JPH03242313A - Purification of carbon monoxide - Google Patents
Purification of carbon monoxideInfo
- Publication number
- JPH03242313A JPH03242313A JP2038105A JP3810590A JPH03242313A JP H03242313 A JPH03242313 A JP H03242313A JP 2038105 A JP2038105 A JP 2038105A JP 3810590 A JP3810590 A JP 3810590A JP H03242313 A JPH03242313 A JP H03242313A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbon monoxide
- adsorption
- purity
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims abstract description 40
- 238000000746 purification Methods 0.000 title description 7
- 239000007789 gas Substances 0.000 claims abstract description 106
- 238000001179 sorption measurement Methods 0.000 claims abstract description 77
- 238000000926 separation method Methods 0.000 claims abstract description 34
- 239000002912 waste gas Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 34
- 239000002994 raw material Substances 0.000 claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 239000006227 byproduct Substances 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 239000000047 product Substances 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 33
- 229910002092 carbon dioxide Inorganic materials 0.000 description 18
- 239000001569 carbon dioxide Substances 0.000 description 12
- 229910002090 carbon oxide Inorganic materials 0.000 description 12
- 238000011084 recovery Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000007781 pre-processing Methods 0.000 description 7
- 238000010926 purge Methods 0.000 description 7
- 239000003463 adsorbent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation Of Gases By Adsorption (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、−酸化炭素の精製方法に係り、特に、−酸化
炭素を主成分とし、窒素、二酸化炭素等を含む混合ガス
である製鉄所の副生ガス等から、圧力変動式吸着分離法
(Pressure 5w1na AdsorDtl
On process、以下、略してPSAという)に
より、例えば純度99.95%以上の標準ガス級の高純
度の一酸化炭素を、簡便且つ安価なコストで回収するこ
とができる一酸化炭素の精製方法に関する。The present invention relates to a method for purifying -carbon oxide, and in particular, a method for purifying -carbon oxide by a pressure fluctuation type adsorption separation method ( Pressure 5w1na AdsorDtl
The present invention relates to a method for purifying carbon monoxide that can easily and inexpensively recover standard gas-grade high-purity carbon monoxide, for example, with a purity of 99.95% or more, by on-process (hereinafter abbreviated as PSA). .
圧力変動式吸着分離法<PSA法ンにより、mlえば、
製鉄工程で発生する転炉排カス又は高炉排ガス等の、−
酸化炭素(co)、二酸化炭素(C02)及び窒素(N
2)等を含有する混合ガスから、−酸化炭素を高濃度に
分離回収しようという試みが種々なされている。
通常、転炉排ガス及び高炉排ガスの組成は下記の範囲内
にある。
Co C02N2 H2
転炉排ガス 50〜87x3〜20% 3〜20χ 1
〜10%高炉排ガス 20〜30% 20〜30X 4
0〜60% 1〜b上記分M回収の具体的方法として
は、1段階吸着装室を用いたPSA法(前処理として、
水、二酸化炭素、硫黄化合物等の除去を行うこともある
)又はCosorb法等が従来より行われている。By pressure fluctuation type adsorption separation method <PSA method, if ml,
- Converter waste or blast furnace exhaust gas generated in the steelmaking process
Carbon oxide (co), carbon dioxide (C02) and nitrogen (N
Various attempts have been made to separate and recover -carbon oxide at a high concentration from a mixed gas containing 2) and the like. Usually, the composition of converter exhaust gas and blast furnace exhaust gas is within the following range. Co C02N2 H2 Converter exhaust gas 50~87x3~20% 3~20χ 1
~10% blast furnace exhaust gas 20~30% 20~30X 4
0 to 60% 1 to b The specific method for recovering the above amount of M is the PSA method using a one-stage adsorption chamber (as a pretreatment,
In some cases, water, carbon dioxide, sulfur compounds, etc. are removed) or the Cosorb method has been conventionally used.
しかしながら、上記従来の一酸化炭素の精製方法を転炉
排ガス等に適用する場合は、回収率を無視して精製効率
を上げたとしても、−酸化炭素の純度を99,0〜99
.5%まで上昇させるのが限界であった。
従って、上記従来の方法によって得られる製品カスとし
ての一酸化炭素は、製鋼吹錬用のアルゴン(Ar )の
代替や、いわゆるC1化学の合成原料としての使用は可
能であったが、例えばCOガス測定器の標準ガスのよう
に高純度を必要とする用途には使用できなかった。
本発明は、転炉排ガス又は高炉排ガス等の一酸化炭素を
主成分として含有する混合ガスから、例えば純度が99
.95%以上で、標準ガスとしても使用可能な高純度の
一酸化炭素を、簡単に且つ安価に得ることができる一酸
化炭素の精製方法を提供することを課題とする。However, when applying the conventional carbon monoxide purification method described above to converter exhaust gas, etc., even if the purification efficiency is increased by ignoring the recovery rate, the purity of carbon monoxide can be reduced to 99.0-99.
.. The limit was to raise it to 5%. Therefore, carbon monoxide as product residue obtained by the above conventional method could be used as a substitute for argon (Ar) for steel blowing or as a synthetic raw material for so-called C1 chemistry, but for example, CO gas It could not be used for applications that require high purity, such as standard gas for measuring instruments. The present invention can be used to obtain a mixed gas containing carbon monoxide as a main component, such as converter exhaust gas or blast furnace exhaust gas, with a purity of, for example, 99%.
.. It is an object of the present invention to provide a method for purifying carbon monoxide that can easily and inexpensively obtain high purity carbon monoxide with a purity of 95% or more and which can be used as a standard gas.
本発明は、−酸化炭素の精製に際して、第1原料ガスの
一酸化炭素を含有する混合ガスから分離回収した、−酸
化炭素を主成分とする製品ガスを第2原料ガスとし、1
段階の又は直列に2段階以上に継設された圧力変動式吸
着分離装置で上記第2原料ガスの全部又は一部を処理し
、高純度の一酸化炭素を分離回収することにより、上記
課題を達成したものである。
又、前記圧力変動式吸着分離装置の廃ガスを低純度製品
として使用するようにしなものである。In the present invention, - when refining carbon oxide, - a product gas containing carbon oxide as a main component separated and recovered from a first raw material gas, a mixed gas containing carbon monoxide, is used as a second raw material gas;
The above problem can be solved by treating all or part of the second raw material gas with a pressure fluctuation adsorption separation device installed in stages or in two or more stages in series, and separating and recovering high-purity carbon monoxide. This has been achieved. Further, the waste gas from the pressure fluctuation type adsorption separation device is used as a low-purity product.
本発明においては、転炉排ガス等の一酸化炭素を主要成
分として含有する混合カスを第1原料ガスとして用い、
この第1原料ガスから一酸化炭素を主成分とする製品ガ
スを分離回収した後、該製品ガスを第2原料ガスとし、
PSA法で第2原料ガスを処理するようにしなので、−
酸化炭素の分離回収効率が更に向上され、PSA法によ
り高純度の一酸化炭素の精製が可能となる。
又、第2原料ガスを処理する際に得られる廃ガスを低純
度製品として使用するようにした場合は、回収率を更に
向上して、コストの一層の低減を図れる。In the present invention, a mixed sludge containing carbon monoxide as a main component such as converter exhaust gas is used as the first raw material gas,
After separating and recovering a product gas containing carbon monoxide as a main component from this first raw material gas, the product gas is used as a second raw material gas,
Since the second raw material gas is processed using the PSA method, -
The separation and recovery efficiency of carbon oxide is further improved, and it becomes possible to purify high-purity carbon monoxide using the PSA method. Furthermore, if the waste gas obtained when processing the second raw material gas is used as a low-purity product, the recovery rate can be further improved and costs can be further reduced.
以下、図面を参照して、本発明の実施例を詳細に説明す
る。
第1図は、本発明の一実施例が適用される圧力変動式吸
着分離システムの概略構成図である。
本システムは、第1段階の圧力変動式吸着分離装置(以
下、第1分離装置という)50、該第1分離装置50に
直列に継設された第2段階の圧力変動式吸着装置(以下
、第2分離装置という)52、及び、3基のガスホルダ
56.58.60で主に構成されている。
まず、上記システムに供給される第1原料ガスから一酸
化炭素の分離回収を行う第1分離装置50について説明
する。上記第1分離装置50としては、−酸化炭素精製
ユニット54が第2図の概略構成図に示すシステムから
なるPSA装置を備えたものを挙げることができる。上
記PSA装置は、本出願人による特公昭64−1044
3号公報に具体的に開示されているものであり、以下の
実施例では、第1原料ガスに対する処理を上記第2図に
示すPSA装置システムを使用して行う場合を中心に説
明する。
第2図において、吸着塔A及びBは、前段処理装置であ
る二酸化炭素の吸着除去を行うための脱CO2PSA装
置を構成し、吸着塔C〜Fは、後段処理装置である一酸
化炭素の吸着回収を行うための脱N2PSA装置を構成
しており、上記各吸着塔A〜Fは、それぞれ実線で示す
パイプを介して有機的に連結され、以下に詳述する処理
が可能になされている。
前段処理装置の操作について説明する。吸着塔A、Bは
いずれも二酸化炭素を選択的に吸着する吸着剤が充填さ
れており、下方から第1原料ガスが供給されるようにな
されている。この第1原料ガスは、例えば転炉排ガスで
あり、主要成分として−酸化炭素以外に二酸化炭素、窒
素及び水素を含有しているものである。
今、吸着塔Aは減圧下で行うパージ工程が終了し、バル
ブ1〜6は閉じた状態にあり、塔内圧力は、例えば30
0〜30TOr「、場合Gこよってc、t30Torr
以下になっている。
一方、吸着塔Bは、吸着工程か終了し、ノクルブ7〜1
2の全てが閉じた状態からノクルブ9のみを開き、減圧
工程に移行した段階にある。
上記状態を基準に、吸着塔Aに着目して二酸イヒ炭素の
吸着除去のサイクルを説明する。まず、ノ〈ルブ6を開
いて吸着塔Aに前段処理ガス(脱CO2カス)を導入し
、塔内圧力が0.01〜3.0kg/cl’ G、好ま
しくは0.2〜1. Okq/cl”Gに達しな時点で
上記バルブ6を閉じ、次ν1でノくルブ1及び2を開い
て前記第1原料ガスを塔内圧力が上記範囲に維持される
ように流しなカイら二酸化炭素の吸着を行う、なお、上
記の前段処理ガスは、例えば、前段処理を終了したガス
が貯留されているバッファタンク(図示せず)から供給
することができる。
所定の吸着工程が終了した後、バルブ1及び2を閉じ、
バルブ3を開いて塔内圧力を大気圧付近まで降圧(放圧
)させた後、上記バルブ3を閉じる。
次いで、バルブ4を開いて真空ポンプ40により塔内の
強制排気を行い、吸着している二酸化炭素の脱着を行う
。その際、塔内圧力が、例えば300〜30TOr「、
場合によっては30Torr以下に排気を行い、その状
態で後述する後段処理装置からの廃カス(吸着(I)工
程で排出され、タンク43に貯留されている)を塔内に
導入してパージ工程を行う。
上記パージ工程が終了した後は、バルブ4及び5を閉じ
、再び最初の工程に戻り、バルブ6を閉じて上述した後
続の各操作を行う。
上記各操作を、吸着塔A及びBのそれぞれについて順次
繰り返すことにより、二酸化炭素の吸着、脱着による除
去を連続的に行うことが可能となる。
次に、後段処理装置の操作について説明する。
前段処理により、吸着塔A及びBから供給される二酸化
炭素が除去された前段処理ガスは、t&段処理装置に導
入され、ここで窒素、水素が除去され、その結果濃縮さ
れた一酸化炭素(製品ガス)として回収される。
吸着塔C,D、E及びFには、いずれも−酸化炭素を選
択的に吸着する吸着剤が充填されている。
便宜上、吸着塔C及びDに着目して、−酸化炭素の吸着
分離回収のサイクルについて、吸着塔Cが吸着(I)工
程に、吸着塔りが製品ガスの回収工程にある状態を基準
として説明する。
今、バルブ18.17が開いた状態にあり、前段処理ガ
スが吸着塔Cに下方から導入され、上方に流通しており
、吸着塔りではバルブ27が開かれ、減圧排気装置41
により、吸着剤からの一酸化炭素の脱着が行われ、脱着
回収された一酸化炭素は製品ガスタンク42に製品ガス
(第2原料ガス)として貯留される。
吸着塔Cの吸着(I)工程における塔内圧力(吸着圧力
)は、前記前段処理ガスの供給圧によって定まり、通常
は0.01〜3 、0 ko/cn2Gに、好ましくは
0.2〜1 、 Oka/cn2Gに設定される。又、
回収工程における吸着塔pの塔内圧力は300〜30T
orr =場合によっては30Torr以下である。
吸着塔Cにおける吸着(I>工程か終了したら、バルブ
18.17を閉じ、同時にバルブ27も閉じて吸着塔り
における製品ガスの回収工程も終了する。上記吸着(I
)工程の終点は、例えば、吸着塔の出口におけるガス中
の一酸化炭素の濃度がその入口における濃度に等しくな
る時点を一つの目安にして判断される。
次いで、吸着塔C及びDを連結するパイプにあるバルブ
19を開き、吸着塔Cの塔内圧力を大気圧付近まで降圧
させ、そのときに放出されるガスを吸着塔りに導入し、
充填されている吸着剤に一酸化炭素を吸着させる吸着(
n)工程を行う。
上述の如く、吸着塔Cの塔内圧力が大気圧付近になった
ところでバルブ20を開き、製品ガスタンク42より製
品ガスを該吸着塔Cに導入し、吸着剤間の空隙に存在す
る窒素等の雑吸着成分ガスを追い出すパージ工程を行う
、その際、吸着塔Cの上部から流出するパージガスはバ
ルブ19を介して吸着塔りに導入され、パージガス中の
一酸化炭素を吸着する吸着(fir)工程が行われる。
上記パージ工程か終了した後、バルブ1つ及び20を閉
じて、バルブ21を開くことにより吸着塔Cは、減圧排
気装置41により減圧下で行う製品ガスの回収工程に移
行する。
一方、吸着塔りは、バルブ22を開くことによって上記
の吸着(ff)工程及び吸着(III)工程に引き続く
、前段処理ガスによる加圧工程に移り、更に塔内圧力が
所定の吸着圧力に達したならばバルブ23及び24を開
き、該吸着塔りにおける吸着(I)工程に移行する。そ
の後は、上述した吸着塔Cの場合と同様の一連の操作を
行う0以上詳述した一連の操作を吸着塔C及びDの間で
交互に繰り返して行うことにより、連続的に一酸化炭素
を分離精製することが可能となる。
そして、吸着塔E及びFについても、上記吸着塔C及び
Dと同様に一連の操作が交互に行われ、これにより製品
ガスの供給が連続的に、しがち円滑に行われるようにな
されている。
なお、前段処理装置及び後段処理装置をそれぞれ構成す
る吸着塔A、B及び吸着塔C〜Fに充填される吸着剤と
しては、例えば活性炭、活性アルミナ、合成又は天然(
改質したものを含む)ゼオライト等を具体的に挙げるこ
とができる。
又、第2図に示すシステムの操作方法は、前述したもの
に限定されるものでなく、所期の目的が達成される範囲
で任意に変更可能であることはいうまでもない0例えば
、1&段処理装置では、吸着(I)工程の前に行う吸着
(■)工程又は吸着(I[)工程は必ずしも実施しなく
ともよく、同様の操作を、例えば前段処理ガスで直接実
行することもできる。
続いて、本実施例の精製方法について、再び第1図に基
づいて説明する。
本実施例では、前記第2図に示したPSA装置システム
で製造され、製品ガスタンク42に貯留されている一酸
化炭素を主成分とする製品ガスを第2原料ガスRとして
使用する。
前述の如くしてPSA法により前記第1原料ガスよりも
純度が向上された一酸化炭素を主成分とする第2原料ガ
スRは、−酸化炭素精製ユニット54から導出され、低
純度製品co用バッファタンク56に貯留され、更に該
タンク56より第2分離装置52に導入され、ここでも
PSA法により更に純度が向上された一酸化炭素からな
る精製カス(高純度製品ガス)P+が製造され、高純度
COホルダ58に貯留された後、高純度製品ガスとして
所望の用途に供給される。
本実施例においては、前記第2原料ガスRの一部は低純
度COホルダ6oに貯留され、該ホルダ60において、
第2分離装置52における吸着工程で排出され、上記C
Oホルダ6oに導入される廃ガスP2と混合され、得ら
れた低純度製品ガスP3は合成化学の原料等として供給
される。なお、この低純度製品ガスP3の製造は必ずし
も実施しなくともよい。
本実施例における前記第1分離装置50は、前述した如
く、前記第2図に示したシステムと同一の構成からなり
、その基本操作も同一である。即ち、上記第1分離装置
50自体が、二酸化炭素を吸着除去する脱C02−PS
A装置からなる前段処理と、−酸化炭素の吸着分離回収
を行う脱N2−PSA装置からなる後段処理とで構成さ
れている。
又、前記第2分離装置52は、図面からもわかるように
、前記第2図に示したシステムの後段処理装置と同一の
構成からなり、詳細は省略するが、その基本的操作も同
一である。但し、前述の如く、吸着(I)工程で排出さ
れる廃ガスは第2原料ガスRの一部と混合され、低純度
製品ガスP3として利用されるようになっている。なお
、第2分離装置52では、第1分離装置50(第2図)
でC〜Fで示した4基の吸着塔を、それぞれ便宜上1〜
4の符号で示した。
以上詳述した如く、本実施例によれば、既に濃縮されて
一酸化炭素を主成分とする第2原料ガスRに対して、吸
着塔1〜4で構成される第2分離装置52により更に脱
N2−PSA法を適用するため、極めて高純度の一酸化
炭素を製造することかできる0例えば、第1原料ガスが
70%の一酸化炭素を含有している場合には、精製ガス
P1を99.95%以上の高純度に精製することができ
る。
又、本実施例では、第1分離装置で二酸化炭素の除去も
行うことができるため、炭酸ガスの含有量が比較的高い
第1原料カスの精製も可能である。
吸着工程で排出される廃ガスP2は、第2原料カスRの
一部と混合して、低純度製品カスとして利用してもよく
、又、燃料ガス等としても利用可能である。
次に、第1図に示したPSA装置を用い、下記第1表に
示す7エ程のスゲジュールに従って、第2分離装置52
の各吸着塔1〜4を操作した場合の具体例を示す。
第 1
表
実施例条件及び結果は以下に示す通りであった。
(a)充填剤 モルデナイト系ゼオライト1 k(J
/筒
(わ)原料ガス組成 C0=98.5%(第2原料ガス
)N2=1.3%
C02=0.03%
N2=0.1%
量 550J2/h
(C)入口ガス圧力 0 、8kg/ci2G出ロガス
圧力 500〜1000μIAg(d)製品ガス構成
CO≧99.95%N2≦0.03
CO2≦0.02
H2≦0.01
量 200β/h
(e)廃ガス組成 C0=97.7〜97.5%
N2 卒1.9〜2.0%
C02=0.1〜0.4%
N2=0.4〜0.8%
量 350℃/h
(f)Co回収率
=(低純製品中のCOカス量
+高純製品中のCOカス量)
/原料ガス中のCOカス量
この収率は1段の吸着装置の収率のみで決まり、60〜
80%程度である。
上記結果より、本実施例が極めて有効であることが明ら
かである。
以上、本発明方法を具体的に詳述したが、本発明の一酸
化炭素の精製方法は前記実施例に示したものに限定され
るものでないことはいうまでもない。
例えば、第2原料ガスの供給手段は、前記第2図に示し
たPSA装置に限られるものでなく、酸化炭素を主要成
分の一つとして含有する混合ガスから一酸化炭素を主成
分とするガスに濃縮できる方法であれば、他の構成から
なるSPA装置であっても、又はc osorb法等の
他の手段であってもよい。
又、実施例では、第1分離装置50に、1段のPSA装
置が直列に継設された装置を用いる場合を示したが、必
要に応じて、例えば、前記の第2分離装置と同構成のP
SA装置を、該第2分M装置に更に直列に継設し、2段
、3段・・・とじて、−ih化炭素の純度を更に向上さ
せることも可能である。その際、各段階における廃ガス
はその前の段階の製品ガスと混合し、低純度製品ガスと
して利用してもよい。
又、本発明方法に適用されるPSA装置は、第1図に示
したものに限られるものでなく、−酸化炭素の純度向上
に適用可能なものであれば任意の構成からなるPSA装
置を適用することができる。Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram of a pressure fluctuation adsorption separation system to which an embodiment of the present invention is applied. This system includes a first stage pressure fluctuation adsorption separation device (hereinafter referred to as the first separation device) 50, and a second stage pressure fluctuation type adsorption device (hereinafter referred to as “first separation device”) connected in series to the first separation device 50. It mainly consists of a second separation device) 52 and three gas holders 56, 58, and 60. First, the first separation device 50 that separates and recovers carbon monoxide from the first source gas supplied to the system will be described. An example of the first separation apparatus 50 is one in which the -carbon oxide purification unit 54 is equipped with a PSA apparatus consisting of a system shown in the schematic diagram of FIG. 2. The above-mentioned PSA device is manufactured by the applicant in Japanese Patent Publication No. 64-1044.
This method is specifically disclosed in Japanese Patent Application No. 3, and in the following examples, a case will be mainly described in which the first raw material gas is processed using the PSA apparatus system shown in FIG. 2 above. In Fig. 2, adsorption towers A and B constitute a CO2 PSA device for adsorbing and removing carbon dioxide, which is a front-stage treatment device, and adsorption towers C to F are rear-stage treatment devices, which adsorb and remove carbon monoxide. A deN2 PSA device for recovery is constituted, and the adsorption towers A to F are organically connected via pipes shown by solid lines to enable the processing described in detail below. The operation of the pre-processing device will be explained. Both adsorption towers A and B are filled with an adsorbent that selectively adsorbs carbon dioxide, and are supplied with the first raw material gas from below. This first raw material gas is, for example, converter exhaust gas, and contains carbon dioxide, nitrogen, and hydrogen as main components in addition to carbon oxide. Now, adsorption tower A has completed the purge process performed under reduced pressure, valves 1 to 6 are closed, and the internal pressure of the tower is, for example, 30
0~30Torr", if G therefore c, t30Torr
It is as below. On the other hand, the adsorption tower B has completed the adsorption process, and Nokurubu 7 to 1
2 are all closed, only the knob 9 is opened, and the stage has entered the depressurization process. Based on the above state, the cycle of adsorption and removal of carbon diacid will be explained focusing on adsorption tower A. First, the nozzle 6 is opened to introduce the pre-processing gas (de-CO2 residue) into the adsorption tower A, and the pressure inside the tower is 0.01-3.0 kg/cl'G, preferably 0.2-1. When the pressure in the column does not reach Okq/cl''G, close the valve 6, then open the knobs 1 and 2 at ν1 to flow the first raw material gas so that the pressure inside the column is maintained within the above range. The above-mentioned pre-processing gas that adsorbs carbon dioxide can be supplied, for example, from a buffer tank (not shown) in which the gas that has completed the pre-processing is stored.The predetermined adsorption step is completed. After that, close valves 1 and 2,
After opening the valve 3 to lower (relieve) the pressure inside the tower to near atmospheric pressure, the valve 3 is closed. Next, the valve 4 is opened and the inside of the tower is forcibly evacuated by the vacuum pump 40, and the adsorbed carbon dioxide is desorbed. At that time, the pressure inside the column is, for example, 300 to 30 TOr.
Depending on the case, the exhaust gas is evacuated to 30 Torr or less, and in that state, the waste residue (discharged in the adsorption (I) step and stored in the tank 43) from the post-processing device (discharged in the adsorption (I) step) is introduced into the column and a purge step is carried out. conduct. After the above purge step is completed, valves 4 and 5 are closed, the process returns to the first step, valve 6 is closed, and the subsequent operations described above are performed. By sequentially repeating each of the above operations for each of the adsorption towers A and B, carbon dioxide can be continuously removed by adsorption and desorption. Next, the operation of the post-processing device will be explained. The pre-processed gas from which carbon dioxide has been removed, which is supplied from the adsorption towers A and B, is introduced into the T& stage treatment device, where nitrogen and hydrogen are removed, resulting in concentrated carbon monoxide ( recovered as product gas). Adsorption towers C, D, E, and F are all filled with an adsorbent that selectively adsorbs -carbon oxide. For convenience, focusing on adsorption towers C and D, the cycle of adsorption separation and recovery of -carbon oxide will be explained based on the state in which adsorption tower C is in the adsorption (I) step and adsorption tower is in the product gas recovery step. do. Now, the valves 18 and 17 are open, and the pre-processing gas is introduced into the adsorption tower C from below and is flowing upward.
As a result, carbon monoxide is desorbed from the adsorbent, and the desorbed and recovered carbon monoxide is stored in the product gas tank 42 as a product gas (second source gas). The internal pressure (adsorption pressure) in the adsorption (I) step of the adsorption tower C is determined by the supply pressure of the pretreatment gas, and is usually 0.01 to 3.0 ko/cn2G, preferably 0.2 to 1. , is set to Oka/cn2G. or,
The internal pressure of the adsorption tower p in the recovery process is 300 to 30T.
orr = 30 Torr or less in some cases. When the adsorption (I> step) in adsorption tower C is completed, valves 18 and 17 are closed, and valve 27 is also closed at the same time to complete the product gas recovery step in the adsorption tower.
) The end point of the process is determined based on, for example, the point in time when the concentration of carbon monoxide in the gas at the outlet of the adsorption tower becomes equal to the concentration at the inlet. Next, the valve 19 in the pipe connecting adsorption towers C and D is opened to reduce the internal pressure of adsorption tower C to near atmospheric pressure, and the gas released at that time is introduced into the adsorption tower.
Adsorption (adsorption) in which carbon monoxide is adsorbed to the adsorbent packed
n) carrying out the process; As mentioned above, when the internal pressure of the adsorption tower C reaches near atmospheric pressure, the valve 20 is opened, and the product gas is introduced into the adsorption tower C from the product gas tank 42 to eliminate nitrogen, etc. present in the voids between the adsorbents. A purge process is carried out to drive out miscellaneous adsorbed component gases. At this time, the purge gas flowing out from the upper part of the adsorption tower C is introduced into the adsorption tower through the valve 19, and an adsorption (fir) process is performed to adsorb carbon monoxide in the purge gas. will be held. After the above purge step is completed, by closing one valve and 20 and opening the valve 21, the adsorption tower C shifts to a product gas recovery step performed under reduced pressure by the reduced pressure exhaust device 41. On the other hand, by opening the valve 22, the adsorption tower moves to a pressurization step using the pre-processing gas, which follows the adsorption (ff) step and adsorption (III) step, and the pressure inside the tower reaches a predetermined adsorption pressure. Once this is done, valves 23 and 24 are opened, and the process moves to the adsorption (I) step in the adsorption tower. Thereafter, the same series of operations as in the case of adsorption tower C described above are repeated alternately between adsorption towers C and D, thereby continuously removing carbon monoxide. It becomes possible to separate and purify. For adsorption towers E and F, a series of operations are performed alternately in the same manner as for adsorption towers C and D, so that the product gas is continuously and smoothly supplied. . In addition, the adsorbent filled in adsorption towers A, B and adsorption towers C to F, which constitute the first-stage treatment device and the second-stage treatment device, respectively, is, for example, activated carbon, activated alumina, synthetic or natural (
Specific examples include zeolites (including modified ones). Furthermore, it goes without saying that the method of operating the system shown in FIG. In the stage treatment device, the adsorption (■) step or the adsorption (I[) step performed before the adsorption (I) step does not necessarily need to be performed, and a similar operation can also be performed directly, for example, with the pre-processing gas. . Next, the purification method of this example will be explained again based on FIG. 1. In this embodiment, a product gas containing carbon monoxide as a main component produced by the PSA system shown in FIG. 2 and stored in the product gas tank 42 is used as the second raw material gas R. The second raw material gas R, which has carbon monoxide as its main component and whose purity has been improved compared to the first raw material gas by the PSA method as described above, is led out from the carbon oxide purification unit 54 and used for low-purity products co. It is stored in a buffer tank 56, and further introduced from the tank 56 into the second separation device 52, where also purified gas (high purity product gas) P+ consisting of carbon monoxide whose purity is further improved by the PSA method is produced, After being stored in the high-purity CO holder 58, it is supplied as a high-purity product gas to a desired use. In this embodiment, a part of the second raw material gas R is stored in the low-purity CO holder 6o, and in the holder 60,
The above-mentioned C
The low-purity product gas P3 obtained by mixing with the waste gas P2 introduced into the O-holder 6o is supplied as a raw material for synthetic chemistry. Note that the production of this low-purity product gas P3 does not necessarily have to be carried out. As described above, the first separation device 50 in this embodiment has the same configuration as the system shown in FIG. 2, and its basic operation is also the same. That is, the first separation device 50 itself is a de-C02-PS that adsorbs and removes carbon dioxide.
It consists of a first-stage treatment consisting of the A device and a second-stage treatment consisting of a deN2-PSA device that adsorbs, separates and recovers -carbon oxide. Further, as can be seen from the drawing, the second separation device 52 has the same configuration as the post-processing device of the system shown in FIG. 2, and its basic operation is also the same, although details are omitted. . However, as described above, the waste gas discharged in the adsorption (I) step is mixed with a portion of the second raw material gas R and used as the low-purity product gas P3. Note that in the second separation device 52, the first separation device 50 (FIG. 2)
The four adsorption towers shown as C to F are designated as 1 to 1 for convenience, respectively.
It is indicated by the symbol 4. As described in detail above, according to this embodiment, the second raw material gas R, which is already concentrated and whose main component is carbon monoxide, is further processed by the second separation device 52 composed of the adsorption towers 1 to 4. Since the N2-PSA method is applied, extremely high purity carbon monoxide can be produced. For example, when the first raw material gas contains 70% carbon monoxide, the purified gas P1 is It can be purified to a high purity of 99.95% or more. Furthermore, in this embodiment, since carbon dioxide can also be removed in the first separation device, it is also possible to purify the first raw material dregs, which has a relatively high content of carbon dioxide gas. The waste gas P2 discharged in the adsorption step may be mixed with a portion of the second raw material sludge R and used as a low-purity product sludge, or may also be used as a fuel gas or the like. Next, using the PSA device shown in FIG. 1, the second separation device 52 is
A specific example of operating each of the adsorption towers 1 to 4 will be shown below. Table 1 Example conditions and results are as shown below. (a) Filler mordenite zeolite 1k (J
/ cylinder (wa) Raw material gas composition C0 = 98.5% (second raw material gas) N2 = 1.3% C02 = 0.03% N2 = 0.1% Amount 550J2/h (C) Inlet gas pressure 0, 8kg/ci2G output log gas pressure 500-1000μIAg (d) Product gas composition
CO≧99.95%N2≦0.03 CO2≦0.02 H2≦0.01 Amount 200β/h (e) Waste gas composition C0=97.7-97.5% N2 Graduation 1.9-2.0 % C02 = 0.1 to 0.4% N2 = 0.4 to 0.8% Quantity 350℃/h (f) Co recovery rate = (Amount of CO residue in low purity product + CO residue in high purity product) amount)/Amount of CO residue in the raw material gas This yield is determined only by the yield of the first stage adsorption device, and is 60 to
It is about 80%. From the above results, it is clear that this example is extremely effective. Although the method of the present invention has been specifically described in detail above, it goes without saying that the method of purifying carbon monoxide of the present invention is not limited to that shown in the above embodiments. For example, the means for supplying the second raw material gas is not limited to the PSA device shown in FIG. As long as it is possible to concentrate the amount of water, it may be possible to use a SPA device with a different configuration or other means such as a cosorb method. Further, in the embodiment, a case is shown in which a device in which a one-stage PSA device is connected in series is used as the first separation device 50, but if necessary, for example, a device having the same configuration as the second separation device described above may be used. P of
It is also possible to further improve the purity of the -ih carbon by further connecting the SA device in series with the second separation M device to form two stages, three stages, and so on. In this case, the waste gas at each stage may be mixed with the product gas at the previous stage and used as a low-purity product gas. Furthermore, the PSA apparatus applied to the method of the present invention is not limited to the one shown in FIG. can do.
本発明の一酸化炭素精製方法によれば、転炉排ガス又は
高炉排ガス等の一酸化炭素を主要成分として含有する混
合ガスを第1原料ガスとして用い、最終的に分析用標準
ガスとしても使用可能な高純度の一酸化炭素を簡単に且
つ安価に得ることができる。According to the carbon monoxide purification method of the present invention, a mixed gas containing carbon monoxide as a main component, such as converter exhaust gas or blast furnace exhaust gas, is used as the first raw material gas, and can finally be used as a standard gas for analysis. High purity carbon monoxide can be obtained easily and inexpensively.
第1図は、本発明の一実施例に適用される圧力変動式吸
着分離装置の概略構成図、
第2図は、第2原料ガスの供給手段の概略構成図である
。
A〜F、1〜4・・・吸着塔、
R・・・第2原料ガス、 50・・・第1分離装置、
52・・・第2分離装置、 Pl・・・高純度製品ガス
、Pl・・・廃ガス、 P3・・・低純度製品ガ
ス。FIG. 1 is a schematic configuration diagram of a pressure fluctuation type adsorption separation device applied to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a second raw material gas supply means. A to F, 1 to 4... Adsorption tower, R... Second raw material gas, 50... First separation device,
52...Second separation device, Pl...High purity product gas, Pl...Waste gas, P3...Low purity product gas.
Claims (2)
ら分離回収した、一酸化炭素を主成分とする製品ガスを
第2原料ガスとし、 1段階の又は直列に2段階以上に継設された圧力変動式
吸着分離装置で上記第2原料ガスの全部又は一部を処理
し、高純度の一酸化炭素を分離回収することを特徴とす
る一酸化炭素の精製方法。(1) Product gas containing carbon monoxide as a main component separated and recovered from the mixed gas containing carbon monoxide in the first raw material gas is used as the second raw material gas, and is used in one stage or in two or more stages in series. A method for purifying carbon monoxide, comprising treating all or part of the second raw material gas with a pressure fluctuation type adsorption separation device, and separating and recovering high-purity carbon monoxide.
の廃ガスを低純度製品として使用することを特徴とする
一酸化炭素の精製方法。(2) A method for purifying carbon monoxide according to claim 1, characterized in that the waste gas from the pressure fluctuation adsorption separation device is used as a low-purity product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2038105A JPH03242313A (en) | 1990-02-19 | 1990-02-19 | Purification of carbon monoxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2038105A JPH03242313A (en) | 1990-02-19 | 1990-02-19 | Purification of carbon monoxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03242313A true JPH03242313A (en) | 1991-10-29 |
Family
ID=12516193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2038105A Pending JPH03242313A (en) | 1990-02-19 | 1990-02-19 | Purification of carbon monoxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03242313A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683492A (en) * | 1995-05-24 | 1997-11-04 | Linde Aktiengesellschaft | Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen |
JP2009222352A (en) * | 2008-03-18 | 2009-10-01 | Jfe Steel Corp | Separation method for blast furnace gas |
JP2009226258A (en) * | 2008-03-19 | 2009-10-08 | Sumitomo Seika Chem Co Ltd | Process for separation of blast furnace gas, and device of separating blast furnace gas |
JP2009226257A (en) * | 2008-03-19 | 2009-10-08 | Sumitomo Seika Chem Co Ltd | Process for separation of blast furnace gas, and system of separating blast furnace gas |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6078613A (en) * | 1983-10-06 | 1985-05-04 | Kawasaki Steel Corp | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method |
JPH0359727A (en) * | 1989-07-28 | 1991-03-14 | Fujitsu Ltd | Saving/restoring system in microprocessor |
-
1990
- 1990-02-19 JP JP2038105A patent/JPH03242313A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6078613A (en) * | 1983-10-06 | 1985-05-04 | Kawasaki Steel Corp | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method |
JPH0359727A (en) * | 1989-07-28 | 1991-03-14 | Fujitsu Ltd | Saving/restoring system in microprocessor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683492A (en) * | 1995-05-24 | 1997-11-04 | Linde Aktiengesellschaft | Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen |
JP2009222352A (en) * | 2008-03-18 | 2009-10-01 | Jfe Steel Corp | Separation method for blast furnace gas |
JP2009226258A (en) * | 2008-03-19 | 2009-10-08 | Sumitomo Seika Chem Co Ltd | Process for separation of blast furnace gas, and device of separating blast furnace gas |
JP2009226257A (en) * | 2008-03-19 | 2009-10-08 | Sumitomo Seika Chem Co Ltd | Process for separation of blast furnace gas, and system of separating blast furnace gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101388266B1 (en) | Method and apparatus for separating blast furnace gas | |
SU1433407A3 (en) | Method of separating hydrocarbons | |
JPS5922625A (en) | Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method | |
US6045603A (en) | Two phase pressure swing adsorption process | |
JPS6261616A (en) | Method for separating high purity gas from gaseous mixture | |
JPH0359727B2 (en) | ||
JPH0838846A (en) | Method for recovering light substance containing hydrogen orhelium from high pressure flow of feeding matter | |
GB2155805A (en) | Gas separation process and apparatus | |
EP0193716A2 (en) | Adsorptive separation of methane and carbon dioxide gas mixtures | |
CA1238868A (en) | Method for obtaining high-purity carbon monoxide | |
GB2335378A (en) | Two stage pressure swing adsorption | |
KR101935069B1 (en) | Target gas separation method and target gas separation device | |
JPS60176901A (en) | Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption | |
JPH03242313A (en) | Purification of carbon monoxide | |
JPS6137970B2 (en) | ||
JPH0230607A (en) | Production of highly pure nitrogen | |
JPS62153388A (en) | Concentration of methane | |
JP2587334B2 (en) | Method of separating CO gas not containing CH4 | |
JPH0112529B2 (en) | ||
KR100228239B1 (en) | Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product | |
JPS6097022A (en) | Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method | |
JPS60155519A (en) | Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process | |
JP2848557B2 (en) | Hydrogen purification method | |
JPH0221285B2 (en) | ||
JPS60155521A (en) | Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process |