JPH01230416A - Recovery of carbon dioxide from blast-furnace gas - Google Patents

Recovery of carbon dioxide from blast-furnace gas

Info

Publication number
JPH01230416A
JPH01230416A JP63056286A JP5628688A JPH01230416A JP H01230416 A JPH01230416 A JP H01230416A JP 63056286 A JP63056286 A JP 63056286A JP 5628688 A JP5628688 A JP 5628688A JP H01230416 A JPH01230416 A JP H01230416A
Authority
JP
Japan
Prior art keywords
gas
column
carbon dioxide
holder
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63056286A
Other languages
Japanese (ja)
Inventor
Hiroteru Yamamoto
山本 博照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63056286A priority Critical patent/JPH01230416A/en
Publication of JPH01230416A publication Critical patent/JPH01230416A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide the title recovery process so designed that the CO2 gas present in blast-furnace gas is absorbed in a absorption column and the exhaust gas from said column is utilized as a fuel gas; concurrently with this, the CO2 gas is desorbed from said column under a vacuum, thereby recovering the CO2 gas with a stabilized purity. CONSTITUTION:In the absorption process, blast-furnace gas is fed from a gas holder 1, via a valve 15 into an absorption column 6A and the resultant off-gas, via a valve 14 is stored in a fuel gas holder. In the purging process, part of a product gas is drawn from a holder 5 using a blower 4 and fed into the column 6A for purging use. Thence, the purging gas with which the column 6A was cleaned is discharged from the column 6A and fed into a column 6B under a pressurizing stage in the earlier half of the absorption process to effect absorption and recover the CO2 component. And the residual component is fed from the column 6B to the fuel gas holder. The column 6A is then vacuumed and the CO2 gas thus desorbed is fed to the holder 5. And when the column 6A is in the absorption process, a column 6C in the purging process and the column 6B in the desorption process; the respective columns being transferred to the next process in succession, and the product CO2 gas is taken out, at times when needed, from the holder 5 using the blower 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は炭酸ガスを回収するプロセスの原料ガスとし
て高炉ガスを用いることにより炭酸ガスを安定した純度
で回収するとともに、高炉ガスのカロリーを上せしめる
ことができる炭酸ガス回収方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention recovers carbon dioxide gas with stable purity by using blast furnace gas as a raw material gas in the process of recovering carbon dioxide gas, and also increases the calorie content of blast furnace gas. This invention relates to a carbon dioxide recovery method that can be used to recover carbon dioxide.

〔従来の技術〕[Conventional technology]

製鉄所からは種々のガスが排出されており、それぞれの
物性に従って有効利用されている。高炉ガス(Bガス)
は−酸化炭素を多量に含むところから一酸化炭素の原料
として利用されるばか多くは発電用ボイラーその他の燃
料として利用されていた。ところが、この高炉ガスは発
熱量が低いため一般にCOGガス等を混合してカロリー
を高めていた。
Various gases are emitted from steelworks, and each gas is used effectively according to its physical properties. Blast furnace gas (B gas)
Since it contains a large amount of carbon oxide, it was used as a raw material for carbon monoxide, but it was also used as a fuel for power generation boilers and other purposes. However, since this blast furnace gas has a low calorific value, it has generally been mixed with COG gas or the like to increase its calorie content.

一方、炭酸ガス回収設備の原料としては原料ガス中の炭
酸ガス濃度の高い熱風炉ガスとかボイラ等の燃焼排ガス
が使用されていた。そして、これらの排ガスはNOxを
含みまた高温であるためにNOxの除去装置及び冷却装
置が一般に設けられており炭酸ガスの回収はこれらの装
置を経由したのちに行なわれていた。炭酸ガスの回収設
備には種々のものが開発され使用されているがそのなか
のひとつに圧力スイング吸着法(PSA法)がある。こ
のPSA法は、加圧下に目的とするガス成分だけを特殊
な吸着剤に吸着させ、後これを減圧して取出す分離方法
である。
On the other hand, hot stove gas or combustion exhaust gas from boilers, etc., which has a high carbon dioxide concentration in the raw material gas, has been used as a raw material for carbon dioxide recovery equipment. Since these exhaust gases contain NOx and are at high temperatures, NOx removal devices and cooling devices are generally provided, and carbon dioxide gas is recovered after passing through these devices. Various types of carbon dioxide recovery equipment have been developed and used, and one of them is the pressure swing adsorption method (PSA method). This PSA method is a separation method in which only the target gas component is adsorbed on a special adsorbent under pressure, and then the gas component is extracted under reduced pressure.

熱風炉ガスを原料に用いてPSA法で炭酸ガスを回収す
るフローの一例を第2図に示す。熱風炉ガスは例えばG
O224VO]、%、022VO1,%、N269シo
1.%及び11□05vo1.%よりなっていてダスト
5る。この熱風炉ガスはまずダスト除去装置7に入れら
れそこでポンプ8により供給される水洗水により冷却さ
れダストが除去される。9は冷却塔である。次に原料ガ
スブロワ−2により送られてガス冷却器10に入りそこ
で所定温度まで冷却されてから原料ガス供給配管を通っ
て吸着塔6A、6B、6Cに送入される。ガス供給器1
0には冷媒が冷媒ユニット11から供給されている。各
吸着塔6A、6B、6Cにおける工程は一般に吸着工程
、パージ工程、脱着工程及び加圧工程からなっている。
FIG. 2 shows an example of the flow of recovering carbon dioxide gas by the PSA method using hot stove gas as a raw material. For example, hot stove gas is G
O224VO], %, 022VO1,%, N269
1. % and 11□05vo1. % and the dust is 5. This hot stove gas is first introduced into a dust removal device 7, where it is cooled by flushing water supplied by a pump 8 and dust is removed. 9 is a cooling tower. Next, the raw material gas is sent by the raw gas blower 2, enters the gas cooler 10, where it is cooled to a predetermined temperature, and is then sent to the adsorption towers 6A, 6B, and 6C through the raw gas supply piping. Gas supply device 1
0 is supplied with refrigerant from a refrigerant unit 11. The steps in each of the adsorption towers 6A, 6B, and 6C generally include an adsorption step, a purge step, a desorption step, and a pressurization step.

吸着工程は吸着剤の充填された吸着塔に加圧された原料
ガスを送入して目的ガス成分を吸着させ、残った吸着排
ガス(オフガス)を塔外に排出する工程である。パージ
工程は吸着工程の終了した塔内に残存している目的ガス
成分以外の成分を除き目的とするガス成分の純度を高め
るため、高純度の目的ガスを塔内に送気して洗浄する工
程である。
The adsorption step is a step in which pressurized raw material gas is fed into an adsorption tower filled with adsorbent to adsorb target gas components, and the remaining adsorbed exhaust gas (off gas) is discharged outside the tower. The purge process is a process in which high-purity target gas is sent into the tower for cleaning in order to remove components other than the target gas components remaining in the tower after the adsorption process and increase the purity of the target gas components. It is.

パージ排ガスは次の吸着塔に送ってそこに含まれている
目的ガスを吸着回収する。続いて、塔内を減圧にして吸
着剤から目的ガス成分を放出させ、脱着工程を終える。
The purge exhaust gas is sent to the next adsorption tower, where the target gas contained therein is adsorbed and recovered. Subsequently, the pressure inside the column is reduced to release the target gas component from the adsorbent, thereby completing the desorption process.

脱着工程が終わった吸着塔には原料ガスと他吸着塔から
のパージガスを送入して加圧し、この加圧工程が終わっ
たら吸着工程に移行する。加圧工程が吸着工程の前半部
分として含められて3工程に分けられる場合もある。
After the desorption process has been completed, the adsorption tower is pressurized by feeding the raw material gas and purge gas from other adsorption towers, and when this pressurization process is completed, the adsorption process begins. In some cases, the pressurization step is included as the first half of the adsorption step, which is divided into three steps.

この方法に用いられる装置には第2図に示すように通常
3〜4塔の吸着塔6A、6B、6Cを用い、それぞれの
塔に別の工程を行わせて各工程を順次、次の塔で行わせ
る循環方式がとられている。
As shown in Figure 2, the equipment used in this method usually uses 3 to 4 adsorption towers 6A, 6B, and 6C. A circulation method is used.

すなわち、まず第1の吸着塔6Aに原料ガス及び第2の
吸着塔6Bからのパージ排ガスを送って吸着工程を行わ
せオフガスは煙突12から大気中に放出される。その間
第2の吸着塔6Bでは製品ガスホルダー5からブロワ−
4によりパージガスが送られてパージ工程が行われてい
る。第3の吸着塔6Cは脱着工程にあって真空ポンプ3
で吸気されており、脱着ガスば製品ガスとして製品ガス
ホルダー5に貯えられる。全塔のそれぞれの工程が終了
すると各塔とも次の工程に入り、第1の塔6Aではパー
ジ工程が、第2の塔6Bでは脱着工程が、そして第3の
塔6Cでは吸着工程が行われる。全塔のこれらの工程が
終了するとそれぞれが次の工程に入り、■サイクルの工
程が終了すると次のサイクルに入ってこれらが順次繰返
されるのである。
That is, first, the raw material gas and the purge exhaust gas from the second adsorption tower 6B are sent to the first adsorption tower 6A to perform an adsorption process, and the off-gas is released into the atmosphere from the chimney 12. Meanwhile, in the second adsorption tower 6B, the blower is removed from the product gas holder 5.
4, a purge gas is sent and a purge process is performed. The third adsorption tower 6C is in the desorption process and the vacuum pump 3
The desorbed gas is stored in the product gas holder 5 as a product gas. When each process in all columns is completed, each column enters the next process, the first column 6A performs a purge process, the second column 6B performs a desorption process, and the third column 6C performs an adsorption process. . When these processes for all columns are completed, each goes to the next process, and when the process of cycle (1) is completed, the next cycle starts and these steps are repeated one after another.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、高炉ガスを燃料として利用する場合、発熱量が低
いためにそのままでは熱の利用効率が低く、そこでCO
Gガスなどを混合して発熱量を高めていた。
Conventionally, when using blast furnace gas as a fuel, the heat utilization efficiency was low due to its low calorific value, so CO
G gas and other substances were mixed in to increase the calorific value.

一方、炭酸ガス回収設備においては原料ガス中の燃焼N
Ox等の微量成分を除去する設備や原料ガスの冷却装置
が必要であった。これらの装置は一般に大型であるため
設備コスト上問題になっていた。特に、原料に熱風炉ガ
スを用いた場合には、熱風炉は通常40〜50分毎に炉
を切替えて運転されているところから炉の切替時におい
て熱風炉ガスづ= の組成変動が大きく、製品ガスの品質を低下させていた
On the other hand, in carbon dioxide recovery equipment, the combustion N in the raw gas is
Equipment for removing trace components such as Ox and cooling equipment for the raw material gas were required. Since these devices are generally large in size, equipment costs have been a problem. In particular, when hot-blast stove gas is used as the raw material, the composition of the hot-blast gas fluctuates greatly when the furnace is switched, since hot-blast stoves are normally operated by switching furnaces every 40 to 50 minutes. This was reducing the quality of the product gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの問題点を解決するべくなされたもので
あり、製鉄所において排出される高炉ガスを炭酸ガスを
吸着しうる吸着剤を充填した塔に送入して炭酸ガスを吸
着させ、該塔から排出される吸着排ガスは燃料ガスとし
て利用し、一方、炭酸ガスを吸着した塔は減圧にして炭
酸ガスを吸着剤から肌着して塔外に排出させることを特
徴とする高炉ガスからの炭酸ガス回収方法によってこの
目的を達成したのである。
The present invention was made in order to solve these problems, and the blast furnace gas discharged from a steelworks is fed into a column filled with an adsorbent capable of adsorbing carbon dioxide gas, and the carbon dioxide gas is adsorbed. The adsorbed exhaust gas discharged from the tower is used as fuel gas, while the tower that has adsorbed carbon dioxide gas is depressurized and the carbon dioxide gas is absorbed from the adsorbent and discharged outside the tower. This goal was achieved through a gas recovery method.

高炉ガスは鉄鉱石を還元して高炉から排出されるガスで
あり、炭酸ガス、−酸化炭素、窒素、水素等のガスを含
む。この高炉ガスはCOGガス等を加えたミックスガス
としてもよい。混合量は30容量%以下であり、通常は
5〜10容量%程度でよい。このような高炉ガスは電気
集塵機等で除塵するだけで特に前処理することなくPS
A法によって炭酸ガスを分離回収することができる。
Blast furnace gas is gas discharged from the blast furnace after reducing iron ore, and contains gases such as carbon dioxide, carbon oxide, nitrogen, and hydrogen. This blast furnace gas may be a mixed gas containing COG gas or the like. The mixing amount is 30% by volume or less, and usually about 5 to 10% by volume. Such blast furnace gas can be used for PS without any pre-treatment by simply removing dust using an electrostatic precipitator etc.
Carbon dioxide gas can be separated and recovered by method A.

炭酸ガス回収設備にはPSA法用のものをそのまま使用
することができる。すなわち、複数の吸着等を有するも
のを用い、内部には炭酸ガスを選択的に吸着する吸着剤
を充填する。吸着剤には例えば、やしから活性炭やカー
ボンモレキュラシーブなどが利用される。そのほかには
、ガスブロワ−1真空ポンプ、ガスホルダーなどが必要
である。
As the carbon dioxide gas recovery equipment, equipment for the PSA method can be used as is. That is, a material having multiple adsorption properties is used, and the inside thereof is filled with an adsorbent that selectively adsorbs carbon dioxide gas. For example, activated carbon from coconut, carbon molecular sieve, etc. are used as the adsorbent. In addition, a gas blower 1 vacuum pump, gas holder, etc. are required.

この装置の操作条件も従来と同様でよく、原料ガスの吸
着塔への送入圧力は0.2〜0.7kg/cm2程度、
温度は30〜50°C程度でよい。1回の吸着工程で吸
着塔へ送入される原料ガスの量は吸着剤の程度等による
が一般に炭酸ガス量で1,000〜30.00ONm3
/It程度である。
The operating conditions for this device may be the same as conventional ones, and the feed pressure of the raw material gas to the adsorption tower is approximately 0.2 to 0.7 kg/cm2;
The temperature may be about 30 to 50°C. The amount of raw material gas sent to the adsorption tower in one adsorption process depends on the degree of adsorption, etc., but generally the amount of carbon dioxide gas is 1,000 to 30.00 ONm3.
It is about /It.

吸着排ガス(オフガス)は窒素のほか可燃成分として一
酸化炭素及び少量の水素を含む。ミックスガスを含んで
いる。このオフガスは必要により一部ガスホルダー等に
貯えて燃料ガスとして利用する。燃料ガスの用途は問わ
ないが例えば発電用その他の蒸気製造用ボイラーの燃料
として利用できる。
The adsorbed exhaust gas (off gas) contains carbon monoxide and a small amount of hydrogen as combustible components in addition to nitrogen. Contains mixed gas. If necessary, a portion of this off-gas is stored in a gas holder or the like and used as fuel gas. Although the use of fuel gas is not limited, it can be used, for example, as fuel for boilers for power generation and other steam production.

一方、脱着工程で得られた炭酸ガスは製品ガスとして各
種用途に供される。
On the other hand, the carbon dioxide gas obtained in the desorption process is used as a product gas for various purposes.

〔作用〕[Effect]

高炉ガスを炭酸ガス回収の原料ガスとして使用すること
により炭酸ガス分が吸着除去される。その結果、−酸化
炭素等の可燃成分の比率が相対的に高まって発熱量を高
めている。
By using blast furnace gas as a raw material gas for carbon dioxide recovery, carbon dioxide is adsorbed and removed. As a result, the ratio of combustible components such as -carbon oxide increases relatively, increasing the amount of heat generated.

この高炉ガスは燃料用としてガスホルダー等に貯蔵され
ているところから炭酸ガス回収用原料ガスとして常温で
安定供給することができる。また、高炉ガスは高温の熱
履歴をあまり受けていないためNOxの含有量が少ない
This blast furnace gas is stored as a fuel in a gas holder or the like, and can be stably supplied at room temperature as a raw material gas for carbon dioxide recovery. Furthermore, since blast furnace gas has not undergone much high-temperature thermal history, it has a low NOx content.

〔実施例〕〔Example〕

本発明の方法に使用される炭酸ガス回収設備のフローの
一例を第1図に示す。電気集塵機等でダストを除去され
た高炉ガスは大容量のガスホルダー1に常温で貯蔵され
ている。この高炉ガスはガスホルダー1から抜き出され
て原料ガスブロワ−2により吸着塔6A、6B、6Cへ
送られる。各吸着塔の」二部から排出されるオフガスは
燃料ガスとして発電用のボイラーに送られる。吸着塔6
A、6B、6Cは3塔よりなり、各塔は自動的にバルブ
が切替られて吸着工程、パージ工程、脱着工程を順次繰
返す。
An example of the flow of the carbon dioxide recovery equipment used in the method of the present invention is shown in FIG. Blast furnace gas from which dust has been removed by an electrostatic precipitator or the like is stored at room temperature in a large-capacity gas holder 1. This blast furnace gas is extracted from the gas holder 1 and sent to the adsorption towers 6A, 6B, and 6C by the raw material gas blower 2. The off-gas discharged from the second section of each adsorption tower is sent as fuel gas to the boiler for power generation. Adsorption tower 6
A, 6B, and 6C consist of three columns, and the valves of each column are automatically switched to repeat the adsorption process, purge process, and desorption process in sequence.

吸着工程においてはバルブ13及びバルブ14のみが開
かれ、他のバルブは閉じた状態になる。
In the adsorption step, only valves 13 and 14 are opened, and the other valves are closed.

高炉ガスはガスホルダー1からバルブ15を通って吸着
塔6Aに送入され、オフガスはバルブ14を通って燃料
ガスホルダー(図示されていない。)に貯蔵される。パ
ージ工程においては、バルブ15及びバルブ16のみが
開かれ、他のバルブは閉じている。製品ガスの一部がパ
ージ用として製品ガスホルダー5からガスブロワ−4に
よって抜き出され、バルブ15を通って吸着塔6Aに送
入される。吸着塔内を洗浄したパージガスはバルブ16
がら塔外に出て吸着工程前半の昇圧階段にある吸着塔6
Bに入り、そこで炭酸ガス成分が吸着回収されて残余成
分は吸着塔6Bのバルブ14を通って燃料ガスボルダ−
に入れられる。脱着工程においては吸着塔6Aのバルブ
17のみが開き他は閉じている。吸着塔6A内ば真空ポ
ンプ3によって減圧により脱着して製品ガスボルダ−5
に入る。吸着塔6Aが吸着工程にあるときは吸着塔6C
はパージ工程そして吸着塔6Bは脱着工程にあり、各塔
は順次次の工程に移行する。製品炭酸ガスは適宜製品ガ
スホルダー5からブロワ−4によって取り出される。
Blast furnace gas is sent from the gas holder 1 through the valve 15 to the adsorption tower 6A, and off-gas passes through the valve 14 and is stored in a fuel gas holder (not shown). In the purge step, only valves 15 and 16 are opened, and the other valves are closed. A part of the product gas is extracted from the product gas holder 5 by the gas blower 4 for purging, and is sent to the adsorption tower 6A through the valve 15. The purge gas that cleaned the inside of the adsorption tower is supplied through valve 16.
Adsorption tower 6 located outside the empty tower and on the pressurizing stairs in the first half of the adsorption process.
B, where the carbon dioxide component is adsorbed and recovered, and the remaining component passes through the valve 14 of the adsorption tower 6B to the fuel gas boulder.
can be placed in In the desorption process, only the valve 17 of the adsorption tower 6A is open and the others are closed. Inside the adsorption tower 6A, the vacuum pump 3 depressurizes and desorbs the product gas into the boulder 5.
to go into. When the adsorption tower 6A is in the adsorption process, the adsorption tower 6C
is in the purge step, and the adsorption tower 6B is in the desorption step, and each tower sequentially moves to the next step. Product carbon dioxide gas is appropriately taken out from the product gas holder 5 by a blower 4.

このような装置を用い、下記組成の高炉ガス(Bガス)
の炭酸ガス回収実験を行った。吸着工程における高炉ガ
スの送入量ば6ONm3/IIであり、このガスの温度
は32°Cそして送入圧力は0.5kg/cm2Gであ
った。パージ工程において製品ガスを使用し、脱着工程
においては塔内圧が70Torrになるまで減圧を続け
た。このような条件で運転を続けた結果下記の製品ガス
及びオフガスが得られた。
Using such a device, blast furnace gas (B gas) with the following composition
conducted a carbon dioxide recovery experiment. The amount of blast furnace gas fed in the adsorption step was 6ONm3/II, the temperature of this gas was 32°C, and the feeding pressure was 0.5kg/cm2G. Product gas was used in the purge step, and pressure reduction was continued in the desorption step until the internal pressure of the column reached 70 Torr. As a result of continued operation under these conditions, the following product gas and off-gas were obtained.

Bガス オフガス 製品ガス CO2vol、%  19.7   10.9   9
9.0Co   〃22.7   25.2   0.
4Hz   〃3.1   3.4    ON2  
 〃54.5   60.5   0.6kcal/N
m3 次に、BガスにCOGガスを混合して得たミックスガス
(Mガス)について同様に炭酸ガス回収実験を行い、次
の結果が得られた。
B gas Off gas Product gas CO2vol, % 19.7 10.9 9
9.0Co 〃22.7 25.2 0.
4Hz 〃3.1 3.4 ON2
〃54.5 60.5 0.6kcal/N
m3 Next, a carbon dioxide gas recovery experiment was similarly conducted on a mixed gas (M gas) obtained by mixing B gas with COG gas, and the following results were obtained.

Mガス オフガス 製品ガス kcal/Nm3 〔発明の効果〕 本発明の方法によりオフガスの発熱量を高めて燃料用ガ
スとしての価値を高め燃焼熱の利用効率を高めることが
できる。高炉ガスは組成が一定しているところから炭酸
ガスを一定品質で安定して供給することができる。NO
xの含有量が少ないところからその除去装置が不要であ
り、また、常温で供給されるため冷却装置も不要である
。これらによって設備コストを大巾に節減することがで
M gas Off gas Product gas kcal/Nm3 [Effects of the Invention] The method of the present invention can increase the calorific value of off gas, increase its value as a fuel gas, and improve the utilization efficiency of combustion heat. Since blast furnace gas has a constant composition, it can stably supply carbon dioxide gas with constant quality. NO
Since the content of x is small, a device for removing it is not necessary, and since it is supplied at room temperature, a cooling device is also not necessary. These can significantly reduce equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって使用される装置の一例を
、そして第2図は従来の方法で使用されていた装置の一
例をそれぞれフローシートの形で示したものである。 1・・・高炉ガスホルダー 5・・・製品ガスホルダー
6A、6B、6C・・・吸着塔 特許出願人  日本鋼管株式会社 代理人    弁理士 日中 政浩
FIG. 1 shows an example of the apparatus used in the method of the present invention, and FIG. 2 shows an example of the apparatus used in the conventional method in the form of a flow sheet. 1...Blast furnace gas holder 5...Product gas holder 6A, 6B, 6C...Adsorption tower Patent applicant Nihon Kokan Co., Ltd. Representative Patent attorney Masahiro Naka

Claims (1)

【特許請求の範囲】[Claims] 製鉄所において排出される高炉ガスを炭酸ガスを吸着し
うる吸着剤を充填した塔に送入して炭酸ガスを吸着させ
、該塔から排出される吸着排ガスは燃料ガスとして利用
し、一方、炭酸ガスを吸着した塔は減圧にして炭酸ガス
を吸着剤から脱着して塔外に排出させることを特徴とす
る高炉ガスからの炭酸ガス回収方法
Blast furnace gas discharged at a steelworks is sent to a tower filled with an adsorbent capable of adsorbing carbon dioxide gas to adsorb carbon dioxide gas, and the adsorbed exhaust gas discharged from the tower is used as fuel gas. A method for recovering carbon dioxide from blast furnace gas, characterized by reducing the pressure of the tower that has adsorbed gas, desorbing carbon dioxide from the adsorbent, and discharging it outside the tower.
JP63056286A 1988-03-11 1988-03-11 Recovery of carbon dioxide from blast-furnace gas Pending JPH01230416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056286A JPH01230416A (en) 1988-03-11 1988-03-11 Recovery of carbon dioxide from blast-furnace gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056286A JPH01230416A (en) 1988-03-11 1988-03-11 Recovery of carbon dioxide from blast-furnace gas

Publications (1)

Publication Number Publication Date
JPH01230416A true JPH01230416A (en) 1989-09-13

Family

ID=13022857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056286A Pending JPH01230416A (en) 1988-03-11 1988-03-11 Recovery of carbon dioxide from blast-furnace gas

Country Status (1)

Country Link
JP (1) JPH01230416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291406A (en) * 1990-04-06 1991-12-20 Sumitomo Seika Chem Co Ltd Burner
JP2009221575A (en) * 2008-03-18 2009-10-01 Nippon Steel Engineering Co Ltd Method for separation-recovering carbon-dioxide from blast furnace gas in utilizing process for blast furnace gas
JP2009221574A (en) * 2008-03-18 2009-10-01 Nippon Steel Engineering Co Ltd Method for separation-recovering carbon-dioxide from blast furnace gas
CN102643681A (en) * 2011-02-21 2012-08-22 北京北大先锋科技有限公司 A technology of blast furnace gas condensation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291406A (en) * 1990-04-06 1991-12-20 Sumitomo Seika Chem Co Ltd Burner
JP2009221575A (en) * 2008-03-18 2009-10-01 Nippon Steel Engineering Co Ltd Method for separation-recovering carbon-dioxide from blast furnace gas in utilizing process for blast furnace gas
JP2009221574A (en) * 2008-03-18 2009-10-01 Nippon Steel Engineering Co Ltd Method for separation-recovering carbon-dioxide from blast furnace gas
CN102643681A (en) * 2011-02-21 2012-08-22 北京北大先锋科技有限公司 A technology of blast furnace gas condensation

Similar Documents

Publication Publication Date Title
US6562103B2 (en) Process for removal of carbon dioxide for use in producing direct reduced iron
US4770676A (en) Recovery of methane from land fill gas
RU2546266C2 (en) Method of producing direct reduced iron with limited emissions of co2 into atmosphere
EP2253915B1 (en) Method and apparatus for separating blast furnace gas
US8746009B2 (en) Production of hydrogen from a reforming gas and simultaneous capture of CO2 co-product
JPH0798645B2 (en) Co-production of hydrogen and carbon dioxide
JP5657532B2 (en) Treatment of wet gas containing dust
JP2009226257A (en) Process for separation of blast furnace gas, and system of separating blast furnace gas
CA2716781A1 (en) Process and device for the separation of foreign gases from a reducing useful gas by steam-driven pressure swing adsorption
JP5498661B2 (en) Blast furnace gas separation method
JP2009269805A (en) Method and apparatus for recovering carbon dioxide
JP7147727B2 (en) Gas separation and recovery method
JPH01230416A (en) Recovery of carbon dioxide from blast-furnace gas
JP5534972B2 (en) Gas separation method by pressure swing adsorption method
CN101879397B (en) Use of oxygen concentrators for separating N2 from blast furnace gas
TWI478761B (en) Purifying method and purifying apparatus for argon gas
US10071338B2 (en) Staged pressure swing adsorption for simultaneous power plant emission control and enhanced hydrocarbon recovery
JP2006275463A (en) Oxygen-enriched air producing method for waste disposal furnace and its facilities
JP2019150769A (en) Gas separation method
CN210303031U (en) Multi-bed temperature swing adsorption gas purification system
JPS59116115A (en) Method for recovering carbon monoxide
US10350537B2 (en) High purity nitrogen/hydrogen production from an exhaust stream
JPS607919A (en) Separating and removing method of carbon dioxide in mixed gas containing carbon monoxide by adsorption
JPH0465302A (en) Pressure-swing hydrogen purification method
US20090065108A1 (en) Integrated Reformer and Batch Annealing Processes and Apparatus Therefor