JPS6139087B2 - - Google Patents

Info

Publication number
JPS6139087B2
JPS6139087B2 JP58187480A JP18748083A JPS6139087B2 JP S6139087 B2 JPS6139087 B2 JP S6139087B2 JP 58187480 A JP58187480 A JP 58187480A JP 18748083 A JP18748083 A JP 18748083A JP S6139087 B2 JPS6139087 B2 JP S6139087B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
gas
stage
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58187480A
Other languages
Japanese (ja)
Other versions
JPS6078613A (en
Inventor
Toshikazu Sakuratani
Tetsuya Fujii
Shigeo Matsui
Shigeki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58187480A priority Critical patent/JPS6078613A/en
Publication of JPS6078613A publication Critical patent/JPS6078613A/en
Publication of JPS6139087B2 publication Critical patent/JPS6139087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は圧力変動式吸着分離方法(PSA法)に
よつて、転炉又は高炉等の排ガス、主として一酸
化炭素、二酸化炭素、窒素を含む原料ガスから高
純度の一酸化炭素を得る方法に関する。 製鉄所において精錬容器から発生する排ガス
は、比較的多量のCOガスを含有している。その
組成は転炉排ガス、高炉排ガスについては下記に
示す範囲内にある。
The present invention relates to a method for obtaining high-purity carbon monoxide from exhaust gas from a converter or blast furnace, mainly a raw material gas containing carbon monoxide, carbon dioxide, and nitrogen, by a pressure fluctuation adsorption separation method (PSA method). Exhaust gas generated from refining vessels in steel plants contains a relatively large amount of CO gas. The composition of converter exhaust gas and blast furnace exhaust gas is within the range shown below.

【表】 ガス
もし、これらの排ガスから高純度のCOガスを
安価に回収できれば、合成化学原料、精錬容器内
溶融金属中への吹込みガスとして用途が拓ける。
合成化学原料とこのCOガスを考える際には、合
成反応が高温、高圧条件下で行なわれるのが通例
であることから、反応容器を損傷させる酸化性ガ
スの除去が必須であり、CO2濃度を出来る限り低
下させる必要がある。また反応効率を上げるため
には、通常反応に関与しないN2も出来るだけ除
去するのが望ましい。一方、溶融金属の精錬の効
率化を目的とする精錬容器内へのガス吹込み操作
は広く行なわれているが、溶融金属中の不純ガス
成分(H2、N2など)の濃度上昇を嫌う観点から
高価なArガスが使用されるのが通例である。製
鉄所内で大量に発生する転炉ガス、高炉ガスから
高純度COガスを安価に回収できれば、これをAr
に代替することがほゞ可能である。この際、高純
度COガスのN2濃度は溶鉄の窒素濃度上昇を防ぐ
観点から低いのが望ましく、またCO2濃度も精錬
容器内張り耐火物として汎用されている炭素系耐
火物の酸化損傷を防ぐ観点から低いのが望まし
い。 従来、上記排ガスを原料に高純度COガスを回
収するプロセスとしては深冷分離法、あるいは銅
液法、Cosorb法といつた溶液吸収法が考えられ
ている。しかしながら前者においては、低温と高
圧を、後者においては高温と高圧を必要とし、両
者共に設備が複雑かつ高価になる欠点がある。ま
た深冷分離法においてはN2とCOの沸点が接近し
ているため、N2とCOの分離が完全に行なうこと
も困難である。 以上の現状に鑑みて、本発明者らは、より簡便
なプロセスで安価に高純度COガスを回収する技
術として吸着法による開発を試みた。 前記排ガスの吸着法(PSA法)による吸着分離
は、公知であり、吸着剤に吸着しにくいガス成分
(以後、難吸着成分という)の回収を目的とした
ものに特公昭38−23928、43−15045等が基本特許
として公告されている又、吸着剤に吸着しやすい
ガス成分(以後易吸着成分と云う)を吸着剤に吸
着させ脱着して分離回収することにより易吸着成
分を高純度で分離する方法も古くから実施されて
いる。例えばエチレンを易吸着成分とした具体例
および窒素分離への応用について等がある。 従来から行なわれているガス混合物中の吸着剤
に易吸着成分を回収する方法は通常次の操作を含
んだものである。吸着加圧工程−還流工程−脱着
工程を順次繰返すことによつて吸着剤に易吸着成
分に富んだガスを取り出すことが出来る。 しかし今回の排ガスの様に共吸着しやすいガス
成分の一酸化炭素を含む混合ガスより二酸化炭素
及び窒素を除去し、高濃度の一酸化炭素として回
収精錬することは行なわれていない。 本出願人は、先にN2及びCO2又はN2、CO2及び
COからなる混合物からPSA法によりN2を除去す
る方法について出願を行なつた(特願昭57−
159211号参照)。この先願昭57−159211号で該混
合ガスより一酸化炭素を濃縮した場合、窒素は除
去されかつ水素・酸素は完全に除去されるものの
一酸化炭素と二酸化炭素とが共存する場合同じ様
に吸着され濃縮されるため、一酸化炭素の濃度を
充分に高めることが出来なかつた。そこで種々検
討した結果前処理工程として吸着法による二酸化
炭素の除去技術を用い、組合せた結果高濃度の一
酸化炭素の精製分離濃縮を行うことが簡単に経済
的に行えることが判明した。 本発明は二段階吸着操作により、少なくとも二
酸化炭素、一酸化炭素及び窒素を含む原料ガス中
