JPS6078613A - Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method - Google Patents

Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Info

Publication number
JPS6078613A
JPS6078613A JP58187480A JP18748083A JPS6078613A JP S6078613 A JPS6078613 A JP S6078613A JP 58187480 A JP58187480 A JP 58187480A JP 18748083 A JP18748083 A JP 18748083A JP S6078613 A JPS6078613 A JP S6078613A
Authority
JP
Japan
Prior art keywords
adsorption
gas
adsorption tower
tower
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58187480A
Other languages
Japanese (ja)
Other versions
JPS6139087B2 (en
Inventor
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Shigeo Matsui
松井 滋夫
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
JFE Steel Corp
Osaka Oxygen Industries Ltd
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd, Kawasaki Steel Corp filed Critical OSAKA OXGEN IND Ltd
Priority to JP58187480A priority Critical patent/JPS6078613A/en
Publication of JPS6078613A publication Critical patent/JPS6078613A/en
Publication of JPS6139087B2 publication Critical patent/JPS6139087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To economically obtain high concn. carbon monoxide according to a pressure swing type adsorptive separation method, by using an adsorbent having selectivity to carbon dioxide and carbon monoxide. CONSTITUTION:Stock gas is introduced into an adsorbing tower A under pressure and a valve 1 is opened to raise pressure from a vacuum state. The valve 1 and an outlet valve 2 are closed while a valve 3 is opened to reduce and release the internal pressure of the adsorbing tower A to bring the same to the vicinity of atmospheric pressure. The valve 3 is closed while a valve 4 is opened from the lower part of the adsorbing tower and vacuum exhaustion is performed by using a vacuum pump to desorb a carbon dioxide component. The waste gas from a denitrification PSA apparatus is utilized by opening a valve 5 and carbon dioxide is expelled from the adsorbent by accompany adsorption with purge gas. A valve 6 is opened to perform pressurization by the product gas.

Description

【発明の詳細な説明】 本発明は圧力変動式吸着分離方法(PSA法)によって
、転炉又は高炉等の排ガス、主として一酸化炭素、二酸
化炭素、望素乞片む原料ガスから高純度の一酸化炭素を
得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a pressure fluctuation adsorption separation method (PSA method) to extract a high-purity product from raw material gas containing exhaust gas from a converter or blast furnace, mainly carbon monoxide, carbon dioxide, and carbon dioxide. Concerning a method for obtaining carbon oxide.

IIl!鉄所において精錬容器から発生する排ガスは、
比較的多量のCOガスを含有している。その組成は転炉
排ガス、高炉排ガスについては下記に示す範囲内にある
、 (:OC02N2 It2 転炉排ガス 6()87% 3−2 (3係 3−20
係 1〜10係高炉排ガス 2()−30係2ト30’
164()−60% 1〜10’1もし、これらのわr
ガスから高純度の(二〇ガスを安価に回収できれば、合
成化学原料、精錬容器内溶融金属中への吹込みガスとし
て用途が拓ける。合成化学原料とこのCOガス″9f考
える際には、合成反応が高温、高圧条件下で行なわれる
のが通例であることから、反応容器を損傷させる酸化性
ガスの除去が必須であり、CO2浮度7出来る限り低下
させる必要がある。また反応効率を上げるためには、通
常反応に関与し1.cいN2も出来るだげ除去するのが
望ましい。一方、溶融金属の精錬の効率化欠目的とする
精錬容器内へのガス吹込み操作は広(行なわれているが
、溶t■金り中の不純ガス成分(N2、N2など)の濃
度上昇を嫌う観点から高価なAr ガスが使用されるの
が通例である。製鉄所内で大量に発生する転炉ガス、高
炉ガスから高純度Coガスを安価に回収できれば、これ
をAtに代替することがはg可能である。この際、高純
III COガスのN2濃度は溶液の窒素p度上昇ヶ防
ぐ観点から低いのが望ましく、またcO2濃度もギ6錬
容器内張り耐火物として汎用されている炭素系耐火物の
酸化損傷を防ぐ観点から低いのが蹟ましい。
IIl! Exhaust gas generated from smelting vessels at ironworks is
Contains a relatively large amount of CO gas. The composition of converter exhaust gas and blast furnace exhaust gas is within the range shown below.
Sections 1 to 10 Blast furnace exhaust gas 2()-30 Sections 2 and 30'
164()-60% 1~10'1 If these wares
If high-purity gas can be recovered at low cost, it can be used as a raw material for synthetic chemicals or as a gas to be injected into the molten metal in a refining vessel.When considering synthetic chemical raw materials and this CO gas, Since the reaction is usually carried out under high temperature and high pressure conditions, it is essential to remove oxidizing gases that can damage the reaction vessel, and it is necessary to reduce the CO2 floatation level as much as possible.Also, it is necessary to increase the reaction efficiency. In order to achieve this, it is desirable to remove as much as possible the 1.cm of N2 that normally participates in the reaction.On the other hand, the operation of blowing gas into the refining vessel, which aims to improve the efficiency of refining molten metal, is widely practiced. However, from the viewpoint of avoiding an increase in the concentration of impure gas components (N2, N2, etc.) in molten metal, expensive Ar gas is usually used. If high-purity Co gas can be recovered from furnace gas or blast furnace gas at low cost, it is possible to replace it with At.In this case, the N2 concentration of high-purity III CO gas will prevent the nitrogen concentration of the solution from increasing. From this point of view, it is desirable that the cO2 concentration be low, and it is also desirable that the cO2 concentration be low from the standpoint of preventing oxidative damage to carbon-based refractories, which are commonly used as refractories lining steel vessels.

従来、上記排ガスを原料に高純度COガスを回収するプ
ロセスとしては深冷分離法、あるいは調液法、Co50
rb法といった溶液吸収法が考えられている。しかしな
がら前者においては、低温と高圧を、後者においては高
温と高圧を必要とし、両者共に設備がfν雑かつ高価に
なる欠点がある。また深冷分1幡法においてはへ2 と
COの那点が接近しているため、N2とCOの分離が完
全に行なうことも困難である。
Conventionally, the processes for recovering high-purity CO gas using the above-mentioned exhaust gas as raw materials include the cryogenic separation method, the liquid preparation method, and the Co50
Solution absorption methods such as the rb method are being considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complex and expensive. Furthermore, in the cryogenic separation method, it is difficult to completely separate N2 and CO because the centers of H2 and CO are close to each other.

以上の現状に艦みて、本発明者らは、より簡便なプロセ
スで安価に高純j”l−COガスを回収する技術として
吸着法による開発を試みL0 従来底吹きまたは土、底吹き転炉などで、酸素または少
なくともこれYfむ気体よりなる4゛δ蝕用ガス気流の
吹込みに多用されている2重管タイプQ)ような、軟管
羽口の保静流1木としてプロパンガスが使用され工いる
。しかしプロパンガス自国は購入しなければならず、そ
の分コスト高と1よっていTこ。本発明者はこσ)よ5
な被包ガスとしてプロガスσ)代りに他σ)ガス欠使用
−[る研究χ行なった。
In view of the above-mentioned current situation, the present inventors attempted to develop an adsorption method as a technology to recover high-purity J"l-CO gas at low cost through a simpler process. Propane gas is used as a holding flow in soft tube tuyeres, such as the double tube type Q), which is often used for blowing in a 4゛δ corrosive gas stream consisting of oxygen or at least a gas containing this Yf. However, the propane gas must be purchased in one's own country, which increases the cost.
A study was carried out using progas σ) as an encapsulated gas instead of other σ).

周知のリロく、−酸化炭素は一般に天然カス、プロパン
まtこは製油所ガス欠油性炭火11fj (、て脱υ1
f5シたのち、水蒸気およびCO□と(1t、合し、ソ
ーダーでb′G浄・脱水の工程をへて深冷分u便塔法に
より1苗的規模で現在製造されている。
As is well known, carbon oxide is generally used as natural scum, and propane is used in refinery gas and oil-deficient charcoal fires.
After f5, it is combined with steam and CO□ (1 ton), and subjected to a b'G purification and dehydration process using soda, and is currently produced on a single-seedling scale by the cryogenic separation column method.

しかしながら、この方法は聞産乞目的としfこ高純度ガ
スの製造には最適と考えられるが、本方式には、低温と
高圧を必要とする1こめに液化設備が高価になる欠点が
ある〇 二酸化炭素は、高温において酸化性ガスとして作用し、
通常羽口周辺部の耐火物として常用されるマグネシア・
カーボンれんが中の炭素やれんが目地材中の炭素火酸化
消耗するため、その分耐火物の損耗が加速される不利も
ある。
However, although this method is considered to be optimal for producing high-purity gas for production purposes, it has the disadvantage that it requires low temperature and high pressure, and the liquefaction equipment is expensive. Carbon dioxide acts as an oxidizing gas at high temperatures;
Magnesia, which is usually used as a refractory material around the tuyere.
There is also the disadvantage that the carbon in the carbon bricks and the carbon in the brick joint material are consumed by fire oxidation, which accelerates the wear and tear of the refractories.

かようにして軟管羽口の保祷流体としての二酸化炭素の
利用は、経済性において1疋米のプロパンにはるかに及
ばず、またi1人物の耐用寿命にも悪影)午を及ぼ丁。
In this way, the use of carbon dioxide as a maintenance fluid for soft tube tuyeres is far less economical than one square meter of propane, and has a negative impact on the useful life of a person.

