JP2000072404A - Production of hydrogen-nitrogen gaseous mixture and device therefor - Google Patents
Production of hydrogen-nitrogen gaseous mixture and device thereforInfo
- Publication number
- JP2000072404A JP2000072404A JP10243467A JP24346798A JP2000072404A JP 2000072404 A JP2000072404 A JP 2000072404A JP 10243467 A JP10243467 A JP 10243467A JP 24346798 A JP24346798 A JP 24346798A JP 2000072404 A JP2000072404 A JP 2000072404A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hydrogen
- nitrogen
- endothermic
- hydrocarbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素−窒素混合ガ
スの製造方法およびその装置に関する。この様な水素−
窒素混合ガスは、例えば、鋼板の亜鉛メッキライン、焼
鈍炉などの熱処理炉、ガラス溶解炉などの雰囲気ガスと
して、有用である。The present invention relates to a method and an apparatus for producing a hydrogen-nitrogen mixed gas. Such hydrogen-
The nitrogen mixed gas is useful, for example, as an atmosphere gas in a steel plate galvanizing line, a heat treatment furnace such as an annealing furnace, a glass melting furnace, and the like.
【0002】[0002]
【従来の技術】例えば、亜鉛メッキラインでは、雰囲気
ガスとして、水素と窒素とからなる混合ガスを使用して
いる。2. Description of the Related Art For example, in a galvanizing line, a mixed gas comprising hydrogen and nitrogen is used as an atmosphere gas.
【0003】従来この様な混合ガスは、水素ガスと窒素
ガス(或いは液体窒素製造工場からタンクローリーで輸
送されてきた液体窒素)をそれぞれの貯蔵タンクに収容
しておき、使用に際して両ガスを所定の割合で混合した
後、亜鉛メッキラインに送入している。しかしながら、
この方法では、両ガスの輸送、貯蔵、混合などに要する
コストが高く、また高圧ガスの貯蔵に伴う管理資格者を
必要とするという問題点がある。Conventionally, such a mixed gas contains hydrogen gas and nitrogen gas (or liquid nitrogen transported from a liquid nitrogen production plant by a tank lorry) in respective storage tanks, and uses both gases at a predetermined rate. After mixing at the ratio, it is sent to the galvanizing line. However,
This method has the problems that the costs required for transporting, storing, mixing, etc. of both gases are high, and that a qualified person for managing the storage of the high-pressure gas is required.
【0004】また、触媒の存在下でアンモニアガスを加
熱分解して、水素ガス=75%と窒素ガス=25%との混合ガ
スを得る方法もある。しかしながら、原料アンモニアガ
スは、毒性があり、微量でもその臭気が極めて強いの
で、ガスの取り扱いおよび装置の操作に細心の注意が必
要であるという難点がある。There is also a method in which ammonia gas is heated and decomposed in the presence of a catalyst to obtain a mixed gas of hydrogen gas = 75% and nitrogen gas = 25%. However, the raw material ammonia gas is toxic, and its odor is extremely strong even in a trace amount, so that there is a drawback that careful handling of the gas and operation of the apparatus require careful attention.
【0005】さらに、オンサイト方式で水素ガスと窒素
ガスとをそれぞれ別個に製造し、混合する方法もある。
窒素ガスを製造する装置の代表例として、PSA方式によ
る装置があり、取り扱いが比較的容易で、設備費も安価
なものが市販されている。しかしながら、水素製造は、
通常炭化水素を高温かつ高圧で水蒸気改質した後、PSA
装置により分離精製する必要があり、中規模以下の水素
ガス使用事業者にとっては、設備費が高く、その取り扱
いも煩雑であるという問題点がある。[0005] Further, there is a method in which hydrogen gas and nitrogen gas are separately produced and mixed in an on-site system.
As a typical example of an apparatus for producing nitrogen gas, there is an apparatus based on the PSA method, and an apparatus which is relatively easy to handle and has a low equipment cost is commercially available. However, hydrogen production
Usually, after steam reforming hydrocarbons at high temperature and pressure, PSA
It is necessary to separate and purify the equipment, and there is a problem that the equipment cost is high and the handling thereof is complicated for a business operator using hydrogen gas of a medium size or less.
【0006】[0006]
【発明が解決しようとする課題】従って、本発明は、簡
易な装置を使用して、オンサイトで高純度の水素−窒素
混合ガス(水素−窒素の合計濃度98%以上)を低コストで
製造する技術を提供することを主な目的とする。SUMMARY OF THE INVENTION Accordingly, the present invention provides an on-site high-purity hydrogen-nitrogen mixed gas (total hydrogen-nitrogen concentration of 98% or more) using a simple apparatus at low cost. The main purpose is to provide technologies that perform
【0007】[0007]
【課題を解決するための手段】本発明者は、上記のよう
な技術の現状に留意しつつ、研究を進めた結果、炭化水
素を原料として吸熱形ガスを発生させた後、吸熱形ガス
をその中の水素と窒素以外のガスを優先的に吸着する吸
着剤と接触させることにより、高純度の水素−窒素混合
ガスを安価に得ることができることを見出した。Means for Solving the Problems The present inventor conducted research while paying attention to the current state of the technology as described above, and as a result, after generating an endothermic gas using hydrocarbon as a raw material, the endothermic gas was generated. It has been found that a high-purity hydrogen-nitrogen mixed gas can be obtained at low cost by contacting an adsorbent that preferentially adsorbs gases other than hydrogen and nitrogen therein.