の一酸化炭素を濃縮する方法において、 (a) その第1段階の吸着操作は二酸化炭素に対し
て選択性を有する吸着物質を充填した2つ以上
の吸着塔を使用し、その方法は各吸着塔で吸着
および脱着を繰返す圧力変動式吸着分離によつ
てその原料ガスから二酸化炭素を除去すること
からなり、そして、 (b) 第2段階の吸着操作は、第1段階の吸着工程
から排出されたガス(以下、第1段階製品ガス
という)中の一酸化炭素に対して選択性を有す
る吸着物質を充填した2つ以上の吸着塔を使用
し、その方法は (i) 第1段階製品ガスにより吸着塔を加圧する
加圧工程、 (ii) さらに第1段階製品ガスを吸着塔に流し
て、吸着塔出口における易吸着成分の濃度が
吸着塔入口における易吸着成分の濃度に達す
るまで又は両者の濃度が等しくなる点の少し
前まで吸着剤に易吸着成分を吸着させる吸着
()工程、 (iii) 吸着()工程終了後その吸着塔と真空脱
着が終つた吸着塔とを連結し、前者の吸着塔
からガスを後者の吸着塔に導入し、前者の吸
着塔の圧力を降下させる減圧放圧工程、 (iv) 減圧した吸着塔に第2段階製品ガスを導入
して難吸着成分をパージするパージ工程、 (v) パージ工程を終つた吸着塔を大気圧以下に
排気して、吸着剤に吸着されている易吸着成
分を脱着させ製品ガスを回収する工程、及び (vi) 製品ガス回収が終つた吸着塔と吸着()
工程が終つた吸着塔とを連結して後者の吸着
塔からのガスを前者の吸着塔に導入する吸着
()工程、 からなり、定期的に吸着塔間の流れを変えて、
上記操作を繰返すことを特徴とした方法に関す
る。 以下に本発明の細部を説明する。 本発明は主成分として一酸化炭素、二酸化炭
素、窒素、水素及び酸素から成る原料ガスから圧
力変動式吸着分離方法により一酸化炭素を濃縮及
び分離精製する方法において、ゼオライト(天然
又は合成)系吸着剤からなる吸着剤を収納した2
つ以上の吸着塔を使用する。 第1段階における原料ガスから二酸化ガスを除
去する工程は、通常にPSA法すなわち吸着、減
圧、製品ガスによるパージおよび製品ガスによる
加圧の繰返しにより実施しても良く、又他の方法
であつても良い。二酸化炭素を除去する好ましい
方法は次の通りである。 二酸化炭素に対して選択性を有する吸着物質を
充填した2つ以上の吸着塔を使用し、その方法は (i) 好ましくは向流方向に第1段階製品ガスによ
る吸着塔を加圧する加圧工程、好ましくは1〜
3Kg/cm2・Gまで加圧する、 (ii) 原料ガスを吸着塔に流して主として二酸化炭
素を吸着物質に吸着させる吸着工程、 (iii) 好ましくは向流方向に次いで吸着を大気圧附
近まで減圧する減圧工程、 (iv) 好ましくは向流方向に次いで吸着塔を真空ポ
ンプ等により排気する排気工程、(好ましくは
真空排気は60〜300Torrまで行なわれる)そし
て、 (v) 好ましくは向流方向に次いで脱N2PSA装置
からの廃棄ガスを用いて、真空排気を行ないな
がらパージする、パージ工程、から成り、定期
的に吸着塔間の流れを変えて、上記操作を繰返
すことから成る方法。 本発明の第2段階における工程(i)は吸着塔に第
1段階製品ガスを導入する吸着塔の加圧工程であ
る、本発明では回収すべきガスは易吸着成分であ
るので高い吸着圧は必要ではなく、1〜3Kg/cm2
G程度の吸着圧で十分であり、それより低い吸着
圧であつても良い。 工程(ii)は吸着()工程である、吸着塔出口に
おける易吸着成分(一酸化炭素ガス、)の濃度が
吸着塔入口における易吸着成分の濃度と等しくな
つた点というのは、吸着剤の破過点を意味する。
回収すべき成分が難吸着成分(例えば空気から酸
素ガスを分離する場合においては酸素ガス)であ
るならば、高純度の難吸着成分を得るためには破
過点よりも上の水準で吸着工程を終了することが
望ましい。しかし本発明では、回収すべき成分は
易吸着成分であるから破過点または破過点に達す
る少し前まで吸着を行なう。 工程(iii)は吸着()工程が終つた吸着塔と真空
脱着が終つた吸着塔とを連結し、好ましくは並流
方向に前者の吸着塔からガスを後者の吸着塔に導
入し前者の吸着塔の圧力を大気圧または大気圧近
くまで降下させる。この工程では吸着塔に収納さ
れている吸着剤間の空間中のガスが放出され、真
空脱着が終つた吸着塔の吸着()加圧に使用さ
れる。前者の吸着塔の圧力がほぼ大気圧になるま
でこの操作を維持する。 工程(iv)は減圧した吸着塔に第2段階製品ガスを
導入して吸着塔内に残つている難吸着成分(窒素
ガス等)をパージする。この場合の製品ガスの導
入圧は吸着圧力より低く、大気圧より高い方が望
ましく、この場合ポンプ等を使用する必要がな
く、製品ガスタンクと吸着塔を連結することによ
つてパージを実施する。 工程(v)は、パージ工程が終つた吸着塔を真空ポ
ンプ、エゼクター、ブロワー等を用いて大気圧以
下に排気して好ましくは300Torr以下、最も好ま
しくは300〜30Torrの範囲まで真空にし、吸着剤
に吸着されていた成分(一酸化炭素ガス等)を脱
着させ製品ガスとして回収する。 工程(vi)は製品ガス回収が終つた吸着塔と吸着
()工程が終つた吸着塔とを連結し、後者の吸
着塔からのガスによつて前者の吸着塔を加圧吸着
させる吸着()工程である。この場合、後者の
吸着塔がほゞ大気圧になつた時ガスの導入を中止
するので前者の吸着塔の圧力は大気圧に達しな
い。 以下本発明の代表的な具体例である転炉排ガス
中の窒素ガスを除去し、一酸化炭素を分離回収す
る方法に基づいて、本発明を詳しく説明するが本
発明の方法は、これらの具体例に限定されるもの
ではない。 第1図は吸着法により連続的に転炉排ガスから
二酸化炭素と窒素を除去し、一酸化炭素ガスを分
離濃縮するフローシートである。 吸着塔A,Bは二酸化炭素を選択的に吸着する
吸着剤が収納されている。吸着塔A,Bを真空ポ
ンプを用いて減圧排気を300Torr以下好ましくは
30Torrまで行い、今吸着塔Aに原料ガスを加圧
導入、真空状態より昇圧させるためバルブ1を開
く。この時バルブ1以外はすべて閉の状態になつ
ている。 吸着塔Bはこのステツプでは、まだ真空状態を
保持している。吸着塔Aは昇圧後、吸着圧力0.01
Kg/cm2Gから3.0Kg/cm2G、好ましくは0.2Kg/cm2Gか
ら1.0Kg/cm2Gの吸着圧力を保ち、バルブ2は開か
れ二酸化炭素と一酸化炭素その他の含有ガスも一
部は吸着剤に吸着し、残りは吸着塔の他の端部よ
り排出する。一定時間或は一定量の吸着工程終了
後原料供給バルブ1及び出口バルブ2は閉じバル
ブ3を開き、吸着塔Aの塔内圧力を大気圧附近ま
で減圧放圧させる。吸着塔Aが大気圧附近になる
とバルブ3は閉じられ吸着塔下部よりバルブ4を
開にして真空ポンプを用いて減圧排気を行い吸着
剤に吸着している二酸化炭素成分を脱着させる。
この際の排気圧力は300Torr以下好ましくは
30Torrまで行う。減圧排気が終了するとバルブ
5を開にする(この時手動バルブ14でバージガ
ス量を調節する。)ことによつて脱N2PSA装置か