加えて、0□ガスが鉄浴中に吹込まれて大量に生成しT
こFeOが、軟管羽目の先端周辺の耐火物と反応して、
その融点乞下げ、高温の溶鉄によって該耐火物が溶損す
るおそれがあったところ、(コ0の吹込みは次式(5) %式%) の反応でFe0YA1元し、該周辺でのFeO8度を−
Fげる点でも有利である上、COは還元性であるため、
丁でに従来技術として掲げy、−CO2が酸化性である
のに対し、と(に底吹き転炉の炉底耐大物として有用な
、マグネシア・カーボン系ないしマグネシア・ドロマイ
ト・カーボン系れんがσ)μs化による劣化の眞点から
も有利である。
In addition, 0□ gas is blown into the iron bath and is generated in large quantities.
This FeO reacts with the refractory material around the tip of the soft tube lining,
There was a risk that the melting point would be lowered and the refractory would be melted and damaged by the high temperature molten iron, but the reaction of (injection of Ko0 is the following formula (5) % formula %) made Fe0YA1 element, and FeO8 degree in the vicinity -
In addition to being advantageous in terms of F yield, CO is reducing, so
While -CO2 is oxidizing, and (magnesia-carbon-based or magnesia-dolomite-carbon-based bricks σ, which are useful as bottom-resistant materials in bottom-blowing converters) are listed as prior art. This is also advantageous from the viewpoint of deterioration due to μs.

ところで上に説明しL羽口ならびにその周辺耐火物の溶
損軽減機構、と(に上(帽4)式σ)吸熱反応を利用し
て羽口保訝効果を高めるためには、粉状炭素の析出を十
分に図ることが望ましく、こσ)点彼包ガス中のCO濃
度が商いほど有利である。
By the way, in order to enhance the tuyere protection effect by utilizing the mechanism for reducing erosion of the L tuyere and its surrounding refractories and the endothermic reaction (formula 4) described above, powdered carbon It is desirable to achieve sufficient precipitation of σ), and the higher the CO concentration in the gas, the more advantageous it is.

しかしながら被包ガスとして高CO濃度たとえは純粋な
COガスケ使用することはコストσ)上昇な招き、低コ
スト化が叫ばれろ現状と逆行する。
However, using a gas with a high CO concentration (for example, pure CO gas) as the encapsulating gas will lead to an increase in cost (σ), which is contrary to the current situation, which calls for cost reduction.

この点、製鉄所内におい℃入手容易で比較的多情のCO
ン含む高炉排ガス或は転炉ゼ1ガスを利用できればコス
トの面でも極めて有利なのであるか高炉排ガス及び転炉
排ガスは一例として下記σ)川底な有する。
In this respect, CO2 in steelworks is easy to obtain and relatively sensitive.
Blast furnace exhaust gas and converter exhaust gas have, as an example, the following σ) river bottom.

一巽 −90,N、 1舅 」L ^炉排ガス 25.0 20.0 54.0 5.0 
0転炉排ガス 66.0 16.0 15.9 2Ll
 O,1かように比較的多縦のαJ2とN2 とを含有
する高炉排ガスをそのまま被包ガスとして使用した場合
には、次のような問題が生じることが明らかにされTこ
Kazutatsumi -90,N, 1"L Furnace exhaust gas 25.0 20.0 54.0 5.0
0 Converter exhaust gas 66.0 16.0 15.9 2Ll
It has been revealed that if blast furnace exhaust gas containing relatively multi-vertical αJ2 and N2 such as O,1 is used as it is as encapsulating gas, the following problems will occur.

すなわちCO2量が(?0量よりも多いプh合には、粉
状炭素の析出ケもkら丁反応は起らず、軟管羽目の冷却
保61は被包ガスの単l尤るkIJ4熱変化に止まり、
その効果に乏しいこと、また吹錬終了時の溶鉄中N2a
度が著しく上昇丁を結果、鋼品質が阻害される。
In other words, when the amount of CO2 is greater than (?0 amount), the precipitation of powdery carbon and the reaction do not occur, and the cooling insulation 61 of the soft tube layer is affected by the single liter of encapsulated gas. Stops at thermal change,
The effect is poor, and N2a in the molten iron at the end of blowing.
As a result, the steel quality will be impaired.

上記の問題を解決丁べく税意研究を重ね1こ結果小米る
限り高の度の一噸化炭素で二酸化炭素及び窒素が1%以
下であれば鋼品質ケ阻害しない知見’tv41こσ)で
該混合ガスよりI/I単で叶<A的に一酸化灰素を製部
分離する方法を吸着法ケ用い、て行える様税意検討を重
ね瓦。
In order to solve the above problem, we have conducted a series of research studies and found that if the carbon dioxide and nitrogen content is 1% or less, the quality of the steel will not be affected. We have repeatedly considered the possibility of separating ash monoxide from the mixed gas using an adsorption method using only I/I.

前記排ガスの吸着法(PSA法)による吸着分離は、公
知であり、吸着剤に成層しにくいガス成分(以後、難吸
着成分と大5)の回収ン目的とし1こものに特公昭5B
−25928〜43−15045の12件?基本時計と
して種々公告あるいは出R」されている又、吸着テ1す
に吸着し!すいカス成分(以後易吸層成分と云う)ケ成
層剤に吸着させN9゜着して分1’lli回収すること
により易吸屑成分YA純度で分離する方法も古くから実
施され℃いる。例えばエチレン乞易吸尉成分とした具体
例および窒素分111Eへの応用について等がある。
The above-mentioned adsorption separation using the adsorption method (PSA method) of exhaust gas is well known and was developed in the 5th B.A.
12 items from -25928 to 43-15045? It has been advertised or published in various ways as a basic watch, and it can also be adsorbed to any suction tape! A method of separating the easy-absorbing dust component (YA) according to its purity has also been practiced for a long time, by adsorbing the water scum component (hereinafter referred to as the "easily absorbing layer component") to a stratification agent, depositing it on N9°, and recovering the fraction. For example, there are specific examples of using ethylene as a filler component and its application to nitrogen content 111E.

従来から行なわれているガス混合物中の吸N j’i!
1に易吸着成分ン回収−1−る方法は曲常次の操作火含
んだものである。吸着加圧工程−19流工程−説層工程
′?:幀次繰返丁ことによって吸着剤に易収着成分に帛
んだガスを11出丁ことが出来ろ。
Traditionally performed inhalation N j'i! in gas mixtures!
1. The method of recovering easily adsorbable components involves the following complicated operations. Adsorption pressurization process - 19 flow process - theory layer process'? : By repeating the process, it is possible to extract 11 times the gas mixed with the easily adsorbed component to the adsorbent.

しかし今回のlirガスの様に共吸着し?1−いガス成
分σ) −1’l’J化炭素を「む混合ガスより二酸化
炭素及び屋素乞除去し、商濃度の一酸化炭素とし′C回
収41’f製することは行なわれていない。
However, is it co-adsorbed like the LIR gas this time? It has not been carried out to remove carbon dioxide and carbon dioxide from a mixed gas containing carbon dioxide and convert it to carbon monoxide at a commercial concentration. do not have.

不出a11人は、先にN2及びα)2又はN2、CO2
及びCOから1よる混合物からPSA法によりN2ヲ除
去する方法罠つい1出願ケ行なった(特願昭57−15
9211号参照)。この先願昭57−159211号で
該混合ガスより一酸化炭素ヲ濃縮した場合、窒素は除去
されかつ水素・酸素は完全に除去されるものの一酸化炭
素と二酸化炭素とか共存する場合同じ様に吸着され濃縮
されるため、−酸化炭素の0度を充分に高めることが出
来なかった。そこで種々検討した結果前処理工程として
吸着法による二酸化炭素の除去技術を用い、組合せた結
果高濃度の一酸化炭素の槓製分離m酪を行うことが簡単
に経済的に行えることが411明した。
11 people who did not come out first had N2 and α)2 or N2, CO2
One application was filed for a method for removing N2 from a mixture of CO and 1 by the PSA method (Japanese Patent Application No. 57-15).
(See No. 9211). When carbon monoxide is concentrated from the mixed gas in the previous application No. 57-159211, nitrogen is removed and hydrogen and oxygen are completely removed, but when carbon monoxide and carbon dioxide coexist, they are adsorbed in the same way. Because of the concentration, it was not possible to sufficiently raise the temperature of -carbon oxide to 0 degrees. As a result of various studies, it was found that it was possible to easily and economically perform the separation of high-concentration carbon monoxide by using a carbon dioxide removal technology using adsorption as a pretreatment process. .