【0008】すなわち、本発明は、下記の水素−窒素混
合ガスの製造方法およびその装置を提供するものであ
る: 1.炭化水素を原料として吸熱形ガスを製造し、これを
吸熱形ガス中の水素と窒素以外のガスを優先的に吸着す
る吸着剤と接触させることにより、水素−窒素混合ガス
を製造する方法。That is, the present invention provides the following method and apparatus for producing a hydrogen-nitrogen mixed gas: A method for producing a hydrogen-nitrogen mixed gas by producing an endothermic gas from a hydrocarbon as a raw material and bringing the gas into contact with an adsorbent which preferentially adsorbs gases other than hydrogen and nitrogen in the endothermic gas.
【0009】2.炭化水素を原料として吸熱形ガスを発
生させる装置、発生した吸熱形ガス中の水素と窒素以外
のガスを優先的に吸着するPSAガス分離装置および吸着
ガスの脱着機構を備えたことを特徴とする水素−窒素混
合ガスの製造装置。[0009] 2. It is equipped with a device that generates endothermic gas using hydrocarbon as a raw material, a PSA gas separation device that preferentially adsorbs gases other than hydrogen and nitrogen in the generated endothermic gas, and a desorption mechanism for adsorbed gas. Equipment for producing hydrogen-nitrogen mixed gas.
【0010】3.炭化水素を原料として吸熱形ガスを製
造し、これに水蒸気を加えてC0変成処理に供し、次いで
CO変成処理ガス中の未反応の水蒸気を冷却凝縮させて除
去した後、凝縮処理ガスを水素と窒素以外のガスを優先
的に吸着する吸着剤と接触させることにより、水素−窒
素混合ガスを分離製造する方法。[0010] 3. An endothermic gas is produced using hydrocarbons as a raw material, steam is added to the gas, and the mixture is subjected to a C0 conversion treatment.
After the unreacted water vapor in the CO conversion gas is removed by cooling and condensing, the hydrogen-nitrogen mixed gas is separated by contacting the condensed gas with an adsorbent that preferentially adsorbs gases other than hydrogen and nitrogen. How to make.
【0011】4.炭化水素を原料として吸熱形ガスを発
生させる装置、吸熱形ガス中のCOを水蒸気の存在下で水
素と二酸化炭素とに変換させるCO変成器、CO変成処理ガ
ス中の未反応の水蒸気を冷却凝縮して除去する装置、水
素と窒素以外のガスを優先的に吸着するPSAガス分離装
置および吸着ガスの脱着機構を備えたことを特徴とする
水素−窒素混合ガスの製造装置。4. A device that generates an endothermic gas using hydrocarbons as a raw material, a CO converter that converts CO in the endothermic gas into hydrogen and carbon dioxide in the presence of water vapor, and cools and condenses unreacted water vapor in the CO conversion gas A hydrogen-nitrogen mixed gas producing apparatus, comprising: a device for removing by adsorption, a PSA gas separating device for preferentially adsorbing a gas other than hydrogen and nitrogen, and a desorbing mechanism for an adsorbed gas.
【0012】[0012]
【発明の実施の形態】以下本発明の実施態様を示すフロ
ーチャートを参照しつつ、本発明をさらに詳細に説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to flowcharts showing embodiments of the present invention.
【0013】図1に示す実施態様(以下「第1の実施態
様」という)において、ライン1からの炭化水素(天然ガ
ス、プロパン、ブタンなど)とライン3からの清浄な空
気とを所定の割合(この割合は、最終的に得られる水素
−窒素混合ガスの水素/窒素比により定まる)で混合
し、吸熱形ガス発生装置5に送給する。吸熱形ガス発生
装置5は、公知のものを使用することができるので、詳
述しないが、通常、主要構成要素として、殻状構造体内
に触媒を充填した反応レトルトおよびヒーター(または
バーナー)を備え、該構造体外に生成した吸熱形ガスを
冷却する装置(熱交換器)を備えている。使用する触媒、
反応条件、空気比なども、水素−窒素混合ガスが生成さ
れる限り、特に限定されるものではないが、触媒として
ニッケル系、貴金属系などが例示され、反応条件として
は、温度900〜1100℃程度(より好ましくは、950〜1050
℃程度)、圧力大気圧〜0.02MPa程度(より好ましくは大
気圧〜0.005MPa程度)、空気比0.257〜0.35程度(より好
ましくは0.27〜0.32程度)である。In the embodiment shown in FIG. 1 (hereinafter referred to as “first embodiment”), a predetermined ratio of hydrocarbon (natural gas, propane, butane, etc.) from line 1 to clean air from line 3 is used. (This ratio is determined by the hydrogen / nitrogen ratio of the finally obtained hydrogen-nitrogen mixed gas), and is supplied to the endothermic gas generator 5. Since the endothermic gas generator 5 can use a known device, it will not be described in detail, but usually includes a reaction retort filled with a catalyst in a shell-like structure and a heater (or burner) as main components. And a device (heat exchanger) for cooling the endothermic gas generated outside the structure. The catalyst used,
The reaction conditions, the air ratio, etc. are not particularly limited as long as the hydrogen-nitrogen mixed gas is generated.Examples of the catalyst include nickel-based and noble metal-based catalysts, and the reaction conditions include a temperature of 900 to 1100 ° C. Degree (more preferably, 950 to 1050
C), pressure atmospheric pressure to about 0.02 MPa (more preferably atmospheric pressure to about 0.005 MPa), and air ratio of about 0.257 to 0.35 (more preferably about 0.27 to 0.32).