らの廃棄ガスを利用して吸着剤から脱着しきれず
に吸着している二酸化炭素をバージガスとの同伴
脱着により吸着剤より追い出す。この真空排気と
バージガスとの量により真空排気の圧力は
270Torrと高くなる。排気バージが終了するとバ
ルブ4とバルブ5は閉じられ、バルブ6を開にし
て製品ガスでもつて吸着塔内に吸着圧力まで加圧
を行う。 上記操作をそれぞれの吸着塔において順次繰返
すことによつて連続的に吸着剤にCO2を吸着させ
除去しようとするものである。第一段階の脱
CO2PSA装置で二酸化炭素が除去されたガスは第
二段階の脱N2PSA装置をもつて水素・酸素・窒
素を除去し一酸化炭素の濃度を高濃度に濃縮分離
しようとするもので、その方法は吸着塔CDEFは
易吸着成分(ここでは一酸化炭素と二酸化炭素)
を選択的に吸着する吸着剤が収納されている。吸
着塔CDEFを真空ポンプ41を用いて減圧排気を
300Torr以下好ましくは30Torrまで行い、今吸着
塔Cに原料ガス(第一段階のPSA装置で二酸化炭
素を除去したもの)を加圧導入する。再生済の真
空状態をより昇圧させるためバルブ16を開くこ
とによつて行う。このときの昇圧速度はバルブ1
5によつて調節される。昇圧後バルブ17,18
を開にすると同時にバルブ16は閉になり該混合
ガスが吸着塔内を通過する。このとき吸着剤に易
吸着成分である一酸化炭素と二酸化炭素が吸着さ
れ、他のガスは吸着塔内を通過し一部は脱
CO2PSA装置のバージガスとして使用される。残
りは水素、一酸化炭素がまだかなり含まれている
ので燃料ガス等に再利用するためにタンク43に
回収する。 一定時間或は一定量の吸着工程終了後原料供給
バルブ18及び出口バルブ17は閉じ、吸着塔D
への連結パイプにあるバルブ19を開き、吸着塔
Cの塔内圧力を大気圧附近まで減圧放出させ、吸
着塔Dの吸着剤に減圧放圧されたガスを吸着させ
る。吸着塔Cが大気圧附近になるとバルブ19を
閉じ吸着塔内の空隙(吸着剤間の空間)にたまつ
ている離吸着成分ガスを追出すために製品ガスタ
ンク42よりバルブ20を開いてさらにバルブ1
7を開いて吸着塔Cの下部よりバージ工程を行
う。 バージ工程が終了するとバルブ17及び20は
閉じられ吸着塔下部よりバルブ21を開にし真空
ポンプを用いて減圧排気を行い吸着剤に吸着して
いる易吸着成分を脱着させる。この際の排気圧力
は300Torr以下好ましくは30Torrで行つて易吸着
成分であるCOを製品ガスとして回収するもので
ある。 上記操作をそれぞれの吸着塔において順次繰返
すことによつて連続的に吸着剤に易吸着成分であ
るCOガスを吸着させて分離精製することが出来
る。なお43は廃ガスタンクである。 上記の様に第一段階の脱CO2PSA装置と第二段
階の脱N2PSA装置を組合せることによつて脱
N2PSA装置単独で一酸化炭素を濃縮分離して精
製した時よりもCO2の濃度をいちじるしく減少さ
せることが出来、又脱CO2PSA装置のパージガス
に脱N2PSA装置の廃棄ガスを利用することによ
つて、脱CO2PSA装置の製品ガスをパージ工程に
使用する時よりも一酸化炭素の回収率も向上させ
ることが出来た。本発明に従えばCO2は0.5%、
N2は1%以下に減少できる。 実施例 1 以下本発明をさらに具体的に説明するため、転
炉排ガス(CO=85% CO2=2.7% N2=4.9%
H2=9.3% O2=0.1%)の精製を試みた。 精製工程として既述の如く第一段階に脱
CO2PSA装置の「吸着−減圧、放圧−排気−パー
ジ−製品加圧」と第二段階の脱N2PSA装置の
「第1段階製品ガス加圧−吸着()−減圧吸着
()−パージ−真空排気−加圧」の精製サイクル
にもとづいて実施した。 一段目のの脱CO2PSA装置には活性化したゼオ
ハーブ(50Kg 1/8″ペレツト)を充填した鋼製の
吸着塔(12B×1.7m)二段目の脱N2PSA装置にも
活性化したゼオハーブ(166Kg 1/8″ペレツト)
を充填した鋼製の吸着塔(16B×2.4m)を真空排
気100Torrと60Torrにそれぞれ排気した後上記の
混合ガスを線速6cm/secで塔の下部より導入して
混合ガスの精製を実施した。 供給ガス量32.8m3に対し精製一酸化炭素ガス量
は19.3m3でこのときの脱N2PSA装置の廃棄ガス量
は13.5m3で一酸化炭素の回収率は68%であつた。 精製后のガス組成は次の通りであつた。 ガス組成 C=98.6% CO2=0.5% N2=0.9% H2=0% O2=0% 実施例 2 実施例1と同一装置を用いて下記実験条件で転
炉排ガスを用いた精製・分離を行つた結果であ
る。 実験条件 ガス組成 CO=86% CO2=4% N2=4%
H2=6% 操作温度 25℃吸着剤ZE−501 吸着速度 6.5cm/sec 吸着圧力 1.0Kg/cm2G 真空排気を100Torr及び60Torr脱着を行い製品
ガスの一酸化炭素の濃縮・精製を実施した。供給
ガス量42.9m3に対し精製一酸化炭素ガス量は25.7
m3で一酸化炭素の回収率は68.6%であつた。 精製後のガス組成は CO=98.7% CO2=0.5% N2=0.8% 実施例 3 転炉排ガスの精製を試みた。 精製工程として既述の如く第一段階に脱CO2
置の「吸着−減圧−真空排気−パージ−製品加
圧」と第二段階の脱N2PSA装置の「第一段階製
品ガス加圧−吸着()−減圧・放圧−パージ・
放出−真空排気−減圧・吸着()の精製サイク
ルにもとづいて実施した。 第一段階の脱CO2PSA装置には活性化したゼオ
ハーブ(50Kg 1/16″ペレツト)を充填した鋼製
の吸着塔(12B×1.7m)を第二段階の脱N2装置に
は活性化したゼオハーブ(166Kg 1/8″ペレツ
ト)を上部に活性アルミナ(30Kg、住友KHD−
46)を下部に充填した鋼製の吸着塔(16B×2.4
m)を用いた。 <実験条件> 転炉排ガス組成:CO=86% CO2=3% N2=4% H2=7% 操作温度:30℃ 吸着圧力:1.0Kg/cm2G 真空排気:脱CO2PSA〜120Torr 脱N2PSA〜80Torr 供給ガス量30.2m3に対し、複触COガス量は
13.5m3でCOガスの回収率は51.58%であつた。こ
の時の複製後のガス組成はCO=99.0% CO2
0.3% N2=0.7% 実施例 4 実施例3と同一装置を用いて下記実験条件で転
炉排ガスを用いた精製を試みた。 <実験条件> 転炉排ガス組成: CO=85% CO2=3% N2=5% H2=7% 操作温度:35℃ 吸着圧力:0.5Kg/cm2G 真空排気:脱CO2PSA〜120Torr 脱N2PSA〜80Torr 供給ガス量36.2m3に対し精製COガス量は15.3
m3でCOガスの回収率は49.4%であつた。 精製後のガス組成はCO=99.4% CO2=0.4%
N2=0.2%
[Table] Gas
If high-purity CO gas can be recovered at low cost from these exhaust gases, it could be used as a raw material for synthetic chemicals or as a gas to be injected into molten metal in refining vessels.
When considering this CO gas as a raw material for synthetic chemicals, it is essential to remove oxidizing gases that can damage the reaction vessel, as synthesis reactions are usually carried out under high temperature and high pressure conditions, and the CO 2 concentration need to be reduced as much as possible. Furthermore, in order to increase reaction efficiency, it is desirable to remove as much as possible of N 2 , which normally does not participate in the reaction. On the other hand, gas injection into a refining vessel is widely used for the purpose of improving the efficiency of refining molten metal. From this point of view, expensive Ar gas is usually used. If high-purity CO gas can be recovered at low cost from converter gas and blast furnace gas, which are generated in large quantities in steel plants, this can be converted into Ar
It is almost possible to replace it with At this time, it is desirable that the N 2 concentration of the high-purity CO gas is low from the perspective of preventing an increase in the nitrogen concentration of molten iron, and the CO 2 concentration also prevents oxidation damage to carbon-based refractories, which are commonly used as refractory linings for refining vessels. From this point of view, a low value is desirable. Conventionally, as a process for recovering high-purity CO gas using the above-mentioned exhaust gas as a raw material, a cryogenic separation method or a solution absorption method such as a copper liquid method or a Cosorb method has been considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complicated and expensive. Furthermore, in the cryogenic separation method, it is difficult to completely separate N 2 and CO because the boiling points of N 2 and CO are close to each other. In view of the above-mentioned current situation, the present inventors attempted to develop an adsorption method as a technique for recovering high-purity CO gas at low cost through a simpler process. The above-mentioned adsorption separation using the adsorption method (PSA method) is well-known, and is used for the purpose of recovering gas components that are difficult to adsorb to adsorbents (hereinafter referred to as difficult-to-adsorb components). 15045 etc. have been published as basic patents.In addition, gas components that are easily adsorbed to the adsorbent (hereinafter referred to as easily adsorbed components) are adsorbed onto the adsorbent, desorbed, and separated and recovered, thereby separating the easily adsorbed components with high purity. This method has been practiced for a long time. For example, there are specific examples using ethylene as an easily adsorbed component and applications to nitrogen separation. Conventional methods for recovering easily adsorbable components from adsorbents in gas mixtures usually include the following operations. By sequentially repeating the adsorption pressurization process, the reflux process, and the desorption process, a gas rich in easily adsorbable components can be extracted from the adsorbent. However, it has not been done to remove carbon dioxide and nitrogen from a mixed gas containing carbon monoxide, a gas component that is easily co-adsorbed, and recover and refine it as highly concentrated carbon monoxide, such as the exhaust gas in this case. The applicant previously proposed that N 2 and CO 2 or N 2 , CO 2 and
An application was filed for a method for removing N 2 from a mixture consisting of CO by the PSA method (Japanese Patent Application No. 1983-
(See No. 159211). When carbon monoxide is concentrated from the mixed gas in the previous application No. 57-159211, nitrogen is removed and hydrogen and oxygen are completely removed, but when carbon monoxide and carbon dioxide coexist, they are adsorbed in the same way. The carbon monoxide concentration could not be sufficiently increased because the carbon monoxide was concentrated. As a result of various studies, it was found that by combining carbon dioxide removal technology using adsorption as a pretreatment process, it was possible to purify, separate, and concentrate high-concentration carbon monoxide easily and economically. The present invention provides a method for concentrating carbon monoxide in a raw material gas containing at least carbon dioxide, carbon monoxide, and nitrogen by a two-stage adsorption operation, in which: (a) the first stage adsorption operation is selected for carbon dioxide; The method consists of using two or more adsorption towers filled with an adsorbent substance having a specific property, and removing carbon dioxide from the raw material gas by pressure fluctuation adsorption separation in which adsorption and desorption are repeated in each adsorption tower. (b) The second stage adsorption operation uses an adsorbent material that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). Two or more packed adsorption towers are used, and the method is (i) pressurizing the adsorption tower with the first stage product gas, (ii) further flowing the first stage product gas through the adsorption tower to perform adsorption. an adsorption () step in which the adsorbent adsorbs the easily adsorbable component until the concentration of the easily adsorbable component at the tower outlet reaches the concentration of the easily adsorbable component at the adsorption tower inlet, or slightly before the point where both concentrations become equal; (iii) After the adsorption () process is completed, the adsorption tower is connected to the adsorption tower where vacuum desorption has been completed, and gas is introduced from the former adsorption tower to the latter adsorption tower to reduce the pressure in the former adsorption tower. , (iv) A purge step in which the second-stage product gas is introduced into the reduced pressure adsorption tower to purge the components that are difficult to adsorb. (v) After the purge step, the adsorption tower is evacuated to below atmospheric pressure and the adsorbent is and (vi) the adsorption column and adsorption () after the product gas recovery has been completed.
The process consists of an adsorption () process in which the gas from the latter adsorption tower is introduced into the former adsorption tower by connecting the adsorption tower after the process has been completed, and the flow between the adsorption towers is changed periodically.
The present invention relates to a method characterized by repeating the above operations. The details of the invention will be explained below. The present invention is a method for concentrating, separating and purifying carbon monoxide from a raw material gas consisting of carbon monoxide, carbon dioxide, nitrogen, hydrogen and oxygen as main components by a pressure fluctuation adsorption separation method. 2 containing an adsorbent consisting of a
Use more than one adsorption column. The step of removing carbon dioxide from the raw material gas in the first stage may be carried out by the usual PSA method, that is, repeating adsorption, depressurization, purging with product gas, and pressurization with product gas, or may be carried out by other methods. Also good. A preferred method of removing carbon dioxide is as follows. Using two or more adsorption columns filled with an adsorption material selective for carbon dioxide, the method comprises (i) a pressurizing step of pressurizing the adsorption columns with the first stage product gas, preferably in a countercurrent direction; , preferably 1-
Pressurizing to 3Kg/cm 2 G, (ii) adsorption step in which the raw material gas is passed through an adsorption tower and mainly adsorbs carbon dioxide onto the adsorbent, (iii) adsorption is preferably carried out in a countercurrent direction, followed by depressurization to near atmospheric pressure. (iv) an evacuation step, preferably in a countercurrent direction, and then evacuating the adsorption tower by a vacuum pump or the like (preferably evacuation is carried out to 60 to 300 Torr); and (v) preferably in a countercurrent direction. This method consists of a purge step in which the waste gas from the N 2 PSA device is then used to purge while performing vacuum evacuation, and the above operation is repeated by periodically changing the flow between the adsorption towers. Step (i) in the second stage of the present invention is an adsorption tower pressurization step in which the first stage product gas is introduced into the adsorption tower.In the present invention, the gas to be recovered is an easily adsorbed component, so a high adsorption pressure is required. Not necessary, 1-3Kg/cm 2
An adsorption pressure of approximately G is sufficient, and an adsorption pressure lower than that may be sufficient. Step (ii) is an adsorption () step. The point at which the concentration of easily adsorbed components (carbon monoxide gas) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower means that It means a breakthrough point.
If the component to be recovered is a difficult-to-adsorb component (for example, oxygen gas in the case of separating oxygen gas from air), the adsorption process must be carried out at a level above the breakthrough point in order to obtain a high-purity difficult-to-adsorb component. It is desirable to terminate. However, in the present invention, since the component to be recovered is an easily adsorbed component, adsorption is carried out until the breakthrough point or just before the breakthrough point is reached. In step (iii), the adsorption tower that has undergone the adsorption () step and the adsorption tower that has undergone vacuum desorption are connected, preferably in a parallel flow direction, to introduce gas from the former adsorption tower into the latter adsorption tower, and to Decrease the pressure in the column to or near atmospheric pressure. In this step, gas in the space between the adsorbents housed in the adsorption tower is released and used for adsorption () pressurization of the adsorption tower after vacuum desorption. This operation is maintained until the pressure in the former adsorption tower reaches approximately atmospheric pressure. In step (iv), the second-stage product gas is introduced into the reduced pressure adsorption tower to purge the difficult-to-adsorb components (nitrogen gas, etc.) remaining in the adsorption tower. In this case, the introduction pressure of the product gas is preferably lower than the adsorption pressure and higher than atmospheric pressure, and in this case, there is no need to use a pump or the like, and purging is performed by connecting the product gas tank and the adsorption tower. Step (v) is to evacuate the adsorption tower after the purge step to below atmospheric pressure using a vacuum pump, ejector, blower, etc., preferably to 300 Torr or less, most preferably to a range of 300 to 30 Torr, and remove the adsorbent. Components (carbon monoxide gas, etc.) that have been adsorbed on the gas are desorbed and recovered as product gas. Step (vi) is an adsorption () process in which the adsorption tower that has completed the product gas recovery and the adsorption tower that has completed the adsorption () process is connected, and the former adsorption tower is pressurized and adsorbed by the gas from the latter adsorption tower. It is a process. In this case, since the introduction of gas is stopped when the latter adsorption tower reaches approximately atmospheric pressure, the pressure in the former adsorption tower does not reach atmospheric pressure. The present invention will be explained in detail below based on a typical example of the present invention, which is a method for removing nitrogen gas from converter exhaust gas and separating and recovering carbon monoxide. The examples are not limited. FIG. 1 is a flow sheet for continuously removing carbon dioxide and nitrogen from converter exhaust gas by adsorption method and separating and concentrating carbon monoxide gas. Adsorption towers A and B house adsorbents that selectively adsorb carbon dioxide. Adsorption towers A and B are evacuated using a vacuum pump to a pressure of preferably 300 Torr or less.
The pressure was increased to 30 Torr, and now the raw material gas was introduced into the adsorption tower A under pressure, and valve 1 was opened to increase the pressure from the vacuum state. At this time, all valves except valve 1 are closed. Adsorption tower B still maintains a vacuum state at this step. Adsorption tower A has an adsorption pressure of 0.01 after increasing the pressure.
Maintaining an adsorption pressure of Kg/cm 2 G to 3.0 Kg/cm 2 G, preferably 0.2 Kg/cm 2 G to 1.0 Kg/cm 2 G, valve 2 is opened to release carbon dioxide, carbon monoxide and other containing gases. A portion is adsorbed by the adsorbent, and the remainder is discharged from the other end of the adsorption tower. After completion of the adsorption process for a certain period of time or a certain amount, the raw material supply valve 1 and the outlet valve 2 are closed, and the valve 3 is opened to reduce the internal pressure of the adsorption tower A to near atmospheric pressure. When the adsorption tower A reaches atmospheric pressure, the valve 3 is closed, and the valve 4 is opened from the bottom of the adsorption tower to evacuate the adsorption tower under reduced pressure using a vacuum pump to desorb the carbon dioxide component adsorbed on the adsorbent.
The exhaust pressure at this time is preferably 300 Torr or less.
Perform up to 30Torr. When the decompression exhaustion is completed, valve 5 is opened (at this time, the amount of purge gas is adjusted with manual valve 14), and the waste gas from the de - N2 PSA device is used to remove the adsorbent from the adsorbent. The carbon dioxide contained in the adsorbent is expelled from the adsorbent by entrainment desorption with barge gas. The pressure of evacuation is determined by the amount of this evacuation and barge gas.
It will be as high as 270Torr. When the exhaust barge is completed, valves 4 and 5 are closed, and valve 6 is opened to pressurize the adsorption tower with product gas to the adsorption pressure. By sequentially repeating the above operations in each adsorption tower, CO 2 is continuously adsorbed and removed by the adsorbent. The first stage of withdrawal
The gas from which carbon dioxide has been removed by the CO 2 PSA device is then used in the second stage to remove hydrogen, oxygen, and nitrogen, and to concentrate and separate the carbon monoxide to a high concentration. The method is to use adsorption tower CDEF for easily adsorbed components (here carbon monoxide and carbon dioxide).
Contains an adsorbent that selectively adsorbs. The adsorption tower CDEF is depressurized and evacuated using the vacuum pump 41.
The reaction is carried out at 300 Torr or less, preferably up to 30 Torr, and the raw material gas (from which carbon dioxide has been removed in the first stage PSA device) is now introduced under pressure into the adsorption tower C. This is done by opening the valve 16 to further increase the pressure of the regenerated vacuum. The pressure increase rate at this time is valve 1
5. Valve 17, 18 after boosting pressure
At the same time as the valve 16 is opened, the valve 16 is closed and the mixed gas passes through the adsorption tower. At this time, carbon monoxide and carbon dioxide, which are easily adsorbed components, are adsorbed by the adsorbent, and other gases pass through the adsorption tower and some are desorbed.