本発明は二段階吸M操作により、主として二酸化炭素、
−酸化炭素及び窒素からなる原料ガス中の一酸化炭素を
#縮する方法において、(al そのm1段階の吸着操
作は二酸化炭素に対して選択性ン有する吸着物質を充填
しy:2つ以上の吸着基音使用し、その方法は各吸着塔
で吸着および脱層馨繰返す圧力変動式吸着分離によって
その原料ガスから二に化炭素を除去することからなり、
(以後脱C02I)SA法と(・う)そして(b) 第
2段階の吸着操作は、第1工程の吸着工程から排出され
たガス(以下、第1工程袈品ガスという)中の一酸化炭
素に対して選択性ヶ有する吸着物質乞充填した2つ以上
の吸着塔を使用し、その方法は (:)第1工程袈品ガスにより吸着塔を加圧する加圧工
程、 (11) さらに第1工程製品ガスを吸着塔に流して、
吸着塔出口における易吸着成分の0度が吸着塔入口にお
ける易吸着成分の一度に達するまで又は両者の濃度が等
しくなる点の少し前まで吸着剤に易孜着成分馨吸着させ
ろ吸*(It工程、 611) 吸着(Il工程終了後上の吸着塔と真空脱着
が終った吸着塔とを連結し、前者の吸着塔からガスを後
者の吸着塔に導入し、611者の吸着塔の圧力ケ大気圧
又は大気圧近くまで降下させる減圧放出工程、 噛り 減圧した吸着塔に製品ガスを並流に導入して難吸
着成分をパージするパージ工程、tV) 吸着剤に吸着
され工いる品数M成分を真空ポンプを用いて脱着させ與
品ガスを回収する回収工程、及び 0公 製品回収が終った吸着塔と吸着工程が終った吸着
塔とを連結して後者の吸着塔からσ)ガスによる吸着(
11)工程、 から成り(以後脱N2PSA法という)、定期的に吸着
塔間f1流れケ変えて、全ての吸着塔において上記操作
ケ繰返丁ことを特徴とした方法に関する。
The present invention mainly uses carbon dioxide,
- In a method for condensing carbon monoxide in a raw material gas consisting of carbon oxide and nitrogen, (al) the adsorption operation in the m1 stage is performed by filling an adsorbent material with selectivity to carbon dioxide: y: two or more The method consists of removing carbon dioxide from the feed gas by repeated pressure fluctuation adsorption separation in each adsorption column, with adsorption and delayering.
(hereinafter referred to as de-CO2I) SA method (・u) and (b) The second stage adsorption operation is the monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage gas). Two or more adsorption towers filled with an adsorbent material having selectivity for carbon are used, and the method includes: (11) a pressurizing step of pressurizing the adsorption towers with a first stage head gas; The product gas of the first step is passed through an adsorption tower,
The adsorbent is allowed to adsorb the easily adsorbed component until the 0 degree of the easily adsorbed component at the outlet of the adsorption tower reaches the point of the easily adsorbed component at the inlet of the adsorption tower, or slightly before the point where the concentrations of both become equal. , 611) Adsorption (After the completion of the Il step, the upper adsorption tower and the adsorption tower where vacuum desorption has been completed are connected, and the gas is introduced from the former adsorption tower to the latter adsorption tower, and the pressure of the 611 adsorption tower is increased. A depressurized discharge process in which the pressure is lowered to atmospheric pressure or near atmospheric pressure, purge process in which the product gas is introduced in parallel flow into the depressurized adsorption tower to purge difficult-to-adsorb components, tV) The number of M components adsorbed by the adsorbent is A recovery process in which the product gas is recovered by desorption using a vacuum pump, and an adsorption tower with σ) gas from the latter adsorption tower by connecting the adsorption tower where product recovery has been completed and the adsorption tower where the adsorption process has been completed.
11) Step (hereinafter referred to as N2-de-PSA method), the method is characterized in that the above operation is repeated in all the adsorption towers by periodically changing the fl flow between the adsorption towers.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は主成分として一酸化炭素、二酸化炭素、窒素、
水素及び酸素から成る原料ガスから圧力変動式吸着分離
方法により一酸化炭素をい縮及び分l唯(UH−rる方
法において、ゼオライト系吸廣剤からなる吸層剤ケ収納
した2つ以上の吸着塔を使用する。
The main components of the present invention are carbon monoxide, carbon dioxide, nitrogen,
Carbon monoxide is condensed and fractionated from a raw material gas consisting of hydrogen and oxygen by a pressure fluctuation type adsorption separation method (in the UH-r method, two or more absorbers containing a zeolite-based absorbent are used). Use an adsorption tower.

第1段階における原料ガスから二酸化ガスlf:除去す
る工程は、通常のPSA法丁なわら吸着、減圧、製品ガ
スによるパージおよび製品ガスによる加圧の繰返しによ
り実施しても良く、又他の方法であっても良い。二酸化
炭素を除去する好ましい方法は次の通りである。
The step of removing the carbon dioxide lf from the raw material gas in the first stage may be carried out by repeating adsorption using a normal PSA method, depressurization, purging with product gas, and pressurization with product gas, or may be carried out by other methods. It may be. A preferred method of removing carbon dioxide is as follows.

二酸化炭素に対して選択性ケ有する吸着物質ケ充填し1
こ2つ以上の吸着塔乞+172JTJ L、その方法は
中 好ましくは回流方向に第11杵製品ガスによる吸着
塔を加圧する加圧工程、好ましくは1〜6に9 / a
d・(jまで〕n1圧する、(11)原料ガスケ吸着塔
に流して主として二酸化炭素を吸着物質に吸着させる吸
着工程、+**++ 好ましくは回流方向に次いで吸箔
Y大気圧印近まで減圧する減圧工程、 粒)好ましくは向(>lTh方回方向いで吸着塔乞真蒙
ポンプにより排気″1″′る排気l根、(好ましくはF
ルタ7. JJf気は60〜5 U (] ’I’or
r +で行なわれる)そして、 (Vl 好ましくは回流方向に次いで)況t’J2P 
S A装置I4′、からσ)屏棄ガスを用いて、真空排
気欠イiない1′、(からパージする、パージ上程、か
ら成り、定(υ;的に数層塔間の流れケ変えて、全ての
吸着塔におい又、上記操作な緑返すことから成る方法。
Filled with adsorbent material that is selective to carbon dioxide 1
If two or more adsorption towers are used, the method is preferably a pressurizing step of pressurizing the adsorption tower with the product gas of the 11th pestle in the circulation direction, preferably 1 to 6 to 9/a.
(11) Adsorption step in which carbon dioxide is mainly adsorbed on the adsorbent material by flowing the raw material gas into an adsorption tower, +**++ Preferably, in the recirculation direction, the pressure is reduced to around the atmospheric pressure mark of the foil suction Y. In the depressurization step, the exhaust gas is preferably exhausted by the adsorption tower pump in the direction (>1), (preferably F
Ruta 7. JJf Ki is 60~5 U (] 'I'or
r +) and (Vl preferably following the circulation direction) the situation t'J2P
The S A device consists of the upper part of the purge, using the scrap gas from I4' and σ) without vacuum evacuation, and changing the flow between the several layer columns at a constant (υ). , a method consisting of returning green to all the adsorption towers and the above operations.

第2段階の吸着操作は第1段階の吸着工程から排出され
たカス(以下第1段階製品ガスという)中の一酸化炭素
に対して選択性を有する吸N物質ケ充填した2つ以上の
吸着塔を使用しその方法は(1)原料ガスにより吸着塔
7加圧する加圧工程on さらに原料ガスYM着塔に流
して、吸着塔出口における易吸着成分の濃度が吸2H塔
入口における易吸着成分の10度に達するまで又は両者
の一度が等しくなる点の少し前まで吸着剤に易吸着成分
を吸着させる吸着工程、(i+i) 吸着工程終了後、
その吸着塔と真を脱着が終った吸着塔とを連結し、前者
の吸着塔からガスを後者の吸着塔に専大して後者の吸着
剤に吸着させる吸着(II)、このとき前者の吸着塔の
圧力χ大気圧近くまで降下させ、 IVI 減圧した吸R塔に製品ガスを並流に導入し″′
C嫡吸着成分をパージするパージ工程。
The second stage adsorption operation involves two or more adsorption systems filled with nitrogen-absorbing substances that are selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). The method using a column is (1) Pressurization step of pressurizing the adsorption column 7 with the raw material gas.Furthermore, the raw material gas is passed to the YM deposition column, and the concentration of the easily adsorbed component at the outlet of the adsorption tower is reduced to the concentration of the easily adsorbed component at the inlet of the 2H column. An adsorption step in which the easily adsorbable component is adsorbed on the adsorbent until the temperature reaches 10 degrees or a little before the point where both degrees are equal; (i+i) After the adsorption step,
In adsorption (II), the adsorption tower is connected to the adsorption tower that has completed desorption, and the gas from the former adsorption tower is exclusively transferred to the latter adsorption tower to be adsorbed onto the latter adsorbent. The pressure χ is lowered to near atmospheric pressure, and the product gas is introduced in parallel flow into the depressurized suction R tower.
Purge step to purge the C-adsorbed components.

(V) 吸! 3illに吸着されている易吸着成分を
真空ポンプを用いて脱着させ製品ガスン回収する回収工
程、及び (VD 製品回収が終った吸着塔と、吸着工程が終った
吸着塔と乞連結して、後者の吸着塔からのガスによる加
圧工程(吸着II )、から成り、定期的に吸着塔間の
流れケ変えて、全ての吸着塔において上記操作Y M+
[株]1−こと乞特徴とし1こ方法に関する。
(V) Sucking! A recovery process in which the easily adsorbed components adsorbed on the 3ill are desorbed using a vacuum pump and the product gas is recovered; The process consists of a pressurization process using gas from the adsorption tower (adsorption II), and the flow between the adsorption towers is changed periodically, and the above operation Y M+ is carried out in all the adsorption towers.
[Co., Ltd.] 1-This is a characteristic and relates to a method.

本発明のホ2工程における工程(1)は吸着塔に原料ガ
スケ導入1−る吸着塔の加圧工程である、本発明では回
収丁べきガスは易吸着成分であるので高い吸着圧は必要
ではな(,1k17/ff1G程度の吸着圧で十分であ
り、それより低い吸着圧であっても良い。
Step (1) in the second step of the present invention is a step of pressurizing the adsorption tower by introducing the raw material gas into the adsorption tower.In the present invention, the gas to be recovered is an easily adsorbed component, so a high adsorption pressure is not necessary. An adsorption pressure of about 1k17/ff1G is sufficient, and a lower adsorption pressure may also be used.

工程(11)は吸着(r)工程である、吸着塔出口にお
ける易吸着成分(−酸化炭素ガス、二酸化炭素ガス)の
濃度が吸着塔入口における易吸着成分のre 11と等
しくなった点というのは、吸着剤の破過点を瓶味する。
Step (11) is an adsorption (r) step, which is the point at which the concentration of easily adsorbed components (-carbon oxide gas, carbon dioxide gas) at the outlet of the adsorption tower becomes equal to re 11 of the easily adsorbed components at the inlet of the adsorption tower. Taste the breakthrough point of the adsorbent.

回収すべき成分がぬ6吸着成分(例えば空気から酸素ガ
スを分離する場合においては酸素ガス)であるならば、
高純1yの炸吸着成分ケ得るためには破過点よりも上の
水率で吸着工程を終了することが望ましい。しかし本発
明では、回収すべき成分は易吸着成分であるから破過点
または破過点に達する少し前まで吸着を行なう。
If the component to be recovered is an adsorbed component (for example, oxygen gas in the case of separating oxygen gas from air),
In order to obtain explosively adsorbed components of high purity, it is desirable to complete the adsorption process at a water content above the breakthrough point. However, in the present invention, since the component to be recovered is an easily adsorbed component, adsorption is carried out until the breakthrough point or just before the breakthrough point is reached.