【0014】吸熱形ガス発生装置5で得られ、冷却され
たガスは、水素、窒素、一酸化炭素を主成分とし、その
他少量の二酸化炭素、未反応の炭化水素、水蒸気などを
含む。このガスは、次いで、複数の吸着塔(少なくとも
2基、より好ましくは3基以上)からなる多塔式PSAガス
分離装置7に送られる。PSAガス分離装置7の各吸着塔
には、水素および窒素以外の複数のガスをそれぞれ優先
的に吸着する複数種の吸着剤が充填されており、常法に
従って、各吸着塔に設けられた自動切替弁の開閉操作に
よって、所定のサイクルタイムで吸着操作と脱着操作
(再生操作)とを繰り返し行う。The cooled gas obtained by the endothermic gas generator 5 contains hydrogen, nitrogen and carbon monoxide as main components, and also contains a small amount of carbon dioxide, unreacted hydrocarbons, steam and the like. This gas is then sent to a multi-column PSA gas separation device 7 comprising a plurality of adsorption columns (at least two, more preferably three or more). Each of the adsorption towers of the PSA gas separation apparatus 7 is filled with a plurality of types of adsorbents that preferentially adsorb a plurality of gases other than hydrogen and nitrogen, respectively. Suction operation and desorption operation in a predetermined cycle time by opening and closing the switching valve
(Play operation).
【0015】吸着剤としては、PSAガス分離装置におい
て従来から使用されている公知のものを適宜組合せて使
用することができる。吸着剤の充填比率については、原
料ガスの組成に応じて変化させることにより、製品ガス
取得量、回収率などを最適化することができる。また、
吸着剤の充填比率を変えることにより、製品ガス中の水
素と窒素との比率を変えることができる。具体的な充填
比率は、それぞれ以下の通りとすることが好ましい。As the adsorbent, known substances conventionally used in PSA gas separation apparatuses can be used in appropriate combination. By changing the filling ratio of the adsorbent according to the composition of the raw material gas, the product gas acquisition amount, the recovery rate, and the like can be optimized. Also,
By changing the filling ratio of the adsorbent, the ratio between hydrogen and nitrogen in the product gas can be changed. The specific filling ratio is preferably as follows.
【0016】1.脱湿剤 導入されたガス中の水分と最初に接触してこれを除去す
るために、吸着塔の最下部に脱湿剤を充填する。脱湿剤
としては、活性アルミナ、シリカゲルなどが用いられ
る。脱湿剤/全吸着剤の比率(重量%;以下同様)は、ガ
ス中の水分量およびPSA操作時の脱着圧力に応じて定め
られるが、通常40%以下であり、例えば、水分量が20〜
40℃飽和程度、脱着圧力が150〜60torr程度の範囲で
は、5〜30%程度がより好ましい。1. Dehumidifier The lowermost part of the adsorption tower is filled with a dehumidifier in order to first come into contact with and remove moisture in the introduced gas. Activated alumina, silica gel or the like is used as the dehumidifier. The ratio of dehumidifier / total adsorbent (% by weight; the same applies hereinafter) is determined according to the amount of water in the gas and the desorption pressure during the PSA operation, and is usually 40% or less. ~
In the range of about 40 ° C. saturation and the desorption pressure of about 150 to 60 torr, about 5 to 30% is more preferable.
【0017】2.活性炭、分子篩炭素などの炭素系吸着
剤 脱湿後の導入ガス中の二酸化炭素およびメタンを主とし
て吸着させるためには、活性炭、分子篩炭素などの炭素
系吸着剤が有効であり、これらは脱湿剤の上部且つ後述
のゼオライト系吸着剤の下部に配置される。炭素系吸着
剤/全吸着剤の比率は、特に導入ガス中のメタン濃度に
応じて、通常40%程度以下であり、メタン濃度が2%以
下の場合には、30%以下であることがより好ましい。2. Carbon-based adsorbents such as activated carbon and molecular sieve carbon In order to mainly adsorb carbon dioxide and methane in the introduced gas after dehumidification, carbon-based adsorbents such as activated carbon and molecular sieve carbon are effective. And below the zeolite-based adsorbent described below. The ratio of carbon-based adsorbent / total adsorbent is usually about 40% or less, especially depending on the methane concentration in the introduced gas. When the methane concentration is 2% or less, the ratio is preferably 30% or less. preferable.
【0018】3.ゼオライト系吸着剤 導入ガス中の二酸化炭素および一酸化炭素を主として吸
着させるためには、5A型、13X型などのゼオライト系吸
着剤が有効であり、これは炭素系吸着剤の上部(吸着剤
の最上部)に充填される。この吸着剤は、CO濃度が高い
場合に、特に有効である。ゼオライト系吸着剤/全吸着
剤の比率は、特に導入ガス中のCO濃度に応じて、50〜10
0%程度であり、CO濃度が0.1〜25%程度の範囲において
は、70〜95%程度がより好ましい。3. Zeolite-based adsorbents In order to mainly adsorb carbon dioxide and carbon monoxide in the introduced gas, zeolite-based adsorbents such as 5A type and 13X type are effective. Top). This adsorbent is particularly effective when the CO concentration is high. The ratio of zeolite-based adsorbent / total adsorbent should be between 50 and 10 depending on the CO concentration in the gas introduced.
It is about 0%, and more preferably about 70 to 95% when the CO concentration is in the range of about 0.1 to 25%.
【0019】吸着時および脱着時の条件も、特に限定さ
れない。例えば、入口ガス温度60〜10℃程度(好ましく
は50〜30℃程度)、吸着圧力大気圧〜0.1MPa程度(好まし
くは大気圧〜0.02MPa程度、より好ましくは大気圧〜0.0
05MPa程度)、脱着圧力200〜50torr程度(好ましくは150
〜70torr程度、より好ましくは120〜80torr程度)、サイ
クルタイム200〜40秒程度(好ましくは150〜50秒程度、
より好ましくは120〜60秒程度)である。The conditions during adsorption and desorption are not particularly limited. For example, the inlet gas temperature is about 60 to 10 ° C. (preferably about 50 to 30 ° C.), the adsorption pressure is about atmospheric pressure to about 0.1 MPa (preferably about atmospheric pressure to about 0.02 MPa, more preferably the atmospheric pressure to about 0.0 MPa).
About 05MPa), desorption pressure about 200-50 torr (preferably 150
About 70 torr, more preferably about 120 to 80 torr), cycle time about 200 to 40 seconds (preferably about 150 to 50 seconds,
More preferably, it is about 120 to 60 seconds).
【0020】PSAガス分離装置7で得られた水素−窒素
混合ガスは、吸着塔の切り替えに伴うガス組成の変動を
緩和するために、製品タンク9に蓄えられた後、必要に
応じて昇圧され、鋼板の亜鉛メッキライン、焼鈍炉など
の熱処理炉、ガラス溶解炉などの雰囲気ガスとして、使
用される(図2においては、これらの使用箇所を11と
して一括して示す)。The hydrogen-nitrogen mixed gas obtained by the PSA gas separation device 7 is stored in the product tank 9 and then pressurized as necessary in order to alleviate the fluctuation of the gas composition accompanying the switching of the adsorption tower. It is used as an atmosphere gas in a heat treatment furnace such as a steel plate galvanizing line, an annealing furnace, a glass melting furnace, and the like (in FIG. 2, these use places are collectively shown as 11).
【0021】図2は、本発明の他の実施態様(以下「第
2の実施態様」という)を示す。図2において、図1に
示す第1の実施態様と同様の構成要素は、同じ番号で示
してある。FIG. 2 shows another embodiment of the present invention (hereinafter referred to as "second embodiment"). 2, the same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals.
【0022】第2の実施態様においては、吸熱形ガス発
生装置5とPSAガス分離装置7との間にCO変成器17を
配置し、ライン13から供給される水蒸気により吸熱形
ガス中の一酸化炭素を水素と二酸化炭素とに変換させ
る。その結果、水素−窒素ガス中の水素含量を増大させ
ることができる。In the second embodiment, a CO converter 17 is disposed between the endothermic gas generator 5 and the PSA gas separator 7, and the monoxide in the endothermic gas is supplied by steam supplied from the line 13. Converts carbon to hydrogen and carbon dioxide. As a result, the hydrogen content in the hydrogen-nitrogen gas can be increased.
【0023】第2の実施態様における吸熱形ガス発生装
置で採用される触媒、反応条件、空気比などは、第1の
実施態様と同様でよい。The catalyst, reaction conditions, air ratio, and the like employed in the endothermic gas generator of the second embodiment may be the same as those of the first embodiment.
【0024】第2の実施態様においては、吸熱形ガス発
生装置5で得られ、冷却されたガスは、ライン13から
の水蒸気を混合された後、CO変成触媒を充填したCO変成
器17に送られ、所定の条件下にCO変成反応に供され
る。CO変成反応器としては、公知の断熱型或いは等温型
などが使用される。CO変成器において使用する触媒、反
応条件、水蒸気比なども、CO変成反応が良好に行われる
限り、特に限定されるものではないが、触媒として銅−
亜鉛系、鉄−クロム系などが挙げられ、反応条件は、入
口温度170〜500℃程度(より好ましくは、180〜300℃程
度)、出口温度175〜300℃(より好ましくは、175〜200℃
程度)程度、圧力大気圧〜0.1MPa程度(より好ましくは大
気圧〜0.005MPa程度)、水蒸気/COモル比1〜4程度(より
好ましくは2.5〜3.5程度)である。In the second embodiment, the cooled gas obtained by the endothermic gas generator 5 and mixed with steam from the line 13 is sent to a CO converter 17 filled with a CO conversion catalyst. And subjected to a CO conversion reaction under predetermined conditions. As the CO conversion reactor, a known adiabatic or isothermal type is used. The catalyst, reaction conditions, steam ratio, and the like used in the CO shift converter are not particularly limited as long as the CO shift reaction is performed well.
Zinc-based, iron-chromium-based and the like, the reaction conditions, the inlet temperature about 170 ~ 500 ℃ (more preferably, about 180 ~ 300 ℃), the outlet temperature 175 ~ 300 ℃ (more preferably, 175 ~ 200 ℃
Degree), pressure atmospheric pressure to about 0.1 MPa (more preferably, atmospheric pressure to about 0.005 MPa), and a steam / CO molar ratio of about 1 to 4 (more preferably, about 2.5 to 3.5).
【0025】CO変成後のガスは、冷却器15において冷
却され、凝縮した水分を除去された後、PSAガス分離装
置7に送られ、以後第1の実施態様と同様にして処理さ
れ、使用される。The gas after the CO conversion is cooled in the cooler 15 to remove condensed water, and then sent to the PSA gas separation device 7, where it is processed and used in the same manner as in the first embodiment. You.
【0026】[0026]
【発明の効果】本発明によれば、吸熱形ガス発生装置と
PSAガス分離装置とを主とする簡易な構成の装置によ
り、純度98%以上の水素−窒素混合ガスを低コストでオ
ンサイトで製造することができる。本発明により得られ
る水素−窒素混合ガスは、最良の条件下では、一酸化炭
素、二酸化炭素、メタンなどの不要成分の合計含有量を
0.1%以下とすることができる。According to the present invention, an endothermic gas generator and
With a simple configuration mainly including a PSA gas separation device, a hydrogen-nitrogen mixed gas having a purity of 98% or more can be produced at low cost on-site. Under the best conditions, the hydrogen-nitrogen mixed gas obtained by the present invention can reduce the total content of unnecessary components such as carbon monoxide, carbon dioxide, and methane.
0.1% or less.
【0027】[0027]
【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。EXAMPLES Examples are shown below to further clarify the features of the present invention.
【0028】実施例1 図1に示すフローチャートに従って、本発明方法を実施
した。Example 1 The method of the present invention was carried out according to the flowchart shown in FIG.
【0029】天然ガス(13Aタイプ)を吸熱形ガス発生装
置5に供給し、H2=36.59容積%(以下同様)、N2=41.59%
(アルゴンを含む;以下同様)、CO=21.14%、CO2=0.68
%、CH4=0.00%からなり、露点=10℃の吸熱形ガスを得
た。吸熱形ガス発生装置の操作条件は、ニッケル系触媒
を使用して、温度約1000℃、圧力約0.005MPa、空気比0.
286であった。Natural gas (13A type) is supplied to the endothermic gas generator 5, and H 2 = 36.59% by volume (the same applies hereinafter) and N 2 = 41.59%
(Including argon; the same applies hereinafter), CO = 21.14%, CO 2 = 0.68
%, CH 4 = 0.00%, and an endothermic gas having a dew point of 10 ° C. was obtained. The operating conditions of the endothermic gas generator are as follows: nickel-based catalyst, temperature about 1000 ° C, pressure about 0.005MPa, air ratio 0.
It was 286.
【0030】次いで、得られた吸熱形ガスをPSAガス分
離装置7(吸着塔3基;吸着剤は、活性アルミナ:分子
篩炭素:ゼオライト=15:10:75の重量比で充填)に送給
し、入口ガス温度30℃、吸着圧力0.0035MPa、脱着圧力1
00torr、サイクルタイム80秒で水素/窒素以外のガスを
吸着除去した。Next, the obtained endothermic gas is fed to a PSA gas separator 7 (three adsorption towers; the adsorbent is filled with a weight ratio of activated alumina: molecular sieve carbon: zeolite = 15: 10: 75). , Inlet gas temperature 30 ° C, adsorption pressure 0.0035MPa, desorption pressure 1
At a cycle time of 80 torr and a cycle time of 80 seconds, gases other than hydrogen / nitrogen were adsorbed and removed.
【0031】吸着処理後に貯蔵タンク9内に貯められた
製品ガスの組成は、H2=78.72%、N2=21.28%、CO、CO2
およびCH4=0.00%であり、露点=-43℃であった。The composition of the product gas stored in the storage tank 9 after the adsorption treatment is as follows: H 2 = 78.72%, N 2 = 21.28%, CO, CO 2
And CH 4 = 0.00% and dew point = −43 ° C.
【0032】PSAガス分離装置における水素/窒素成分の
総合回収率は、56.27%であった。The total recovery of hydrogen / nitrogen components in the PSA gas separation device was 56.27%.
【0033】実施例2 図2に示すフローチャートに従って、本発明方法を実施
した。Example 2 The method of the present invention was performed according to the flowchart shown in FIG.
【0034】天然ガス(13Aタイプ)を吸熱形ガス発生装
置5に供給し、H2=36.16%、N2=41.44%、CO=19.74%、
CO2=0.60%、CH4=0.04%、H2O=2.02からなる吸熱形ガス
を得た。吸熱形ガス発生装置の操作条件は、ニッケル系
触媒を使用して、温度約1050℃、圧力約0.005MPa、空気
比0.286であった。A natural gas (13A type) is supplied to the endothermic gas generator 5, and H 2 = 36.16%, N 2 = 41.44%, CO = 19.74%,
An endothermic gas composed of CO 2 = 0.60%, CH 4 = 0.04%, and H 2 O = 2.02 was obtained. The operating conditions of the endothermic gas generator were as follows: temperature was about 1050 ° C., pressure was about 0.005 MPa, and air ratio was 0.286 using a nickel-based catalyst.
【0035】次いで、得られた吸熱形ガスに水蒸気を混
合した後、銅−亜鉛系変成触媒を充填した等温型のCO変
成器17に送り、CO変成反応に供した。反応条件は、入
口温度520℃、出口温度200℃、圧力0.004MPa、スチーム
/COモル比3.0であった。CO変成後のガス組成は、H2=47.
30%、N2=35.33%、CO=0.33%、CO2=17.00%、CH4=0.04
%からなり、露点=30℃飽和であった。Next, after the obtained endothermic gas was mixed with steam, it was sent to an isothermal type CO converter 17 filled with a copper-zinc type shift catalyst and subjected to a CO shift reaction. The reaction conditions are inlet temperature 520 ° C, outlet temperature 200 ° C, pressure 0.004MPa, steam
The / CO molar ratio was 3.0. Gas composition after CO conversion is, H 2 = 47.
30%, N 2 = 35.33%, CO = 0.33%, CO 2 = 17.00%, CH 4 = 0.04
%, Dew point = 30 ° C. saturation.
【0036】次いで、CO変成後のガスをPSAガス分離装
置7(吸着塔3基;吸着剤は、活性アルミナ:分子篩炭
素:ゼオライト=12:9:79の重量比で充填)に送給し、入
口ガス温度30℃、吸着圧力0.0035、脱着圧力100torr、
サイクルタイム80秒で水素/窒素以外のガスを吸着除去
した。Next, the gas after CO conversion is fed to a PSA gas separator 7 (three adsorption towers; the adsorbent is packed with a weight ratio of activated alumina: molecular sieve carbon: zeolite = 12: 9: 79), Inlet gas temperature 30 ° C, adsorption pressure 0.0035, desorption pressure 100torr,
Gases other than hydrogen / nitrogen were adsorbed and removed with a cycle time of 80 seconds.
【0037】吸着処理後に貯蔵タンク9内に貯められた
製品ガスの組成は、H2=74.97%、N2=24.94%、CO=0.09
%、CO2およびCH4=0.00%であり、露点=-40℃であっ
た。The composition of the product gas stored in the storage tank 9 after the adsorption treatment is as follows: H 2 = 74.97%, N 2 = 24.94%, CO = 0.09
%, CO 2 and CH 4 = 0.00% and dew point = −40 ° C.
【0038】PSAガス分離装置における水素/窒素の総合
回収率は、71.61%であった。The total recovery of hydrogen / nitrogen in the PSA gas separator was 71.61%.
【図1】本発明による第1の実施態様を示すフローチャ
ートである。FIG. 1 is a flowchart showing a first embodiment according to the present invention.
【図2】本発明による第2の実施態様を示すフローチャ
ートである。FIG. 2 is a flowchart showing a second embodiment according to the present invention.
1…炭化水素供給ライン 3…空気供給ライン 5…吸熱形ガス発生装置 7…PSAガス分離装置 9…ガス貯蔵タンク 11…水素−窒素混合ガス使用箇所 13…水蒸気供給ライン 15…冷却装置 17…CO変成装置 DESCRIPTION OF SYMBOLS 1 ... Hydrocarbon supply line 3 ... Air supply line 5 ... Endothermic gas generator 7 ... PSA gas separation device 9 ... Gas storage tank 11 ... Hydrogen-nitrogen mixed gas use point 13 ... Steam supply line 15 ... Cooling device 17 ... CO Transformation equipment
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 尚 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 三宅 正訓 兵庫県加古郡播磨町宮西346番地の1 住 友精化株式会社ガス・エンジニアリング事 業部内 Fターム(参考) 4D012 CA20 CB16 CD07 CE01 CF03 CF04 CG01 CH05 4G040 EA03 EA06 EB31 FA01 FB04 FB06 FC03 FD01 FE02 4K027 AA02 AA22 AE31 AE33 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Onishi 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Inside Osaka Gas Co., Ltd. (72) Inventor Masanori Miyake 346 Miyanishi, Harima-cho, Kako-gun, Hyogo Prefecture 1 Sumitomo Seika Co., Ltd. Gas Engineering Division F-term (reference) 4D012 CA20 CB16 CD07 CE01 CF03 CF04 CG01 CH05 4G040 EA03 EA06 EB31 FA01 FB04 FB06 FC03 FD01 FE02 4K027 AA02 AA22 AE31 AE33
Claims (4)
し、これを吸熱形ガス中の水素と窒素以外のガスを優先
的に吸着する吸着剤と接触させることにより、水素−窒
素混合ガスを製造する方法。1. An endothermic gas is produced from a hydrocarbon as a raw material, and this is brought into contact with an adsorbent which preferentially adsorbs gases other than hydrogen and nitrogen in the endothermic gas to produce a hydrogen-nitrogen mixed gas. How to make.
せる装置、発生した吸熱形ガス中の水素と窒素以外のガ
スを優先的に吸着する多塔式PSAガス分離装置および吸
着ガスの脱着機構を備えたことを特徴とする水素−窒素
混合ガスの製造装置。2. An apparatus for generating an endothermic gas using hydrocarbons as a raw material, a multi-column PSA gas separation apparatus for preferentially adsorbing gases other than hydrogen and nitrogen in the generated endothermic gas, and a desorption mechanism for the adsorbed gas An apparatus for producing a hydrogen-nitrogen mixed gas, comprising:
し、これに水蒸気を加えてC0変成処理に供し、次いでCO
変成処理ガス中の未反応の水蒸気を冷却凝縮させて除去
した後、凝縮処理ガスを水素と窒素以外のガスを優先的
に吸着する吸着剤と接触させることにより、水素−窒素
混合ガスを分離製造する方法。3. An endothermic gas is produced from a hydrocarbon as a raw material, and steam is added to the gas to subject it to CO conversion treatment.
After the unreacted water vapor in the shift gas is removed by cooling and condensing it, the condensed gas is brought into contact with an adsorbent that preferentially adsorbs gases other than hydrogen and nitrogen to produce a hydrogen-nitrogen mixed gas. how to.
せる装置、吸熱形ガス中のCOを水蒸気の存在下で水素と
二酸化炭素とに変換させるCO変成器、CO変成処理ガス中
の未反応の水蒸気を冷却凝縮して除去する装置、水素と
窒素以外のガスを優先的に吸着するPSAガス分離装置お
よび吸着ガスの脱着機構を備えたことを特徴とする水素
−窒素混合ガスの製造装置。4. An apparatus for generating an endothermic gas using a hydrocarbon as a raw material, a CO converter for converting CO in the endothermic gas into hydrogen and carbon dioxide in the presence of steam, and an unreacted gas in the CO conversion gas. A hydrogen-nitrogen mixed gas producing apparatus, comprising: an apparatus for cooling and condensing water vapor, a PSA gas separation apparatus for preferentially adsorbing gases other than hydrogen and nitrogen, and a desorption mechanism for adsorbed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24346798A JP4013007B2 (en) | 1998-08-28 | 1998-08-28 | Method and apparatus for producing hydrogen-nitrogen mixed gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24346798A JP4013007B2 (en) | 1998-08-28 | 1998-08-28 | Method and apparatus for producing hydrogen-nitrogen mixed gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000072404A true JP2000072404A (en) | 2000-03-07 |
JP4013007B2 JP4013007B2 (en) | 2007-11-28 |
Family
ID=17104332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24346798A Expired - Fee Related JP4013007B2 (en) | 1998-08-28 | 1998-08-28 | Method and apparatus for producing hydrogen-nitrogen mixed gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4013007B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003246606A (en) * | 2001-11-14 | 2003-09-02 | Ceca Sa | Syngas purifying method |
JP2005509582A (en) * | 2001-11-22 | 2005-04-14 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Hydrogen production apparatus and method of using the same |
JP2010111562A (en) * | 2008-03-06 | 2010-05-20 | Kobe Steel Ltd | Psa apparatus for producing high-purity hydrogen gas |
CN102344119A (en) * | 2011-06-23 | 2012-02-08 | 莱芜钢铁集团电子有限公司 | Method for automatically switching a plurality of towers in pressure swing adsorption (PSA) hydrogen production system |
JP2017530921A (en) * | 2014-07-03 | 2017-10-19 | ヌヴェラ・フュエル・セルズ,エルエルシー | System and method for regenerating an absorbent bed for drying compressed wet hydrogen |
CN113634088A (en) * | 2020-12-30 | 2021-11-12 | 山东红枫环境能源有限公司 | Tower cutting method |
CN115055026A (en) * | 2022-05-25 | 2022-09-16 | 云南通威高纯晶硅有限公司 | Method for purifying mixed gas by using tube array adsorption column |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144401A (en) * | 1979-04-24 | 1980-11-11 | Foster Wheeler Corp | Method of producing synthetic gas for ammonia preparation |
JPS6042201A (en) * | 1983-08-18 | 1985-03-06 | デイデイエル・エンジニアリング・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Manufacture of ammonia synthetic gas |
JPS61106403A (en) * | 1984-10-30 | 1986-05-24 | Toyo Eng Corp | Purification of gas for ammonia synthesis |
JPS61149425A (en) * | 1984-12-25 | 1986-07-08 | Ngk Insulators Ltd | Method and apparatus for producing atmospheric gas |
JPH0640707A (en) * | 1984-03-02 | 1994-02-15 | Imperial Chem Ind Plc <Ici> | Preparation of synthetic ammonia gas |
JPH0733403A (en) * | 1993-07-26 | 1995-02-03 | Daido Plant Kogyo Kk | Apparatus for producing atmosphere gas for heat treating furnace |
JPH08169701A (en) * | 1994-06-06 | 1996-07-02 | Praxair Technol Inc | Method and apparatus for generating atmosphere for heat treatment |
-
1998
- 1998-08-28 JP JP24346798A patent/JP4013007B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144401A (en) * | 1979-04-24 | 1980-11-11 | Foster Wheeler Corp | Method of producing synthetic gas for ammonia preparation |
JPS6042201A (en) * | 1983-08-18 | 1985-03-06 | デイデイエル・エンジニアリング・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Manufacture of ammonia synthetic gas |
JPH0640707A (en) * | 1984-03-02 | 1994-02-15 | Imperial Chem Ind Plc <Ici> | Preparation of synthetic ammonia gas |
JPS61106403A (en) * | 1984-10-30 | 1986-05-24 | Toyo Eng Corp | Purification of gas for ammonia synthesis |
JPS61149425A (en) * | 1984-12-25 | 1986-07-08 | Ngk Insulators Ltd | Method and apparatus for producing atmospheric gas |
JPH0733403A (en) * | 1993-07-26 | 1995-02-03 | Daido Plant Kogyo Kk | Apparatus for producing atmosphere gas for heat treating furnace |
JPH08169701A (en) * | 1994-06-06 | 1996-07-02 | Praxair Technol Inc | Method and apparatus for generating atmosphere for heat treatment |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003246606A (en) * | 2001-11-14 | 2003-09-02 | Ceca Sa | Syngas purifying method |
JP2005509582A (en) * | 2001-11-22 | 2005-04-14 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Hydrogen production apparatus and method of using the same |
JP2010111562A (en) * | 2008-03-06 | 2010-05-20 | Kobe Steel Ltd | Psa apparatus for producing high-purity hydrogen gas |
CN102344119A (en) * | 2011-06-23 | 2012-02-08 | 莱芜钢铁集团电子有限公司 | Method for automatically switching a plurality of towers in pressure swing adsorption (PSA) hydrogen production system |
JP2017530921A (en) * | 2014-07-03 | 2017-10-19 | ヌヴェラ・フュエル・セルズ,エルエルシー | System and method for regenerating an absorbent bed for drying compressed wet hydrogen |
CN113634088A (en) * | 2020-12-30 | 2021-11-12 | 山东红枫环境能源有限公司 | Tower cutting method |
CN113634088B (en) * | 2020-12-30 | 2024-01-26 | 山东红枫环境能源有限公司 | Tower cutting method |
CN115055026A (en) * | 2022-05-25 | 2022-09-16 | 云南通威高纯晶硅有限公司 | Method for purifying mixed gas by using tube array adsorption column |
Also Published As
Publication number | Publication date |
---|---|
JP4013007B2 (en) | 2007-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0489555B1 (en) | Hydrogen and carbon monoxide production by pressure swing adsorption purification | |
JP3351815B2 (en) | Purification method of inert gas | |
AU2008336265B2 (en) | A plant and process for recovering carbon dioxide | |
JP3279585B2 (en) | Method for producing purified air | |
US8535417B2 (en) | Recovery of carbon dioxide from flue gas | |
US7862645B2 (en) | Removal of gaseous contaminants from argon | |
JP4745299B2 (en) | Adsorption / desorption material of ammonia using a combination of specific metal halides, separation method and storage method | |
US4704267A (en) | Production of hydrogen from ammonia | |
JP2003081605A (en) | Hydrogen producing method accompanying recovery of liquefied co2 | |
US20080300326A1 (en) | Processing Residue Gas of a Fischer-Tropsch Process | |
WO2009008565A1 (en) | Pressure swing adsorption apparatus and method for hydrogen purification using the same | |
JPS62223587A (en) | Method and device for recovering argon from purge gas of ammonia plant using combination of low-temperature separation means and non-low temperature separation means | |
JP6659717B2 (en) | Hydrogen recovery method | |
EP0367618B1 (en) | Process for producing carbon monoxide gas | |
EP3505492A1 (en) | Method for recovering hydrogen from biomass pyrolysis gas | |
JP4013007B2 (en) | Method and apparatus for producing hydrogen-nitrogen mixed gas | |
JP6055920B2 (en) | Hydrogen recovery method | |
JP2024524092A (en) | Ammonia decomposition for green hydrogen | |
JP2002326810A (en) | Separation method and apparatus of ammonia using a metallic halide | |
JPS59116115A (en) | Method for recovering carbon monoxide | |
JP2000272905A (en) | Removal of organic impurity in methanol degradation gas by closed tsa method | |
SIRCAR | Pressure swing adsorption technology for hydrogen purification-A status review | |
JPS6097022A (en) | Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method | |
Bryzgalin et al. | A technology for producing a nitrogen-hydrogen protective atmosphere from natural gas | |
JPS6097020A (en) | Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070509 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070828 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |