JPS625645B2 - - Google Patents

Info

Publication number
JPS625645B2
JPS625645B2 JP58187478A JP18747883A JPS625645B2 JP S625645 B2 JPS625645 B2 JP S625645B2 JP 58187478 A JP58187478 A JP 58187478A JP 18747883 A JP18747883 A JP 18747883A JP S625645 B2 JPS625645 B2 JP S625645B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
gas
pressure
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58187478A
Other languages
Japanese (ja)
Other versions
JPS6078611A (en
Inventor
Toshikazu Sakuratani
Tetsuya Fujii
Shigeo Matsui
Shuichi Kawagoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58187478A priority Critical patent/JPS6078611A/en
Publication of JPS6078611A publication Critical patent/JPS6078611A/en
Publication of JPS625645B2 publication Critical patent/JPS625645B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 本発明は、圧力変動式吸着分離方法(PSA法)
によつて、転炉又は高炉等の排ガス、主として二
酸化炭素、一酸化炭素、窒素及び水素ガスを含む
混合ガス中の一酸化炭素濃度を上昇させ、または
一酸化炭素を分離精製する目的で、該混合ガス成
分に対して選択吸着性を有する吸着成分、例えば
ゼオライト系吸着剤を充填した吸着塔を用いて効
率よく上記混合ガス中の一酸化炭素の分離又は精
製する際の一酸化炭素収率を上昇させる方法に関
する。
[Detailed description of the invention] The present invention is a pressure fluctuation adsorption separation method (PSA method).
In order to increase the concentration of carbon monoxide in the exhaust gas of converter or blast furnace, etc., a mixed gas mainly containing carbon dioxide, carbon monoxide, nitrogen and hydrogen gas, or to separate and purify carbon monoxide, Carbon monoxide yield when efficiently separating or purifying carbon monoxide in the mixed gas using an adsorption tower filled with an adsorbent that has selective adsorption properties for mixed gas components, such as a zeolite adsorbent. Regarding how to raise.

本発明によれば転炉又は高炉等の排ガスを出発
原料として使用して、技術的にみても容易に一酸
化炭素濃度の上昇が可能でありかつ、従来のPSA
法による一酸化炭素精製法に比べて一酸化炭素収
率は著しく高くなる特徴があるので極めて経済的
な方法と云える。
According to the present invention, it is possible to easily increase the carbon monoxide concentration from a technical point of view by using exhaust gas from a converter or blast furnace as a starting material, and it is possible to increase the carbon monoxide concentration easily compared to conventional PSA.
This method can be said to be extremely economical since the carbon monoxide yield is significantly higher than that of the carbon monoxide purification method using the carbon monoxide purification method.

周知の如く、一酸化炭素は一般に天然ガス、プ
ロパンまたは製油所ガスを活性炭を通して脱硫し
たのち、水蒸気およびCO2と混合し、ソーダーで
洗浄・脱水の工程をへて深冷分離塔法により工業
的規模で現在製造されている。
As is well known, carbon monoxide is generally produced by desulfurizing natural gas, propane or refinery gas through activated carbon, mixing it with steam and CO 2 , washing it with soda, dehydrating it, and then industrially using the cryogenic separation column method. Currently being manufactured on a scale.

しかしながら、この方法は量産を目的とした高
純度ガスの製造には最適と考えられるが、本方式
には、低温と高圧を必要とするために液化設備が
高価になる欠点がある。しかるに吸着法による一
酸化炭素の分離・精製法は使用する装置自身の経
剤性や、吸着塔内に充填する吸着剤の再生可能な
点よりみて好ましい方法の一つと考えられる。本
発明方法に従つて一酸化炭素、含有の製鉄所排ガ
スの精製を行えば、従来法の低温分離法の如き、
低温や高圧操作を必要とせず、また吸着剤の再生
処理も簡単に行うことが出来、非常に低嫌に経済
的に行うことができ、さらに装置や設備は複雑な
ものを要せず、コントロールが容易であり、技術
的、経済的に非常に有利に一酸化炭素ガスを得る
ことが容易で、而も高い収率が可能なため、非常
に大きな利点となる等、今迄の方法に比較して多
くの利点がある。混合ガス中の特定成分の濃縮や
分離精製を目的として各種吸着剤を使用する吸着
法が広く行われてきた。特にモレキユラーシーブ
(M・S)を使用する分子節作用を利用して、分
子の大きさの異なる気体状混合物を選択吸着させ
ることにより、特定成分を吸着除去或いは吸着さ
せたのち脱着回収をはかるガス分離またはガス精
製法は工業的に広汎に利用されている。
However, although this method is considered optimal for producing high-purity gas for mass production, this method has the disadvantage that liquefaction equipment is expensive because it requires low temperature and high pressure. However, the method of separating and purifying carbon monoxide by adsorption is considered to be one of the preferable methods in view of the durability of the equipment itself and the possibility of regenerating the adsorbent packed in the adsorption column. If carbon monoxide-containing steelwork exhaust gas is purified according to the method of the present invention,
It does not require low-temperature or high-pressure operation, and adsorbent regeneration processing can be easily performed, making it very economical and requiring no complicated equipment or equipment. It is easy to obtain carbon monoxide gas, which is technically and economically very advantageous, and high yields are possible. It has many advantages. Adsorption methods using various adsorbents have been widely used for the purpose of concentrating and separating and purifying specific components in mixed gases. In particular, by selectively adsorbing gaseous mixtures with different molecular sizes by utilizing the molecular node effect using molecular sieves (M・S), specific components can be adsorbed and removed or adsorbed and then desorbed and recovered. Measuring gas separation or gas purification methods are widely used industrially.