工程t++*+は吸着(【)工程が終った吸着塔と真空
脱着か終った吸着塔とケ連結し、好ましくは並流方向に
前者の吸着塔からガスを後者の吸着塔に導入し前者の吸
着塔の圧力ビ大気圧または大気圧近(まで降下させる。
In the step t++**, the adsorption tower that has undergone the adsorption ([) process and the adsorption tower that has undergone the vacuum desorption process are connected, preferably in a parallel flow direction, to introduce gas from the former adsorption tower into the latter adsorption tower. The pressure in the adsorption tower is reduced to atmospheric pressure or near atmospheric pressure.

この工程では吸着塔に収納されている吸着剤間の壁間中
のガスが放出され、真空脱着が終った吸着塔の吸着(…
加圧に使用される。前者の吸着塔の圧力がほぼ大気圧に
なるまでこの操作を維持する。
In this process, the gas between the walls between the adsorbents housed in the adsorption tower is released, and the adsorption (...
Used for pressurization. This operation is maintained until the pressure in the former adsorption tower reaches approximately atmospheric pressure.

■程%■は減圧した吸着塔に並流に製品ガスを導入して
吸着塔内圧残っている難吸着成分(堕素ガス等)をパー
ジする。この、場合の部品ガスの導入圧は吸着圧力より
低く、大気圧より高い方が望ましく、この場合ボッブ等
乞使用する必要がなく、製品ガスタンクと吸着塔を連結
−[ることによってパージを実施する、 工程(V)はパージ工程が終った吸着塔を真空ポンプを
用いて好ましくは60〜60 ’rorr まで真空に
し、吸着剤に吸着されていた成分(−酸化炭素ガス等)
を脱着させ製品ガスとして回収する。
%■ Introducing the product gas in parallel flow into the reduced pressure adsorption tower to purge the remaining difficult-to-adsorb components (degraded element gas, etc.) in the adsorption tower internal pressure. In this case, it is preferable that the introduction pressure of the component gas be lower than the adsorption pressure and higher than the atmospheric pressure. In step (V), the adsorption tower after the purge step is evacuated to preferably 60 to 60'rorr using a vacuum pump, and the components (-carbon oxide gas, etc.) adsorbed on the adsorbent are removed.
is desorbed and recovered as product gas.

工程(Vlは製品回収が終った吸着塔と吸着工程が終っ
た吸着塔とを連結し、後者の吸着塔からのガスによって
前者の吸着塔を加圧吸着させる。吸着(11)この場合
、後者の吸着塔かはg大気圧になつ1こ時ガスのさ入欠
中止するので611者の吸着塔の圧力は大気圧に達しな
い。
Step (Vl) connects the adsorption tower where product recovery has been completed and the adsorption tower where the adsorption step has been completed, and the former adsorption tower is pressurized and adsorbed with the gas from the latter adsorption tower. Adsorption (11) In this case, the latter When the adsorption tower reaches g atmospheric pressure, the supply of gas stops, so the pressure in the adsorption tower does not reach atmospheric pressure.

以FX発明の代表的な具体例である転炉JJFガス中の
窒素ガスを除去し、−M化炭素ケ分離回収する方法に基
づいて、本発明の詳細な説明するが本発明の方法は、こ
れらの具体1列に限定されるものではない。
Hereinafter, the present invention will be described in detail based on a method of removing nitrogen gas in converter JJF gas and separating and recovering -M carbon, which is a typical example of the FX invention. It is not limited to one specific row of these.

第1図は吸着法により連続的に転炉排ガスから二酸化炭
素と窒素X除去し、−酸化炭素カスを分離−縮するフロ
ーシートである。
FIG. 1 is a flow sheet in which carbon dioxide and nitrogen X are continuously removed from converter exhaust gas by an adsorption method, and carbon oxide residue is separated and condensed.

吸着塔A、Bは二酸化炭素を選択的に吸着する吸着剤が
収納されている。吸着塔A、13を真空ボンプを用いて
減圧排気ケ1υOTorr 好ましくは60 ”Cor
r までイテい、今吸清塔AKKA料ガス乞加圧導入、
A空状態より引圧させるためバルブ1を開く。この時バ
ルブ1以外はすべて閑の状!郡になっている。
Adsorption towers A and B house adsorbents that selectively adsorb carbon dioxide. The adsorption towers A and 13 are evacuated to a reduced pressure of 1υOTorr, preferably 60”Corr, using a vacuum pump.
It is done until r, and now the purification tower AKKA feed gas is pressurized and introduced.
A Open valve 1 to draw pressure from the empty state. At this time, all valves except valve 1 are idle! It has become a county.

吸着z5Bはこのステップでは、まだJc′g!、状態
を保持している。吸着塔Aは外圧後、吸着圧力0.01
kg/cd aから3.0X//ff1G、好ましくは
0,2ゆ/+ff1Gからtoky/=Gの吸着圧力父
保ち、バルブ2は開かれ二酸化炭素と一酸化炭素その他
の含イ1ガスも一部は吸着剤に吸着し、残りは吸着塔の
他σ)端部より排出丁7)。一定時間或は一定量の吸着
工程終了後原料供給バルブ1及び出口バルブ2は閉じバ
ルブ6を開き、吸着塔Aの塔内圧力乞大気圧附近まで減
圧放圧させる。吸着塔へが大気圧附近になるとバルブ6
は閉じられ吸着塔下9Bよりノぐルプ4を開にし℃真空
ポンプ乞用いて減圧排気を行い吸着剤に吸ML7″′C
いる二酸化炭素成分を脱着させる。この際の排気圧力は
1001’orr 好ましくは601’orr まで行
う。減圧#1′気が終了jると一ジガス命な訓負r1す
る。)ことによって万死N2PSA装匝からの廃棄ガス
Z利用して吸着剤から脱着しきれずに吸着している二酸
化炭素7バージガスとの同伴脱オfにより吸yN ll
1lよりJ14い出1−0このへ窒↑J1−気とパージ
ガスとの1社にまり臭突排気の圧力は2701’c+r
r と尚くなる。4ノ「気パージが終Tするとバルブ4
とバルブ5は閉じられ、バルブ6に開&↑して製品ガス
でもって1vk着塔内に吸着圧力まで加圧馨行う。
At this step, the adsorption z5B is still Jc'g! , holds the state. Adsorption tower A has an adsorption pressure of 0.01 after external pressure.
kg/cd a to 3.0X//ff1G, preferably 0.2 Yu/+ff1G to Tokyo/=G, valve 2 is opened and carbon dioxide, carbon monoxide, and other gases containing gas are also released. Part is adsorbed on the adsorbent, and the rest is discharged from the end of the adsorption column (7). After completion of the adsorption process for a certain period of time or a certain amount, the raw material supply valve 1 and the outlet valve 2 are closed, and the valve 6 is opened to reduce the internal pressure of the adsorption tower A to near atmospheric pressure. When the pressure to the adsorption tower approaches atmospheric pressure, valve 6
is closed, and the nozzle 4 is opened from the bottom 9B of the adsorption tower, and the vacuum pump is used to perform depressurization and exhaust, and the adsorbent absorbs ML7'''C.
Desorbs the carbon dioxide component present. The exhaust pressure at this time is 1001'orr, preferably 601'orr. When the decompression #1' is completed, a life-saving lesson r1 will occur. ) By using the waste gas Z from the dead N2PSA casing, the adsorbed carbon dioxide 7 is adsorbed without being completely desorbed from the adsorbent.
From 1l, J14 comes out 1-0 to this nitrogen ↑ J1- air and purge gas are combined in one company, and the odor exhaust pressure is 2701'c+r
It becomes r. 4. When the Qi purge ends, valve 4
Then, valve 5 is closed and valve 6 is opened &↑ to pressurize the 1VK deposition tower to the adsorption pressure with the product gas.

、1:01:操作ケそれぞれの吸着塔において順次繰返
1−ことによって連続的に吸着ハ1jにC()2乞吸沸
させ除去しようと1−るものである。it一般ll!¥
Q’) P S A装置で二酸化炭素が除去され1こカ
スはわj、二段階σ)P S A ’Lklt、、脱N
21)SA装置、′f;!:もッテ水素”rl?R”絹
素ケ除去し一酸化炭素の蘭1f1“χ高fζ)lヂにで
良46分離しようと¥るもので、その方法ば吸虞JAc
r)に:)’は品数フN成分(ここでは−に化炭素と二
IR化炭Aチ)ゲ迅択的に吸着する吸着剤がIIM納さ
れ′Cい/−、、、+1!2着壜(、、: D E F
欠真空ボ/プ41ゲmいてパ圧シ1気’x 1 (l 
O’I?orr 好ましくは60 Torr まで行い
、今吸着塔Cに原料ガス(第一段階のPEA装置で二酸
化炭素ケ除去したもの)を加圧導入する。再生筒の真空
状!、婆より昇圧させるKめパルプ16乞開くことによ
って行う。このときの昇圧速度はバノトブ15によって
調節される。昇圧後パルプ17゜18を開にすると同時
にバルブ16は閉になり該混合ガスが吸着塔内ケ通過す
る。このとき吸着パリに易吸着成分である一i+’f化
炭素と二1貸化炭素が吸着され、他のガスは吸着塔内ケ
通過し一部Gi脱(゛0□PSA装置のパージガスとし
て使メ11される。
, 1:01: Operation 1- The operation is repeated sequentially in each adsorption tower to continuously adsorb and remove C()2 in the adsorption tower 1j. IT general! ¥
Q') P S A device removes carbon dioxide and removes nitrogen in two stages σ) P S A 'Lklt...
21) SA device, 'f;! : Motte hydrogen "rl?R" is removed from the silk and carbon monoxide is removed from the carbon monoxide (1f1 "χ high fζ)l" to separate it.
r):)' is the number of N components (in this case, - dicarbonized carbon and diIRized carbon A). Cloth bottle (,,: D E F
The lack of vacuum is 41 games and the pressure is 1 air x 1 (l
O'I? orr, preferably up to 60 Torr, and the raw material gas (from which carbon dioxide has been removed in the first stage PEA apparatus) is now introduced under pressure into the adsorption tower C. Vacuum state of recycled cylinder! This is done by opening 16 pieces of K pulp to increase the pressure. The pressure increase rate at this time is adjusted by the vanobutton 15. After increasing the pressure, the pulp 17° 18 is opened and at the same time the valve 16 is closed and the mixed gas passes through the adsorption tower. At this time, the easily adsorbed components 1+'f carbon and 21 carbon are adsorbed by the adsorbing gas, and other gases pass through the adsorption tower and are partially desorbed by Gi (used as purge gas for the PSA device). 11 will be sent.

洩りは水素、−m化炭素がまだかなり含まれているので
燃料ガス等に再第11用するために夕/り46に回収す
る。
Since the leakage still contains a considerable amount of hydrogen and hydrogenated carbon, it is recovered in the evening at 46 in order to be reused as fuel gas or the like.

一定時間或は一定量の吸着1桿終了後原料供給バルブ1
B及び出口バルブ17は閉じ、吸着塔りへの連結パイプ
にあるバルブ19ケ開き、吸着塔Cの塔内圧力を大気圧
附近まで減圧放出させ、吸N塔1〕の吸着剤に減圧放圧
されたガス乞吸着させる。吸着塔Cが大気圧附近になる
と吸着塔内の窒Vφ(吸着剤間の空間)にγこまつ℃い
る難吸着成分ガスを追出すために製品ガスタンク42よ
りバルブ20を開いて吸着塔Cσ)下143よりパージ
18夕行う。
Raw material supply valve 1 after adsorption for a certain period of time or for a certain amount of one rod
B and outlet valve 17 are closed, valve 19 in the connecting pipe to the adsorption tower is opened, the internal pressure of adsorption tower C is reduced to near atmospheric pressure, and the adsorbent in N absorption tower 1 is depressurized and released. Allow the gas to be absorbed. When the pressure in the adsorption tower C approaches atmospheric pressure, the valve 20 is opened from the product gas tank 42 to expel the gas that is difficult to adsorb in the nitrogen Vφ (space between adsorbents) inside the adsorption tower. From 143 onwards, purge will be carried out on the 18th.

パージ工程が終了するとバルブ19及び20は目1じら
れ吸着塔下部よりバルブ21を開にし真壁ポンプケ用い
て減圧排気乞行い吸着剤に吸着している易吸着成分を脱
着させる。この際の4ノ1気圧力&1100 ’L’o
rr 好ましくは60 ’T’orr まで行って易吸
着成分であるC1碩pM品ガスとして回収“するもので
ある。
When the purge step is completed, valves 19 and 20 are closed, valve 21 is opened from the bottom of the adsorption tower, and the Makabe pump is used to perform vacuum evacuation to desorb easily adsorbed components adsorbed on the adsorbent. At this time, 4 no. 1 atm pressure &1100'L'o
It is preferably carried out to 60'T'orr and recovered as C1-pM gas which is an easily adsorbed component.

上記す■作ケそれぞれの吸着塔において軸次珪嬬丁こと
によって連続的に吸着剤14に易吸着成分であるCOガ
スを吸着させて分離イIff製することが出来る。なお
46は陥ガスタンクである。
In each of the above-mentioned adsorption towers, CO gas, which is an easily adsorbed component, can be adsorbed continuously onto the adsorbent 14 to produce a separated Iff. Note that 46 is a depressed gas tank.

上記の様に第−yi階σ)脱(、’02PSA装置と第
二段階の脱N2P S A装置tを組合せることによっ
て脱N2PSA装置単独で一酸化炭素を一鰯分1a し
てイy製した時よりもC02の濃度をいちじるしく減少
させることが出来、又脱CO□l) S A、−h+ 
iitのパージガスに脱N2PSA装置h’の廃棄ガス
を第11用することによって、脱002PSA装置の製
品カスtパージ工程に使用する時よりも一酸化炭素の回
収率も向上させろことが出来1こ。本発明に従えば(X
)2は0.5’fl、N2は1qb以下に減少できる。
As mentioned above, by combining the -yith floor σ) decomposition ('02 PSA device and the second stage deN2P PSA device t), the deN2P PSA device alone can remove carbon monoxide from one sardine to 1a, and produce a It was possible to significantly reduce the concentration of CO2 compared to when it was done, and it was also possible to remove CO
By using the waste gas from the N2 PSA device h' as the purge gas for the 002 PSA device, it is possible to improve the recovery rate of carbon monoxide compared to when it is used in the product waste purge process of the 002 PSA device. According to the present invention (X
)2 can be reduced to 0.5'fl and N2 can be reduced to 1qb or less.

実施例1゜ 以下本発明をさらに具体的に説明するため、転炉排ガス
(CO=854 CO□=2.7係N2=4.9憾11
□=96%02=0.1%)の珀製馨試み1こ。
Example 1 Below, in order to explain the present invention more specifically, converter exhaust gas (CO = 854 CO□ = 2.7 coefficient N2 = 4.9 11
□ = 96% 02 = 0.1%) 1 attempt at making amber.

4’+W製工程として既述の!jl+ < 第一段階に
脱C02PSA装にの[吸着−減圧、放圧−排気−)く
−ジー製品加工」と第二段階の脱N2PSA装置Kの「
原$1加圧−吸着(【(−減圧吸Jf(If)−ノく−
ジ吸$、1111−白空排気−加圧」の精製サイクルに
もとづいて実施した。
Already mentioned as 4'+W manufacturing process! jl+ < In the first stage, [adsorption-depressurization, depressurization-exhaust-) product processing] in the de-C02 PSA equipment and in the second stage, in the de-N2 PSA equipment K.
Original $1 Pressurization - Adsorption ([(-Decompression suction Jf (If) -Noku-
The purification was carried out based on the purification cycle of 1111-white air evacuation-pressurization.

一段目の脱CO□PSA装置には活性化したゼオ/%−
プ(50kl/1/8“ベレット)乞充填した鋼製の吸
着塔(12BX1.7rn)二段目の脱N2P8A 装
置にも活性化したゼオI・−ブ(166Ky 1/8“
ベレット)を充填し1こ鋼製の吸着塔(16BX2Am
)父真空排気100 Torrと601.’orrにぞ
れぞれ4」ト気した後上記の混合ガスχ線速Ocm /
 SeCで塔の下部より導入して混合ガスの硝製ン実施
した。
The first stage CO□PSA device contains activated zeo/%-
The activated Zeo I-bu (166Ky 1/8"
A single steel adsorption tower (16B x 2Am
) Father vacuum pumping 100 Torr and 601. After applying 4' to each 'orr, the above mixed gas χ linear velocity Ocm /
SeC was introduced from the bottom of the column to carry out nitrification of the mixed gas.

供給ガスF、t’t−32,8nfK対し第1T製−酸
化炭素カス酸は19ろIf−でこのときσ)脱N2PS
A装置6の廃棄ガス量は16.5扉で一酸化炭素の回収
率は68%であった。
For supply gas F, t't-32,8nfK, 1st T-made carbon oxide carbonaceous acid is 19 filtration If-, at this time σ) De-N2PS
The amount of waste gas in A device 6 was 16.5 doors, and the recovery rate of carbon monoxide was 68%.

精製后のガス組成は次のフ10すであった。The gas composition after purification was as follows.

ガス組成 CO= 98.6係 C02=0.5% N2= 0.9qh 11□= (] 係 J、)2= [J 係 実施例2゜ 実施例(1)と同一装置7用いて下記実験条件で転炉1
ノ「ガス7用い1こイn製・分離ケ行った結果である。
Gas composition CO = 98.6 coefficient C02 = 0.5% N2 = 0.9qh 11□ = (] coefficient J, )2 = [J coefficient Example 2゜The following experiment was carried out using the same apparatus 7 as in Example (1). Converter 1 under conditions
This is the result of 1 column and separation using 7 gases.

実験条件 ガス、1且成 C0=86’k (、l’U2=4%N
2−4%II、=6憾操作温度 25℃吸着剤ZE−5
01 吸層速世、6.5 cR/ sec吸別圧力 1.[J
 kg/lya、G真壁す1気Y 100 Torr及
び60 Torr説着を行い製品ガスの−を便化炭素の
濃縮・稍製乞実施した。
Experimental conditions Gas, 1 C0 = 86'k (, l'U2 = 4%N
2-4% II, = 6 operating temperature 25℃ adsorbent ZE-5
01 Suction layer velocity, 6.5 cR/sec Suction pressure 1. [J
kg/lya, G Makabe, 1st atmosphere, 100 Torr and 60 Torr, and the product gas was concentrated and purified with fecalized carbon.

供給カス量42.9171’に対し絹製−醪化炭素ガス
量は25.7 m’で一酸化炭素の回収率は68.64
であつ1こ。
The amount of supplied waste was 42.9171', the amount of silk-melted carbon gas was 25.7 m', and the recovery rate of carbon monoxide was 68.64.
And one.

留製後のガス組成は (、’0 =98.7係 GO2= 0.5’l N2= 0.8係 実施例6゜ 転炉排ガスのtq製ケ試みた。The gas composition after distillation is (, '0 = 98.7 section GO2 = 0.5’l N2 = 0.8 section Example 6゜ An attempt was made to produce TQ from converter exhaust gas.

精製工程として既述の如(一段目に脱CO2装置の「吸
着−減圧−真空排気一]く−ジー製品加工」と二段目の
脱N2PSA@+−の[第一段階製品ガス加圧−吸着(
I)−減圧串放圧一ノく一ジ・放出−真窒排気一減圧・
吸着(社)の114製サイクルにもとづいて実施した。
The purification process is as described above (in the first stage, CO2 removal equipment "adsorption-depressurization-vacuum exhaust - product processing") and in the second stage, the second stage is the [first stage product gas pressurization] of N2 deN2 PSA@+-. adsorption(
I) - Decompression skewer pressure relief - Discharge - True nitrogen exhaust - Decompression -
The test was carried out based on the 114 cycle manufactured by Suction Co., Ltd.

一段目の脱C02PSA装置角、には活性化したゼオ/
1−プ(50ゆ 1/16”ベレット)ケ光填した鋼製
の吸着塔(12”Xl、7m)’l二段目の脱N2装置
色には活性化したゼオハープ(166ky 1/8“ベ
レット)を上部に活性アルミナ(30醇、住友KHD−
46)を下部に尤埴した鋼製の吸着塔(16BX2.4
m)を用いた。
The first stage de-CO2PSA device angle contains activated zeo/
A steel adsorption tower (12"Xl, 7m) filled with 1-pu (50 ky 1/16" pellets) and an activated ZeoHarp (166 ky 1/8") second stage deN2 device. pellet) on top and activated alumina (30 ml, Sumitomo KHD-
A steel adsorption tower (16B x 2.4
m) was used.

く実験条件〉 転炉排ガス組成:Co =86係 C02=6幅 N2=4チ N2=7幅 操作温度:60℃ 吸着圧力ニ 1. Okl?/crIIG真空排気:脱
CU2PSA〜120 Torr脱N2P SA〜80
 Torr 供給ガス量30.21Tl’に対し、4’+V製Coガ
ス計は13.5m″でCOガスの回収率は51.584
であった。この時の精製後のガス組成はCO= 99.
0係C02=0.3%N2=0.7鴫 実施例4 実施例6と同一@置乞用いて下式1央験条件で転炉排ガ
スを用い1こ梢aを試みた、 く実験条件〉 転炉排ガス組成:CO=85係 co2= 5憾 N2=5% 口2== 7If+ 操作温度=65℃ 吸着圧力ニ 0.5 kW/cd(3 真空排気:脱C02P SA〜120 Torr脱N2
P S A〜80 Torr 供給ガス骨56.2rn+に対し精製COガス量は15
3111’でCOガスの回収率は494憾であっし梢製
捷のガス州成はco=qq、4%cO2fJ、4係N2
=0.24b
Experimental conditions〉 Converter exhaust gas composition: Co = 86 coefficient C02 = 6 width N2 = 4 width N2 = 7 width Operating temperature: 60°C Adsorption pressure 1. Okl? /crIIG vacuum evacuation: de-CU2PSA~120 Torr de-N2P SA~80
Torr supply gas amount is 30.21Tl', 4'+V Co gas meter is 13.5m'' and CO gas recovery rate is 51.584
Met. The gas composition after purification at this time was CO=99.
0 coefficient C02 = 0.3% N2 = 0.7 Example 4 Using the same setting as Example 6, one experiment was conducted using converter exhaust gas under the following formula 1 central experimental condition. 〉 Converter exhaust gas composition: CO = 85 coefficient CO2 = 5% N2 = 5% Port 2 = = 7If + Operating temperature = 65°C Adsorption pressure 2 0.5 kW/cd (3 Vacuum exhaust: CO2P SA ~ 120 Torr DeN2
P S A ~ 80 Torr Purified CO gas amount is 15 for supply gas bone 56.2rn+
At 3111', the CO gas recovery rate was 494, and the gas production rate of Kozue Seisha was co=qq, 4%cO2fJ, 4th section N2
=0.24b

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明を実施するための好ましい態様7示すフロー
シートである。 特1m0RGO−78813(8) 手続補正書 昭和4年11月30日 d八−4;釈 t イL1↑ 1. ? −一 画板く
ムI皮 (1劣 °t・ 己ら/シル ス」ソー δ梃
イ、波、イ吃+t゛にJコメ=1.6、補正をする者 事件との関係 特許出願人 住所 f? R,、?、 (lZr) JIIJ、今’lL4
’t−1”!、八へ〈ニ之j/ダト+g)4、代理人 手続補正書 昭和59年 1月ノC日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58年特r[願第 187480号2、発明の名称 吸着法を使用して一酸化炭素を含む混合ガスより一酸化
炭素を精製する方法 ろ、補正をする者 事件との関係 特許出願人 住所 名称 (125)川崎製鉄株式会社 (外1名) 4、代理人 明細書の〔特許請求の範囲〕と〔発明の詳細な説明〕の
欄(別 紙) (1)特許請求の範囲を次のように訂正する。 「(1)二段階吸着操作により、少なくとも二酸化炭素
、−酸化炭素及び窒素を含む原料ガス中の一酸化炭素を
濃縮する方法において、(a) その第J段階の吸着操
作は二酸化炭素に対して選択性を有する吸着物質を充填
した2つ以上の吸着塔を使用し、その方法は各吸着塔で
吸着および脱着を繰返す圧力変動式吸着分離によってそ
の原料ガスから二酸化炭素を除去することからなり、そ
して、 (b) 第2段階の吸着操作は、第1段階の吸着工程か
ら排出されたガス(以下、第1段階製品ガスという)中
の一酸化炭素に対して選択性を有する吸着物質を充填し
た2つ以上の吸着塔を使用し、その方法は (i)第1段階製品ガスにより吸着塔を加圧する加圧工
程 (11)さらに第1段階製品ガスを吸着塔に流して、吸
着塔出口における易吸着成 分の濃度が吸着塔入口における易吸着 成分の濃度に達するまで又は両者の濃 度が等しくなる点の少し前まで吸着剤 1(易吸着成分を吸着させる吸着(I)工程、曲)吸着
(I)工程終了後その吸着塔と真空脱着が終った吸着塔
とを連結し、前者 の吸着塔からガスを後者の吸着塔に導 入し、前者の吸着塔の圧力を降下させ る減圧放圧工程、 (1v)減圧した吸着塔に第2段階製品ガスを導入して
難吸着成分をパージするパ ージ工程、 M パージ工程を終った吸着塔を大気圧以下に排気して
、吸着剤IC吸着されている易吸着成分を脱着させ製品
ガスを 回収する回収工程、及び (vl)製品ガス回収が終った吸着塔と吸着(I)工程
が終った吸着塔とを連結して後者の吸着塔からのガスを
前者の吸着塔 に導入する吸着(社)工程、 からなり、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことを特徴とした方法。 (2)前記第1段階の吸着操作は (1)第1段階調品ガスによる吸着塔を加圧する加圧工
程、 叩 原料ガスを吸着塔に流して主として二酸化炭素を吸
着物質に吸着させる吸着工程、 (i+r)次いで吸着を大気圧附近まで減圧する減圧1
穆、 (1い 次いで吸着塔を真空ポンプ等により排気する排
気工程、そして、 M 次いで第2段階からの廃棄ガスを利用するパージ工
程 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことがら成る特許請求の範囲第1項に記載の方
法。」 (2)明細書第4頁第2行〜第10頁第4行全部を下記
に訂正する。 「本発明は圧力変動式吸着分離方法(PSA法)によっ
て、転炉又は高炉等の排ガス、主として一酸化炭素、二
酸化炭素、窒素を含む原料ガスから高純度の一酸化炭素
を得る方法に関−4−る、製鉄所において精錬容器から
発生ずる排ガスは、比較的多量のCOガスを含有してい
る。その組成は転炉排ガス、高炉排ガスについては下記
に示す範囲内1/U;15)る、 COCO2N2 N2 転炉排ガス 60〜87% 6〜20% 6〜20%1
〜10係高炉排ガス 20〜ろ0%20〜60係40〜
60係1〜10係もし、これらの排ガスから高純度のC
Oガスを安1111iに回収できれば、合成化学原料、
精錬容器内直1性金属中への吹込みガスとして用途が拓
ける。合成fヒ学原料とこのCOガスを考える際には、
合成反応が高6%、高圧条件下で行なわれるのが通例で
あることから、反応容器を損傷させる酸化性ガスの除去
が必須であり、CO2濃度を出来る限り低下させる必要
がある、また反応効率を上げるためには、通常反応に関
与しないN2も出来るだけ除去するのが望ましい。一方
、溶融金属の精錬の効率化を目的とする精錬容器内への
ガス吹込み操作は広く行なわれているが、溶融金属中の
不純ガス成分(N2、N2など)の濃度上昇を嫌う観点
から高価なAr ガスが使用されるのが通例である、製
鉄所内で大量に発生ずる転炉ガス、高炉ガスから高純度
COO20安価に回収できれば、これをAr、に代替す
ることかはy可能である。この際、高純度COO20N
2 濃度は溶鉄の窒素濃度上昇を防ぐ観点から低いのが
望ましく、またCO2濃度も精錬容器内張り耐火物とし
て汎用されている炭素系耐火物の酸化損傷を防ぐ観点か
ら低いのが望ましい、従来、上記排ガスを原料に高純度
COO20回収するプロセスとしては深冷分離法、ある
いは調液法、Co5orb法といった溶液吸収法が考え
られている。しかしながら前者においては、低温と高圧
を、後者においては高温と高圧を必要とし、両者共に設
備が複雑かつ高価になる欠点がある。また深冷分離法に
おいてはN2とCOの沸点が接近しているため、N2と
COの分離が完全に行なうことも困難である。 以上の現状に鑑みて、本発明者らは、より簡便なプロセ
スで安価に高純度COO20回収する技術として吸着法
による開発を試みた。 前記排ガスの吸着法(PSA法)による吸着分離は、公
知であり、吸着剤に吸着し、にくいガス吸汗(以後、難
吸着成分という)の回収を目的としたものに特公昭38
−23928.43−15045等が基本特許として公
告」 (3)明細書第11頁第13行〜第13頁第10行全部
を下記に訂正する。 「本発明は二段階吸着操作により、少なくとも二酸化炭
素、−酸化炭素及び窒素を含む原料ガス中の一酸化炭素
を濃縮する方法にオ6いて、(a) その第1段階の吸
着操作は二酸化炭素に対して選択性を有する吸着物質を
充填した2つ以上の吸着塔を使用し、その方法は各吸着
塔で吸着および脱着を繰返す圧力変動式吸着分離によっ
てその原料ガスから二酸化炭素を除去することからなり
、そして、 (b) 第2段階の吸着操作は、第1段階の吸着工程か
ら排出されたガス(以下、第1段階部品ガスという)中
の一酸化炭素に対して選択性を有する吸着物質を充填し
た2つ以上の吸着塔を使用し、その方法は (1)第1段階部品ガスにより吸着塔を加圧する加圧工
程゛、 (11) さらに第1段階部品ガスを吸着塔に流して、
吸着塔出口における易吸着成分の濃度が吸着塔入口にお
ける易吸着成分の濃度に達するまで又は両者の濃度が等
しくなる点の少し前まで吸着剤に易吸着成分を吸着させ
る吸着(I)工程、 all)吸着(I)工程終了後その吸着塔と真空脱着が
終った吸着塔とを連結し、前者の吸着塔からガスを後者
の吸着塔に導入し、前者の吸着塔の圧力を降下させる減
圧放圧工程、(1い 減圧l−だ吸着塔に第2段階部品
ガスを導入して難吸着成分をパージするパージ工程、(
V) パージ工程を終った吸着塔を大気圧以下に排気し
て、吸着剤に吸着されている易吸着成分を脱着させ製品
ガスを回収する回収工程、及び (vi) 製品ガス回収が終った吸着塔と吸着(1)工
程が終った吸着塔とを連結して後者の吸着塔からのガス
を前者の吸着塔に導入する吸着fI)工程、 からなり、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことを特徴とした方法に関する。」 (4)明細書第15頁第2行〜第16頁第7行全部を削
除する。 (5)明細書第18頁第1〜2行全部を下記にii’l
’ ilEする。 「 工程(v)は、パージ工程が終った吸着塔を真空ポ
ンプ、エゼクタ−、ブロワ−等を用いて大気圧以下に排
気して好ましくば300Torr以下、最も好ましくは
50 D=3 D Torrの範囲まで真空」 (5)明細書を次のように訂正する。 頁 行 訂正前 訂正後 1315 ゼオライト系吸 ゼオライト(天然着剤 又
は合成)系吸着 剤 14 6 第1工程 第1段階 1414 ポ ン グ ポンプ等 14頁20行〜 全ての吸着塔 〈削除〉15頁J行 
において 16 8 第2工程 第2段階 36 8〜9 原料 第1段階調品 1611 1kg 1〜31(g 16 J5 二酸化炭素ガス く削除〉1714 並流
に く削除〉 1714 製品 第2段階部品 18 5 製品回収 製品ガス回収 187〜8 吸着工程 吸着(I)工程187〜8 さ
せる。吸着(l させる吸着(社)工程である。 頁 行 訂正前 訂正後 19 1〜2 100Torr好ま 300Torr以
下好ましくは60Torr L <はろ0Torr19
19−20 20 13、 PSA 脱Co2PSA20 15 P
SA装置 〈削除〉 21、1 100Torr好ま 300Torr以下好
ましくは60Torr I、 <は30Torr21 
末 大気圧付近にな 大気圧付近になるると吸着塔内の
 とバルブ19を閉 じ吸着塔内の 22 3 ブ20を開いて ブ20を開いてさ吸着塔C
らにバルブJ7を 開いて吸着塔C 225バルブJ9及び バルブ17及び20は 20は 22 9 100Torr好ま 300Torr以下好
ましくは60Torr ’L、、 <はろ0Torr2
312 製品加工 製品加圧 2312−13 原料加圧 第1段階部品ガス加圧 2313 パージ吸着q11) パージ24 13 D
、、 0□ 頁 行 訂正前 訂正後 2512 一段 目 第一段階 2513 製品加工 製品加圧 2514 二段 目 第二段階 2518 一段 目 第一段階 25 末 二段 目 第二段階
The figure is a flow sheet showing a preferred embodiment 7 for carrying out the present invention. Special 1m0RGO-78813 (8) Procedural Amendment November 30, 1920 d8-4; Interpretation t I L1↑ 1. ? -1 Drawing board Kum I skin (1 inferior °t・self/sills) so δ lever, wave, i + t゛ J comment = 1.6, relationship with the case of the person making the amendment Address of the patent applicant f? R,,?, (lZr) JIIJ, now'lL4
't-1''!, to 8〈NINOJ/DAT+G) 4. Written amendment to the attorney's procedure Date of January 1987, Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Indication of the case No. 187480 No. 2, Name of the invention: A method for purifying carbon monoxide from a mixed gas containing carbon monoxide using an adsorption method, and its relationship to the case of the person making the amendment Patent applicant address and name (125) Kawasaki Steel Corporation Stock Company (1 other person) 4. [Claims] and [Detailed Description of the Invention] columns of the agent's specification (attachment) (1) The scope of claims is corrected as follows: "( 1) A method for concentrating carbon monoxide in a raw material gas containing at least carbon dioxide, -carbon oxide, and nitrogen by a two-stage adsorption operation, in which (a) the J-stage adsorption operation is selective to carbon dioxide; using two or more adsorption towers filled with an adsorbent material having an adsorption material having the following properties: (b) The second stage adsorption operation is carried out using an adsorption material packed with an adsorbent material that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). The method uses two or more adsorption towers, and the method includes (i) pressurizing the adsorption tower with the first stage product gas; (11) further flowing the first stage product gas through the adsorption tower to facilitate easy flow at the outlet of the adsorption tower; Adsorption (I) of adsorbent 1 (adsorption (I) process for adsorbing easily adsorbed components, track) until the concentration of the adsorbed component reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or slightly before the point where both concentrations become equal. ) After the completion of the process, the adsorption tower is connected to the adsorption tower that has undergone vacuum desorption, and the gas is introduced from the former adsorption tower to the latter adsorption tower to reduce the pressure in the former adsorption tower, ( 1v) A purge step in which the second-stage product gas is introduced into the reduced pressure adsorption tower to purge the components that are difficult to adsorb; A recovery step in which adsorbed components are desorbed and product gas is recovered, and (vl) the adsorption tower in which the product gas recovery has been completed is connected to the adsorption tower in which the adsorption (I) step has been completed, and the gas from the latter adsorption tower is transferred to the former. A method characterized by repeating the above operation by periodically changing the flow between the adsorption towers. (2) The first stage adsorption operation is ( 1) Pressurization step of pressurizing the adsorption tower with the first stage preparation gas, adsorption step of flowing the raw material gas into the adsorption tower and mainly adsorbing carbon dioxide onto the adsorbent material, (i+r) then reducing the adsorption pressure to near atmospheric pressure Decompression 1
(1) Next, it consists of an evacuation process in which the adsorption tower is evacuated by a vacuum pump, etc., and (M) a purge process that uses the waste gas from the second stage, and the flow between the adsorption towers is changed periodically, and the above The method according to claim 1, which comprises repeating the operation.'' (2) All lines from page 4, line 2 to page 10, line 4 of the specification are corrected as follows. A method for obtaining high-purity carbon monoxide from converter or blast furnace exhaust gas, mainly raw material gas containing carbon monoxide, carbon dioxide, and nitrogen, by the PSA method (PSA method). The exhaust gas generated from the refining vessel contains a relatively large amount of CO gas.The composition is within the range 1/U shown below for converter exhaust gas and blast furnace exhaust gas. 60-87% 6-20% 6-20%1
~ Section 10 Blast furnace exhaust gas 20 ~ 0% 20 ~ 60 Section 40 ~
60 coefficients 1 to 10 coefficients, high-purity C can be extracted from these exhaust gases.
If O gas can be recovered safely, it can be used as a raw material for synthetic chemicals,
It can be used as a gas to be blown into the straight metal inside the refining vessel. When considering the raw material for synthesis and this CO gas,
Since the synthesis reaction is usually carried out under high pressure conditions of 6%, it is essential to remove oxidizing gases that can damage the reaction vessel, and it is necessary to reduce the CO2 concentration as much as possible, as well as to reduce the reaction efficiency. In order to increase the reaction rate, it is desirable to remove as much N2 as possible, which normally does not participate in the reaction. On the other hand, gas injection into a refining vessel is widely carried out for the purpose of improving the efficiency of refining molten metal. Expensive Ar gas is usually used, but if high purity COO20 can be recovered at low cost from converter gas and blast furnace gas, which are generated in large quantities in steel plants, it is possible to replace this with Ar. . At this time, high purity COO20N
2. The concentration is desirably low from the perspective of preventing an increase in the nitrogen concentration of molten iron, and the CO2 concentration is also desirably low from the perspective of preventing oxidation damage to carbon-based refractories, which are commonly used as refractory linings for refining vessels. As a process for recovering high-purity COO20 from exhaust gas as a raw material, a cryogenic separation method, a liquid preparation method, and a solution absorption method such as the Co5orb method are considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complicated and expensive. Furthermore, in the cryogenic separation method, since the boiling points of N2 and CO are close to each other, it is difficult to completely separate N2 and CO. In view of the above-mentioned current situation, the present inventors attempted to develop an adsorption method as a technique for recovering high-purity COO20 at low cost through a simpler process. The above-mentioned adsorption separation using the adsorption method (PSA method) of exhaust gas is well known, and was developed in 1973 for the purpose of recovering gases that are difficult to adsorb to adsorbents (hereinafter referred to as difficult-to-adsorb components).
-23928.43-15045 etc. have been published as basic patents.'' (3) All of the specifications from page 11, line 13 to page 13, line 10 are corrected as follows. "The present invention provides a method for concentrating carbon monoxide in a raw material gas containing at least carbon dioxide, carbon oxide, and nitrogen by a two-stage adsorption operation. The method uses two or more adsorption towers filled with an adsorbent material that is selective to (b) The second stage adsorption operation is an adsorption process that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage part gas). Two or more adsorption towers filled with substances are used, and the method consists of (1) pressurizing the adsorption tower with the first stage part gas; (11) further flowing the first stage part gas into the adsorption tower; hand,
an adsorption (I) step in which the adsorbent adsorbs the easily adsorbable component until the concentration of the easily adsorbable component at the outlet of the adsorption tower reaches the concentration of the easily adsorbable component at the inlet of the adsorption tower, or until a little before the point where both concentrations become equal; ) After the adsorption (I) step, the adsorption tower is connected to the adsorption tower that has undergone vacuum desorption, and gas is introduced from the former adsorption tower into the latter adsorption tower to reduce the pressure in the former adsorption tower. Pressure step (1) Purge step of introducing the second stage component gas into the reduced pressure l-adsorption tower to purge the difficult-to-adsorb components, (
V) A recovery step in which the adsorption tower that has completed the purge step is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed by the adsorbent and product gas is recovered; and (vi) adsorption after product gas recovery has been completed. The adsorption tower is connected to the adsorption tower that has completed the adsorption (1) step, and the gas from the latter adsorption tower is introduced into the former adsorption tower.The flow between the adsorption towers is periodically changed. The present invention relates to a method characterized in that the above operations are repeated. (4) Delete all lines from page 15, line 2 to page 16, line 7 of the specification. (5) All lines 1 to 2 of page 18 of the specification are ii'l below.
'ilE. In step (v), the adsorption tower after the purge step is evacuated to below atmospheric pressure using a vacuum pump, ejector, blower, etc., preferably below 300 Torr, most preferably in the range of 50 D = 3 D Torr. (5) The specification is amended as follows. Page Line Before correction After correction 1315 Zeolite adsorption Zeolite (natural or synthetic) adsorption agent 14 6 1st process 1st stage 1414 Pump, etc. Page 14, line 20 ~ All adsorption towers <Deleted> Page 15 J line
In 16 8 2nd process 2nd stage 36 8-9 Raw material 1st stage preparation 1611 1kg 1-31 (g 16 J5 Carbon dioxide gas deleted> 1714 Parallel flow deleted> 1714 Product 2nd stage parts 18 5 Product Recovery Product gas recovery 187-8 Adsorption process Adsorption (I) process 187-8 Adsorption (l) Adsorption (I) process. Page Line Before correction After correction 19 1-2 100 Torr preferred 300 Torr or less, preferably 60 Torr L < Haro0Torr19
19-20 20 13, PSA De-Co2 PSA20 15 P
SA device <Delete> 21, 1 100 Torr preferred 300 Torr or less preferably 60 Torr I, <30 Torr21
At the end, when the pressure reaches near atmospheric pressure, close the and valve 19 in the adsorption tower, open the valve 20 in the adsorption tower, and open the valve 20 in the adsorption tower.
Furthermore, valve J7 is opened and adsorption tower C is opened.
312 Product processing Product pressurization 2312-13 Raw material pressurization 1st stage component gas pressurization 2313 Purge adsorption q11) Purge 24 13 D
,, 0□ Page Line Before correction After correction 2512 1st stage 1st stage 2513 Product processing Product pressurization 2514 2nd stage 2nd stage 2518 1st stage 1st stage 25 End 2nd stage 2nd stage

Claims (1)

【特許請求の範囲】 (1)二段階吸着操作により、少なくとも二酸化炭素、
−酸化炭素及び窒素を含む原料ガス中の一酸化炭素ケ濃
縮する方法において、 (a) その第1段階の吸着操作は二酸化炭素に対して
選択性2有する吸着物質を充填した2つ以上の吸着塔を
使用し、その方法は各吸着塔で吸着および脱着を繰返丁
圧力変動式吸着分離によつ℃その原料ガスから二酸化炭
素を除去することがらなり、そして、 (b) 第2段階の吸;9!f操作は、第1工程の吸着
工程から排出されたガス(以下、第1工程製品ガスとい
う)中の一酸化炭素に対して選択性を督する吸着物質を
充填した2つ以上の吸着塔ヶ使用し、その方法は 1i) ホ1工程製品ガスにより吸着塔を加圧する加圧
工程 (11)さらにm1工8M製品ガスを吸着塔に流して、
吸着塔出口における易吸着成分の一度が吸着塔入口にお
ける易吸着成分の濃度に達するまで又は両者の濃度が等
しくなる点の少し前まで吸着剤に易吸着成分を吸着させ
る吸着(1)工程、 (曲 吸着(I)工程終了後その吸着塔と臭突脱着が終
った吸着塔と′ff:連結し、前者σ)1玖漸塔からガ
ス乞後者の吸着塔に導入し、1511者の吸着塔σ)圧
力を降下させる減圧放圧工程、蚊)減圧した吸着塔に第
2工程製品ガスヶ並流にd^大して難吸着成分をパージ
するパージ工程、 M 吸着剤に吸着され℃いる易吸着成分ケ真空ポングン
用いて脱着させ製品ガス乞回収1−る回収工程、及び、 (Vll製品ガス回収が終った吸着塔と吸着工程が終っ
た吸着塔とン連結して後者の吸M塔からのガスによる吸
着曲工程、 〜ID 他の吸着塔のパージ工程からのガスによる吸着
9111工程、 からなり、定期的に吸着塔間の流れヶ変えて、全ての吸
yff塔において上記操作を繰返丁こと乞特漱とした方
法。 (2) 前記第1段階の吸着操作は (:) 柔1工程製島ガスによる吸着塔を加圧する加圧
工程、 (11)原料ガスを吸着塔に流して主として二r役化炭
素を吸着物質に吸着させる吸着工程、(叩 次いで吸R
ヶ大気圧附近まで減圧する減圧工程、 噛り 次いで吸着塔χ真空ボ/グにより排気する排気工
程、そして、 (φ 次いで第2工程からの廃梁ガスを利用するパージ
工程 から成り、足JiJl的忙吸着塔間の流れを変えて、全
”〔の吸着塔において、上記操作馨繰返1−ことから成
る特許請求の範囲第1項に記載の方法。
[Claims] (1) By a two-stage adsorption operation, at least carbon dioxide,
- In a method for concentrating carbon monoxide in a raw material gas containing carbon oxide and nitrogen, (a) the first stage adsorption operation is performed using two or more adsorption systems filled with an adsorbent material having a selectivity of 2 for carbon dioxide; the process consists of repeating adsorption and desorption in each adsorption tower and removing carbon dioxide from the feed gas by pressure-fluctuation adsorption separation; and (b) a second stage of Sucking; 9! The f operation involves the use of two or more adsorption towers filled with an adsorbent material that exhibits selectivity for carbon monoxide in the gas discharged from the first step adsorption step (hereinafter referred to as the first step product gas). The method is 1i) Pressurizing step of pressurizing the adsorption tower with the 1st step product gas (11) Furthermore, flowing the ml 8M product gas into the adsorption tower,
Adsorption (1) step of adsorbing the easily adsorbable component onto the adsorbent until the concentration of the easily adsorbable component at the outlet of the adsorption tower reaches the concentration of the easily adsorbable component at the inlet of the adsorption tower, or until just before the point where both concentrations become equal; After the adsorption (I) step is completed, the adsorption tower is connected to the adsorption tower where the odor desorption has been completed, and the gas is introduced from the former σ) 1-ku gradual tower to the latter adsorption tower, and the 1511 adsorption tower is σ) Depressurization and release process to lower the pressure, Mosquito) Purge process to purge difficult-to-adsorb components into the depressurized adsorption tower in parallel flow with the product gas of the second process, M: Easy-to-adsorb components adsorbed by the adsorbent at ℃ A recovery step in which the product gas is desorbed and recovered using a vacuum pump, and an adsorption tower in which the product gas recovery has been completed is connected to an adsorption tower in which the adsorption step has been completed, and the gas from the latter adsorption tower is The adsorption bending process consists of the ~ID adsorption 9111 process using gas from the purge process of other adsorption towers, and the above operation is repeated in all adsorption towers by periodically changing the flow between the adsorption towers. (2) The adsorption operation in the first stage is as follows: (11) A pressurizing step in which the adsorption tower is pressurized with a soft 1-step island-forming gas; The adsorption step of adsorbing the useful carbon onto an adsorbent material (beating, then adsorption
The process consists of a depressurization process in which the pressure is reduced to around atmospheric pressure, an exhaust process in which the adsorption tower is evacuated by a vacuum chamber, and a purge process that uses the waste beam gas from the second process. 2. A method as claimed in claim 1, comprising repeating the above operation in all adsorption towers by changing the flow between the busy adsorption towers.
JP58187480A 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method Granted JPS6078613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187480A JPS6078613A (en) 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187480A JPS6078613A (en) 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Publications (2)

Publication Number Publication Date
JPS6078613A true JPS6078613A (en) 1985-05-04
JPS6139087B2 JPS6139087B2 (en) 1986-09-02

Family

ID=16206809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187480A Granted JPS6078613A (en) 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Country Status (1)

Country Link
JP (1) JPS6078613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242313A (en) * 1990-02-19 1991-10-29 Kawasaki Steel Corp Purification of carbon monoxide
US5096470A (en) * 1990-12-05 1992-03-17 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242313A (en) * 1990-02-19 1991-10-29 Kawasaki Steel Corp Purification of carbon monoxide
US5096470A (en) * 1990-12-05 1992-03-17 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification

Also Published As

Publication number Publication date
JPS6139087B2 (en) 1986-09-02

Similar Documents

Publication Publication Date Title
US4539020A (en) Methods for obtaining high-purity carbon monoxide
JP3279585B2 (en) Method for producing purified air
KR100192690B1 (en) The use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to further process
JPH0798645B2 (en) Co-production of hydrogen and carbon dioxide
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
JPS63230505A (en) Method of forming and recovering oxygen product
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
EP0129444B2 (en) Methods for obtaining high-purity carbon monoxide
CN105858606B (en) A kind of full temperature journey pressure varying adsorption of purified method of ultra-pure hydrogen
JP6659717B2 (en) Hydrogen recovery method
JP5498661B2 (en) Blast furnace gas separation method
JPS59152210A (en) Recovery method of argon
JPS6078613A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JPS605012A (en) Purification of carbon monoxide from mixed gas containing carbon monoxide by using adsorption
JP2000072404A (en) Production of hydrogen-nitrogen gaseous mixture and device therefor
JPS59116115A (en) Method for recovering carbon monoxide
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPH01230416A (en) Recovery of carbon dioxide from blast-furnace gas
WO2023042535A1 (en) Gas separation method
KR102350033B1 (en) Method and apparatus for recovering hydrogen from FINEX off gas
JPS6078612A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method
JPH0221285B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees