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103418A JPS59227701A (en) | 1983-06-09 | 1983-06-09 | Method for selective concentration and separative purification of hydrogen gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59227701A true JPS59227701A (en) | 1984-12-21 |
JPS6214481B2 JPS6214481B2 (en) | 1987-04-02 |
Family
ID=14353494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58103418A Granted JPS59227701A (en) | 1983-06-09 | 1983-06-09 | Method for selective concentration and separative purification of hydrogen gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59227701A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62500572A (en) * | 1983-05-13 | 1987-03-12 | ユニオン カ−バイド コ−ポレ−シヨン | Method for producing activated carbon adsorbent pellets with high heat capacity and pelletized activated carbon adsorbent with high heat capacity |
CN1105598C (en) * | 1996-12-27 | 2003-04-16 | 韩国化学研究所 | Manufacturing method of granulated complex molecular sieve composition having multi-functions |
JP2005289731A (en) * | 2004-03-31 | 2005-10-20 | Osaka Gas Co Ltd | Method and apparatus for producing hydrogen |
WO2005112669A3 (en) * | 2004-04-29 | 2006-06-15 | Brown & Williamson Holdings | Removal of nitrogen containing compounds from tobacco |
JP2010143778A (en) * | 2008-12-17 | 2010-07-01 | Kobe Steel Ltd | High purity hydrogen production apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104241262B (en) | 2013-06-14 | 2020-11-06 | 惠州科锐半导体照明有限公司 | Light emitting device and display device |
-
1983
- 1983-06-09 JP JP58103418A patent/JPS59227701A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62500572A (en) * | 1983-05-13 | 1987-03-12 | ユニオン カ−バイド コ−ポレ−シヨン | Method for producing activated carbon adsorbent pellets with high heat capacity and pelletized activated carbon adsorbent with high heat capacity |
CN1105598C (en) * | 1996-12-27 | 2003-04-16 | 韩国化学研究所 | Manufacturing method of granulated complex molecular sieve composition having multi-functions |
JP2005289731A (en) * | 2004-03-31 | 2005-10-20 | Osaka Gas Co Ltd | Method and apparatus for producing hydrogen |
WO2005112669A3 (en) * | 2004-04-29 | 2006-06-15 | Brown & Williamson Holdings | Removal of nitrogen containing compounds from tobacco |
JP2010143778A (en) * | 2008-12-17 | 2010-07-01 | Kobe Steel Ltd | High purity hydrogen production apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6214481B2 (en) | 1987-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4915711A (en) | Adsorptive process for producing two gas streams from a gas mixture | |
JP2744596B2 (en) | Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture | |
US5096470A (en) | Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification | |
KR100254295B1 (en) | Pressure swing adsorption process with a single adsorbent bed | |
US3594983A (en) | Gas-treating process and system | |
KR960004606B1 (en) | Process for producing high purity oxygen gas from air | |
TWI521056B (en) | Methane recovery method and methane recovery unit | |
US4381189A (en) | Pressure swing adsorption process and system | |
JPS6137968B2 (en) | ||
KR20070118980A (en) | Pressure swing adsorption process with improved recovery of high-purity product | |
JPH01297119A (en) | Improved pressure swing adsorbing method and apparatus for gas separation | |
JPS6247050B2 (en) | ||
GB2155805A (en) | Gas separation process and apparatus | |
EP0398339A2 (en) | Adsorptive process for producing two gas streams from a gas mixture | |
JPS59227701A (en) | Method for selective concentration and separative purification of hydrogen gas | |
JPS6137970B2 (en) | ||
JPH02198610A (en) | Pressure fluctuation type adsorption method | |
KR102018322B1 (en) | Adsorber system for adsorption process and method of separating mixture gas using its adsorption process | |
JP2024524092A (en) | Ammonia decomposition for green hydrogen | |
JPS621767B2 (en) | ||
KR20220078121A (en) | Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen | |
JPH01176416A (en) | Purifying method for combustion exhaust gas | |
JPS6259041B2 (en) | ||
JPS621766B2 (en) | ||
JPS62117612A (en) | Regenerating method for adsorption tower |