本発明は前述の如くガス吸着現象の差異を利用
して、一酸化炭素を効率よく濃縮するものである
が、発明者はこれに伴う吸着塔の吸着・減圧・排
気・パージ・加圧の諸工程を鋭意検討するととも
に関連する各種ガスの濃縮実験を実施した結果一
酸化炭素の純度を向上させるには下記の方式が最
適であるとの結論に達した。
As mentioned above, the present invention utilizes the differences in gas adsorption phenomena to efficiently concentrate carbon monoxide, but the inventors have focused on the various aspects of adsorption, depressurization, exhaust, purging, and pressurization of the adsorption tower associated with this. As a result of intensive study of the process and experiments on concentrating various related gases, we came to the conclusion that the following method is optimal for improving the purity of carbon monoxide.

原料加圧−吸着()−ほぼ均圧−並流パージ
−向流排気−吸着()−吸着()。なお、これ
の細部説明は後述してある。
Raw material pressurization - adsorption () - nearly equal pressure - cocurrent purge - countercurrent exhaust - adsorption () - adsorption (). A detailed explanation of this will be given later.

以下に本発明の細部を説明する。 The details of the invention will be explained below.

本発明は少くとも一酸化炭素ガス及び窒素ガス
または一酸化炭素ガス、二酸化炭素ガス及び窒素
ガスから成る原料ガスから圧力変動式吸着分離方
法により一酸化炭素ガスを濃縮及び分離精製する
方法において、ゼオライト(合成又は天然)系吸
着剤からなる吸着剤を収納した2つ以上の吸着塔
を用いその方法は (i) 原料ガスにより吸着塔を加圧する加圧工程、 (ii) さらに原料ガスを吸着塔に流して、吸着塔出
口における易吸着成分の濃度が吸着塔入口にお
ける易吸着成分の濃度に達するまで又は両者の
濃度が等しくなる点の少し前まで吸着剤に易吸
着成分を吸着させる吸着工程、 (iii) 吸着工程終了後、その吸着塔と真空脱着が終
つた吸着塔とを連結し、前者の吸着塔からガス
を後者の吸着塔に導入して後者の吸着剤に吸着
させる吸着()、このとき前者の吸着塔の圧
力を後者の吸着塔とほぼ同圧にする。
The present invention provides a method for concentrating, separating and refining carbon monoxide gas from at least carbon monoxide gas and nitrogen gas or a raw material gas consisting of carbon monoxide gas, carbon dioxide gas and nitrogen gas by a pressure fluctuation adsorption separation method. The method uses two or more adsorption towers containing adsorbents made of (synthetic or natural) adsorbents, and the method is (i) pressurizing the adsorption tower with raw material gas, (ii) further pressurizing the adsorption tower with raw material gas. an adsorption step in which the easily adsorbable component is adsorbed onto the adsorbent until the concentration of the easily adsorbable component at the outlet of the adsorption tower reaches the concentration of the easily adsorbable component at the inlet of the adsorption tower, or until slightly before the point where both concentrations become equal; (iii) After the adsorption process is completed, the adsorption tower is connected to the adsorption tower where vacuum desorption has been completed, and the gas is introduced from the former adsorption tower to the latter adsorption tower and adsorbed by the latter adsorbent (); At this time, the pressure of the former adsorption tower is made approximately the same as that of the latter adsorption tower.

(iv) ほぼ均圧した吸着塔に製品ガスを並流に導入
して難吸着成分をパージするパージ工程、この
ときの吸着塔出口より放出されるパージガスを
真空脱着が終つた吸着塔に導入し吸着剤に吸着
させる吸着()の工程を行なつても良い。
(iv) A purge step in which the product gas is introduced in parallel flow into the adsorption tower whose pressure is almost equalized to purge the difficult-to-adsorb components, and the purge gas released from the outlet of the adsorption tower at this time is introduced into the adsorption tower after vacuum desorption. An adsorption step ( ) in which the material is adsorbed onto an adsorbent may also be performed.

(v) パージ工程を終つた吸着塔を大気圧以下に排
気して吸着剤に吸着されている易吸着成分を脱
着させ製品ガスを回収する回収工程、及び (vi) 製品ガス回収が終つた吸着塔と吸着工程が終
つた吸着塔とを連結して後者の吸着塔からのガ
スを前者の吸着塔に導入する吸着()工程、 (vii) 任意な工程として他の吸着塔のパージ工程か
らのガスによる吸着()工程、から成り、定
期的に吸着塔間の流れを変えて、上記操作を繰
返すことを特徴とした方法に関する。
(v) A recovery process in which the adsorption tower after the purge process is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed by the adsorbent and product gas is recovered; and (vi) adsorption after product gas recovery has been completed. an adsorption () process in which the tower and the adsorption tower that has completed the adsorption step are connected and gas from the latter adsorption tower is introduced into the former adsorption tower; (vii) an optional step in which the gas from the purge step of the other adsorption tower is The present invention relates to a method comprising a gas adsorption () step and characterized in that the above operation is repeated by periodically changing the flow between adsorption towers.

本発明の工程(i)は吸着塔に原料ガスを導入する
吸着塔の加圧工程である。本発明では回収すべき
ガスは易吸着成分であるので高い吸着圧は必要で
はなく、1〜3Kg/cm2G程度の吸着圧で十分であ
り、それより低い吸着圧であつても良い。
Step (i) of the present invention is a step of pressurizing the adsorption tower in which a raw material gas is introduced into the adsorption tower. In the present invention, since the gas to be recovered is an easily adsorbed component, a high adsorption pressure is not necessary, and an adsorption pressure of about 1 to 3 kg/cm 2 G is sufficient, and a lower adsorption pressure may be used.

工程(ii)は吸着()工程である、吸着塔出口に
おける易吸着成分(一酸化炭素ガス、二酸化炭素
ガス)の濃度が吸着塔入口における易吸着成分の
濃度と等しくなつた点というのは、吸着剤の破過
点を意味する。回収すべき成分が難吸着成分(例
えば空気から酸素ガスを分離する場合においては
酸素ガス)であるならば、高純度の難吸着成分を
得るためには破過点よりも上の水準で吸着工程を
終了することが望ましい。しかし本発明では、回
収すべき成分は易吸着成分であるから破過点また
は破過点に達する少し前まで吸着を行う。
Step (ii) is an adsorption () step. The point at which the concentration of easily adsorbed components (carbon monoxide gas, carbon dioxide gas) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower is as follows. It means the breakthrough point of the adsorbent. If the component to be recovered is a difficult-to-adsorb component (for example, oxygen gas in the case of separating oxygen gas from air), the adsorption process must be carried out at a level above the breakthrough point in order to obtain a high-purity difficult-to-adsorb component. It is desirable to terminate. However, in the present invention, since the component to be recovered is an easily adsorbed component, adsorption is performed until the breakthrough point or just before the breakthrough point is reached.

工程(iii)は吸着()工程が終つた吸着塔と真空
脱着が終つた吸着塔とを連結し、好ましくは並流
方向に前者の吸着塔からガスを後者の吸着塔に導
入し、前者の吸着塔と、後者の吸着塔の圧力とほ
ぼ同圧にする。この工程では、吸着塔に収納され
ている吸着剤間の空間中のガスが放出され、真空
脱着が終つた吸着塔の吸着()加圧に使用され
る。前者の吸着塔の圧力がほぼ後者の吸着塔の圧
力と同圧になるまでこの操作を維持する。
In step (iii), the adsorption tower that has undergone the adsorption () step and the adsorption tower that has undergone vacuum desorption are connected, and gas is introduced from the former adsorption tower into the latter adsorption tower, preferably in a cocurrent direction, and Make the pressure of the adsorption tower almost the same as that of the latter adsorption tower. In this step, gas in the space between the adsorbents housed in the adsorption tower is released and used for adsorption () pressurization of the adsorption tower after vacuum desorption. This operation is maintained until the pressure in the former adsorption tower becomes approximately the same as the pressure in the latter adsorption tower.

工程(iv)はほぼ均圧した吸着塔に並流に製品ガス
を導入して吸着塔内に残つている難吸着成分(窒
素ガス等)をパージする。又このとき吸着塔出口
のパージガス純度は製品ガスに吸着塔内に残つて
いる難吸着成分が加わるのみで製品ガスの純度に
近く、原料ガスよりも充分に一酸化炭素に富んで
いる。これを回収利用して連続的に一酸化炭素ガ
スを濃縮する際の、他塔の加圧用ガス(吸着
())として使用することができる。
In step (iv), the product gas is introduced in parallel to the adsorption tower whose pressure is almost equalized, and the difficult-to-adsorb components (nitrogen gas, etc.) remaining in the adsorption tower are purged. Further, at this time, the purity of the purge gas at the outlet of the adsorption tower is close to that of the product gas, with only the difficult-to-adsorb components remaining in the adsorption tower added to the product gas, and is sufficiently richer in carbon monoxide than the raw material gas. This can be recovered and used as a pressurizing gas (adsorption ()) in other columns when continuously concentrating carbon monoxide gas.

工程(v)は、パージ工程が終つた吸着塔を真空ポ
ンプ、エゼクター、ブロワー等を用いて、大気圧
以下に排気して好ましくは300Torr以下、最も好
ましくは300〜30Torrの範囲まで真空にし、吸着
剤に吸着されていた成分(一酸化炭素ガス等)を
脱着させ製品ガスとして回収する。
In step (v), the adsorption tower after the purge step is evacuated to below atmospheric pressure using a vacuum pump, ejector, blower, etc., preferably to 300 Torr or less, most preferably in the range of 300 to 30 Torr, and adsorption is performed. The components adsorbed by the agent (carbon monoxide gas, etc.) are desorbed and recovered as product gas.

工程(vi)は製品ガス回収が終つた吸着塔と吸着工
程が終つた吸着塔とを連結し、後者の吸着塔から
のガスによつて前者の吸着塔を加圧吸着させる吸
着()。この場合、後者の吸着塔の圧力が大気
圧以下の圧力でガスの導入を中止するので前者の
吸着塔の圧力は大気圧に達しない。
Step (vi) is an adsorption process in which the adsorption tower that has completed product gas recovery and the adsorption tower that has completed the adsorption step are connected, and the gas from the latter adsorption tower is adsorbed under pressure in the former adsorption tower. In this case, since the introduction of gas is stopped when the pressure in the latter adsorption tower is below atmospheric pressure, the pressure in the former adsorption tower does not reach atmospheric pressure.

工程(vi)は、他の吸着塔のパージ工程からのガス
による吸着()からなる。
Step (vi) consists of adsorption () with gas from the purge step of another adsorption column.

本発明で使用される吸着剤としては、活性炭、
又は天然あるいは合成ゼオライト等であるが合成
又は天然ゼオライトを粉砕して適当な結合剤を加
えて成形し、焼結したものも又使用できる。
Adsorbents used in the present invention include activated carbon,
Alternatively, natural or synthetic zeolite may be used, but it is also possible to use a product obtained by crushing synthetic or natural zeolite, adding an appropriate binder, shaping it, and sintering it.

パージ工程からのガスを他の吸着塔の加圧に使
用する時の利点が得られる。
Advantages are obtained when the gas from the purge step is used to pressurize other adsorption columns.

大気圧以下での圧力で均圧することにより、難
吸着成分の残存を少なくし、パージ工程をより効
果的に活用でき、製品CO濃度の増加をもたら
す。
By equalizing the pressure below atmospheric pressure, the remaining amount of poorly adsorbed components is reduced, the purge process can be used more effectively, and the product CO concentration increases.

第3番目および第4番目の発明は、吸着工程が
終つた後、次工程前に吸着塔内の圧力をある圧力
まで減圧させ、減圧()工程が附加されてい
る。この工程は吸着塔内の吸着塔出口側の難吸着
成分の多い部分を吸着塔外へ廃棄するためであ
る。この場合吸着圧(ゲージ圧)の1/5〜3/4程度
の圧力に低下させるまで、ガスを廃棄するのが好
ましい。
In the third and fourth inventions, after the adsorption step is completed, the pressure inside the adsorption tower is reduced to a certain pressure before the next step, and a pressure reduction () step is added. This step is for discarding the portion of the adsorption tower containing a large amount of difficult-to-adsorb components on the adsorption tower outlet side to the outside of the adsorption tower. In this case, it is preferable to discard the gas until the pressure is reduced to about 1/5 to 3/4 of the adsorption pressure (gauge pressure).

以下本発明の代表的な具体例である転炉排ガス
中の窒素ガスを除去し、一酸化炭素ガスを分離回
収する方法に基づいて、本発明を詳しく説明する
が本発明の方法は、これらの具体例に限定される
ものではない。
The present invention will be explained in detail below based on a typical example of the present invention, which is a method for removing nitrogen gas from converter exhaust gas and separating and recovering carbon monoxide gas. It is not limited to specific examples.

第1図は吸着法により連続的に転炉排ガスから
難吸着成分である窒素ガスを除去し、易吸着成分
の一酸化炭素ガスを分離濃縮するフローシートで
ある。
FIG. 1 is a flow sheet for continuously removing nitrogen gas, which is a component that is difficult to adsorb, from converter exhaust gas by an adsorption method, and separating and concentrating carbon monoxide gas, which is an easily adsorbable component.

吸着塔A、Bは、易吸着成分を選択的に吸着す
る吸着剤が収納されている。吸着塔A、Bを真空
ポンプ11を用いて減圧排気を300Torr以下好ま
しくは30Torrまで行い、今吸着塔Aに原料ガス
を加圧導入、真空状態より昇圧させるためバルブ
1を開くことによつて行う。この時バルブ2,
3,4,5,6,7,8,9,10は、すべて閉
である。
Adsorption towers A and B house adsorbents that selectively adsorb easily adsorbable components. The adsorption towers A and B are depressurized and evacuated to 300 Torr or less, preferably 30 Torr, using the vacuum pump 11, and now the raw material gas is introduced into the adsorption tower A under pressure, and valve 1 is opened to increase the pressure from the vacuum state. . At this time, valve 2,
3, 4, 5, 6, 7, 8, 9, and 10 are all closed.

吸着塔Bはこのステツプでは、まだ真空状態を
保持している。吸着塔Aは昇圧後、吸着圧力0.1
Kg/Gから3.0Kg/G、好ましくは0.2Kg/Gから
1.0Kg/Gの吸着圧力を保つ様にバルブ3は開か
れ、難吸着ガスはガスホルダー13に回収され
る。一定時間或は一定量の吸着工程終了後原料供
給バルブ1及び出口バルブ3は閉じ、次いでバル
ブ5を開さ吸着塔Bへの連結パイプにより、吸着
塔Aの塔内圧力を吸着塔Bとほぼ同圧にさせ、吸
着塔Bに放圧されたガスを吸着させる。吸着塔A
が、吸着塔Bとほぼ同圧になると、吸着塔内の空
隙(吸着剤間の空間)にたまつている難吸着成分
ガスを追出すために製品ガスタンク12よりバル
ブ7を開いて吸着塔Aの下部よりパージ工程を行
う。このときの吸着塔出口のパージガス純度は製
品ガスに吸着塔内に残つている難吸着成分ガスが
加わつたものであり製品ガス純度より少し低下す
るのみである。このパージガスを吸着塔Bに先の
均圧工程に引き続き導入し吸着剤に易吸着成分を
吸着させる。この時点で吸着塔Bは大気圧近くま
でパージ加圧された状態になつたいる。
Adsorption tower B still maintains a vacuum state at this step. Adsorption tower A has an adsorption pressure of 0.1 after increasing the pressure.
Kg/G to 3.0Kg/G, preferably 0.2Kg/G
The valve 3 is opened so as to maintain the adsorption pressure of 1.0 Kg/G, and the gas that is difficult to adsorb is collected into the gas holder 13. After completion of the adsorption process for a certain period of time or a certain amount, the raw material supply valve 1 and the outlet valve 3 are closed, and then the valve 5 is opened and the internal pressure of the adsorption tower A is set to approximately the same as that of the adsorption tower B through the connecting pipe to the adsorption tower B. The pressure is maintained at the same level, and the depressurized gas is adsorbed in the adsorption tower B. Adsorption tower A
However, when the pressure becomes almost the same as that of adsorption tower B, valve 7 is opened from the product gas tank 12 to expel the gas of the difficult-to-adsorb components accumulated in the voids (spaces between adsorbents) in the adsorption tower. Perform the purge process from the bottom. At this time, the purity of the purge gas at the outlet of the adsorption tower is the product gas plus the gas of the difficult-to-adsorb components remaining in the adsorption tower, and is only slightly lower than the purity of the product gas. This purge gas is introduced into the adsorption tower B following the previous pressure equalization step to cause the adsorbent to adsorb easily adsorbable components. At this point, adsorption tower B is in a purge pressurized state close to atmospheric pressure.

パージ工程が終了するとバルブ5及び7は閉じ
られ吸着塔下部よりバルブ9を開にし真空ポンプ
を用いて減圧排気を行い吸着剤に吸着している易
吸着成分を脱着させる。この際の排気圧力は
300Torr以下好ましくは30Torrまで行つて易吸着
成分であるCOを製品ガスとして回収するもので
ある。
When the purge step is completed, valves 5 and 7 are closed, and valve 9 is opened from the bottom of the adsorption tower to perform vacuum exhaust using a vacuum pump to desorb easily adsorbable components adsorbed on the adsorbent. The exhaust pressure at this time is
The temperature is below 300 Torr, preferably up to 30 Torr, and CO, which is an easily adsorbed component, is recovered as a product gas.

上記操作をそれぞれの吸着塔において順次繰返
すことによつて連続的に吸着剤に易吸着成分であ
るCOガスを分離精製することが出来る。なお1
3は廃ガスタンクである。
By sequentially repeating the above operations in each adsorption tower, it is possible to continuously separate and purify CO gas, which is a component easily adsorbed onto the adsorbent. Note 1
3 is a waste gas tank.

実施例 1 以下、本発明をさらに具体的に説明するため
に、事前に脱二酸化炭素ガス処理を行なつた転炉
排ガス(CO:85.3%、N2:5.7%、CO2:0.15
%、H2:8.55%)の精製、分離を試みた。
Example 1 Hereinafter, in order to explain the present invention more specifically, converter exhaust gas (CO: 85.3%, N 2 : 5.7%, CO 2 : 0.15
%, H 2 : 8.55%).

工程として既述の如く、「原料加圧−吸着
()(並流)−均圧−パージ(並流)−真空排気
(向流)−吸着()−吸着()」の精製サイクル
をもとにして実施した。
As mentioned above, the process is based on the purification cycle of "raw material pressurization - adsorption () (co-current) - pressure equalization - purge (co-current) - vacuum evacuation (counter-current) - adsorption () - adsorption ()". It was carried out as follows.

活性化したゼオライト(166Kg)(1/8″ペレツ
ト)を充填したSGP管製の吸着塔(145×2.3m)
を真空排気して60Torrの真空に保つた後、上記
の排ガス(CO:85.3%、N2:5.7%、CO2:0.15
%、H2:8.55%)を線速2cm/secで塔の下部よ
り導入して混合ガスの精製を実施した。この場
合、供給ガス量26.32NM3であり、製品ガス量
は、12.63NM3、収率56.1%、CO濃度99.5%を得
た。ここで残留窒素濃度は0.2%であつた。
Adsorption tower (145 x 2.3m) made of SGP tube filled with activated zeolite (166Kg) ( 1/8 ″ pellets)
After evacuating and maintaining a vacuum of 60 Torr, the above exhaust gas (CO: 85.3%, N 2 : 5.7%, CO 2 : 0.15
%, H2 : 8.55%) was introduced from the bottom of the column at a linear velocity of 2 cm/sec to purify the mixed gas. In this case, the amount of supplied gas was 26.32 NM 3 , the amount of product gas was 12.63 NM 3 , the yield was 56.1%, and the CO concentration was 99.5%. Here, the residual nitrogen concentration was 0.2%.

従来の吸着工程終了後、吸着塔を真空脱着の終
つた吸着塔に連結し、前者の吸着塔の圧力を大気
圧近傍に至る迄降下させるにとどめる減圧工程を
採用した方法では、残留窒素濃度は0.8前后であ
つたものが本願方法を用いることにより残留窒素
濃度を上記の様に0.2%以下にまで減少させるこ
とが出来た。
After the conventional adsorption process is completed, the adsorption tower is connected to the adsorption tower that has undergone vacuum desorption, and in the method that adopts a depressurization process in which the pressure in the former adsorption tower is reduced only to near atmospheric pressure, the residual nitrogen concentration can be reduced. By using the method of the present invention, the residual nitrogen concentration was able to be reduced from 0.8% to 0.2% or less as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施する装置のフローシートであ
る。
The figure is a flow sheet of an apparatus implementing the present invention.

Claims (1)

【特許請求の範囲】 1 吸着法を使用して少なくとも一酸化炭素を含
む混合ガス中の一酸化炭素の回収率を向上する方
法において、該混合ガス中の一酸化炭素に対して
選択性を有する吸着物質を充填した2つ以上の吸
着塔を使用し、その方法は (i)原料ガスにより吸着塔を加圧する加圧工程、 (ii) さらに原料ガスを吸着塔に流して、吸着塔出
口における易吸着成分の濃度が吸着塔入口にお
ける易吸着成分の濃度に達するまで又は両者の
濃度が等しくなる点の少し前まで吸着剤に易吸
着成分を吸着させる吸着()工程、 (iii) 吸着()工程終了後その吸着塔と真空脱着
が終つた吸着塔とを連結し、前者の吸着塔から
のガスを後者の吸着塔に導入し、前者の吸着塔
の圧力を後者の吸着塔圧力と同圧又はほぼ同圧
にする均圧工程、 (iv) 均圧又はほぼ均圧した吸着塔に製品ガスを並
流に導入して難吸着成分をパージするパージ工
程、 (v) パージ工程を終つた吸着塔を大気圧以下に排
気して吸着剤に吸着されている易吸着成分を脱
着させ製品ガスを回収する回収工程、及び (vi) 製品ガス回収が終つた吸着塔と吸着工程が終
つた吸着塔とを連結して後者の吸着塔からのガ
スを前者の吸着塔に導入する吸着()工程、 から成り、定期的に吸着塔間の流れを変えて、上
記操作を繰返すことを特徴とした方法。 2 吸着法を使用して少なくとも一酸化炭素含む
混合ガス中の一酸化炭素の回収率を向上する方法
において、該混合ガス中の一酸化炭素に対して選
択性を有する吸着物質を充填した2つ以上の吸着
塔を使用し、その方法は (i) 原料ガスにより吸着塔を加圧する加圧工程、 (ii) さらに原料ガスを吸着塔に流して、吸着塔出
口における易吸着成分の濃度が吸着塔入口にお
ける易吸着成分の濃度に達するまで又は両者の
濃度が等しくなる点の少し前まで吸着剤に易吸
着成分を吸着させる吸着()工程、 (iii) 吸着()工程終了後その吸着塔と真空脱着
が終つた吸着塔とを連結し、前者の吸着塔から
のガスを後者の吸着塔に導入し、前者の吸着塔
の圧力を後者の吸着塔圧力と同圧又はほぼ同圧
にする均圧工程、 (iv) 均圧又はほぼ均圧した吸着塔に製品ガスを並
流に導入して難吸着成分をパージするパージ工
程、吸着塔上部より流出してくるガスを工程(vi)
が終わつた吸着塔に導入してその吸着塔の加圧
に使用し (v) パージ工程を終つた吸着塔を大気圧以下に排
気して吸着剤に吸着されている易吸着成分を脱
着させ製品ガスを回収する回収工程、及び (vi) 製品ガス回収が終つた吸着塔と吸着工程が終
つた吸着塔とを連結して後者の吸着塔からのガ
スを前者の吸着塔に導入する吸着()工程、 (vii) 他の吸着塔のパージ工程からのガスによる吸
着()工程、 から成り、定期的に吸着塔間の流れを変えて、上
記操作を繰返すことを特徴とした方法。
[Claims] 1. A method for improving the recovery rate of carbon monoxide in a mixed gas containing at least carbon monoxide using an adsorption method, which method has selectivity for carbon monoxide in the mixed gas. Two or more adsorption towers filled with adsorbent materials are used, and the method is (i) pressurizing the adsorption tower with the raw material gas, (ii) further flowing the raw material gas into the adsorption tower, and applying pressure at the outlet of the adsorption tower. an adsorption () step in which the easily adsorbed component is adsorbed onto the adsorbent until the concentration of the easily adsorbed component reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or a little before the point where both concentrations become equal; (iii) adsorption (); After the process is completed, the adsorption tower is connected to the adsorption tower that has undergone vacuum desorption, and the gas from the former adsorption tower is introduced into the latter adsorption tower, so that the pressure in the former adsorption tower is equal to the pressure in the latter adsorption tower. or a pressure equalization step where the pressure is almost the same; (iv) a purge step in which the product gas is introduced in parallel flow into an adsorption tower with equal or almost equal pressure to purge difficult-to-adsorb components; (v) adsorption after the purge step. A recovery step in which the column is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed on the adsorbent and product gas is recovered; and (vi) an adsorption column after product gas recovery and an adsorption column after the adsorption step. an adsorption () step in which the gas from the latter adsorption tower is introduced into the former adsorption tower, and the above operation is repeated by periodically changing the flow between the adsorption towers. . 2. In a method of improving the recovery rate of carbon monoxide in a mixed gas containing at least carbon monoxide using an adsorption method, two gases filled with an adsorbent material having selectivity for carbon monoxide in the mixed gas Using the above adsorption tower, the method is (i) pressurizing the adsorption tower with raw material gas, (ii) further flowing the raw material gas into the adsorption tower, and adjusting the concentration of easily adsorbable components at the outlet of the adsorption tower to an adsorption () process in which the easily adsorbable component is adsorbed on the adsorbent until the concentration of the easily adsorbable component at the tower inlet is reached or a little before the point where both concentrations become equal; (iii) after the adsorption () process, the adsorption tower is Connect the adsorption tower that has completed vacuum desorption, introduce the gas from the former adsorption tower into the latter adsorption tower, and make the pressure in the former adsorption tower the same or almost the same as the latter adsorption tower pressure. pressure step, (iv) a purge step in which the product gas is introduced in parallel to the pressure-equalized or almost pressure-equalized adsorption tower to purge difficult-to-adsorb components;
(v) After the purge process, the adsorption tower is evacuated to below atmospheric pressure to desorb the easily adsorbed components adsorbed by the adsorbent and form a product. (vi) adsorption () in which the adsorption tower from which product gas recovery has been completed and the adsorption tower from which the adsorption step has been completed are connected and the gas from the latter adsorption tower is introduced into the former adsorption tower; (vii) adsorption () step using gas from the purge process of another adsorption tower, and is characterized in that the above operation is repeated by periodically changing the flow between the adsorption towers.
JP58187478A 1983-10-06 1983-10-06 Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method Granted JPS6078611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187478A JPS6078611A (en) 1983-10-06 1983-10-06 Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187478A JPS6078611A (en) 1983-10-06 1983-10-06 Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method

Publications (2)

Publication Number Publication Date
JPS6078611A JPS6078611A (en) 1985-05-04
JPS625645B2 true JPS625645B2 (en) 1987-02-05

Family

ID=16206774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187478A Granted JPS6078611A (en) 1983-10-06 1983-10-06 Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method

Country Status (1)

Country Link
JP (1) JPS6078611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411353A (en) * 1987-07-06 1989-01-13 Matsushita Electric Ind Co Ltd Electronic circuit device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193623A (en) * 1986-02-21 1987-08-25 Seitetsu Kagaku Co Ltd Method for taking out easily-adsorbing substance as high-purity gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019879A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Selective adsorption of carbon monoxide from gas streams
JPS543823A (en) * 1977-06-07 1979-01-12 Sorg Gmbh & Co Kg Metho and apparatus for electric heating in glass melting furnace
JPS5517614A (en) * 1978-07-21 1980-02-07 Hitachi Ltd Vane for gas turbine
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5663084A (en) * 1979-09-19 1981-05-29 Bayer Ag Gold plated metallized fiber product sheet * yarn and fiber * production thereof and utilization in microwave absorption and peflection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019879A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Selective adsorption of carbon monoxide from gas streams
JPS543823A (en) * 1977-06-07 1979-01-12 Sorg Gmbh & Co Kg Metho and apparatus for electric heating in glass melting furnace
JPS5517614A (en) * 1978-07-21 1980-02-07 Hitachi Ltd Vane for gas turbine
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5663084A (en) * 1979-09-19 1981-05-29 Bayer Ag Gold plated metallized fiber product sheet * yarn and fiber * production thereof and utilization in microwave absorption and peflection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411353A (en) * 1987-07-06 1989-01-13 Matsushita Electric Ind Co Ltd Electronic circuit device

Also Published As

Publication number Publication date
JPS6078611A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
US5176722A (en) Pressure swing adsorption method for separating gaseous mixtures
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
JPS6137968B2 (en)
EP1142623B1 (en) PSA Process for removal of bulk carbon dioxide from a wet high-temperature gas
EP0483670A1 (en) Duplex adsorption process
CA1188231A (en) Repressurization for pressure swing adsorption system
US5395427A (en) Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
GB2155805A (en) Gas separation process and apparatus
JPS6247051B2 (en)
CA1238868A (en) Method for obtaining high-purity carbon monoxide
JPS6137970B2 (en)
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JPS625645B2 (en)
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
EP0055962B1 (en) Repressurisation for pressure swing adsorption system
JPS621767B2 (en)
JPS59227701A (en) Method for selective concentration and separative purification of hydrogen gas
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPS6259041B2 (en)
JPH0112529B2 (en)
JPS6139090B2 (en)
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method