Used as barge gas for CO 2 PSA equipment. Since the remaining gas still contains a considerable amount of hydrogen and carbon monoxide, it is collected in the tank 43 for reuse as fuel gas or the like. After completion of the adsorption process for a certain period of time or a certain amount, the raw material supply valve 18 and the outlet valve 17 are closed, and the adsorption tower D
The valve 19 in the connecting pipe is opened to release the internal pressure of the adsorption tower C to near atmospheric pressure, and the adsorbent of the adsorption tower D adsorbs the gas that has been depressurized and released. When the adsorption tower C reaches near atmospheric pressure, the valve 19 is closed and the valve 20 is opened from the product gas tank 42 to expel the separated adsorbed component gas accumulated in the voids (spaces between adsorbents) inside the adsorption tower. 1
7 is opened and the purge process is performed from the lower part of the adsorption tower C. When the purge step is completed, valves 17 and 20 are closed, and valve 21 is opened from the bottom of the adsorption tower to perform vacuum exhaust using a vacuum pump to desorb easily adsorbable components adsorbed on the adsorbent. The exhaust pressure at this time is 300 Torr or less, preferably 30 Torr, and CO, which is an easily adsorbed component, is recovered as a product gas. By sequentially repeating the above operations in each adsorption tower, CO gas, which is an easily adsorbed component, can be continuously adsorbed onto the adsorbent for separation and purification. Note that 43 is a waste gas tank. As mentioned above, CO 2 removal can be achieved by combining the first stage CO 2 removal PSA equipment and the second stage N 2 removal PSA equipment.
The concentration of CO 2 can be significantly reduced compared to when carbon monoxide is concentrated and separated using the N 2 PSA device alone, and the waste gas from the N 2 PSA device can be used as the purge gas for the CO 2 PSA device. By doing so, the recovery rate of carbon monoxide was also improved compared to when the product gas from the CO 2 PSA device was used for the purge process. According to the invention, CO 2 is 0.5%,
N2 can be reduced to less than 1%. Example 1 Below, in order to explain the present invention more specifically, converter exhaust gas (CO = 85% CO 2 = 2.7% N 2 = 4.9%
An attempt was made to purify H 2 =9.3% O 2 =0.1%). As mentioned above, the first stage of the purification process is
The CO 2 PSA equipment's "adsorption - depressurization, pressure release - exhaust - purge - product pressurization" and the second stage deN2 PSA equipment's "first stage product gas pressurization - adsorption () - vacuum adsorption () - The purification was carried out based on the purification cycle of "purge-evacuate-pressurize". The first stage CO 2 PSA device is a steel adsorption tower (12 B x 1.7 m) filled with activated zeoherb (50Kg 1/8″ pellets).The second stage N 2 PSA device is also active. Zeoherb (166Kg 1/8″ pellets)
After evacuating a steel adsorption tower (16 B x 2.4 m) filled with gas to 100 Torr and 60 Torr, the above mixed gas was introduced from the bottom of the tower at a linear velocity of 6 cm/sec to purify the mixed gas. did. The amount of purified carbon monoxide gas was 19.3 m 3 for the supplied gas amount of 32.8 m 3 , and the amount of waste gas from the N 2 PSA device at this time was 13.5 m 3 , and the recovery rate of carbon monoxide was 68%. The gas composition after purification was as follows. Gas composition C = 98.6% CO 2 = 0.5% N 2 = 0.9% H 2 = 0% O 2 = 0% Example 2 Using the same equipment as Example 1, purification using converter exhaust gas under the following experimental conditions. This is the result of separation. Experimental conditions Gas composition CO=86% CO 2 = 4% N 2 = 4%
H 2 = 6% Operating temperature 25℃ Adsorbent ZE-501 Adsorption rate 6.5cm/sec Adsorption pressure 1.0Kg/cm 2 G Vacuum exhaust was performed at 100 Torr and desorption at 60 Torr to concentrate and purify carbon monoxide in the product gas. . The amount of purified carbon monoxide gas is 25.7 m3 for the supplied gas amount of 42.9 m3 .
The recovery rate of carbon monoxide in m 3 was 68.6%. The gas composition after purification is CO = 98.7% CO 2 = 0.5% N 2 = 0.8% Example 3 Purification of converter exhaust gas was attempted. As mentioned above, in the purification process, the first step is "adsorption - depressurization - vacuum evacuation - purge - product pressurization" of the CO 2 removal equipment, and the second stage is "first stage product gas pressurization" of the N 2 removal PSA equipment. Adsorption () - Depressurization/Relief - Purge/
It was carried out based on the purification cycle of release-evacuation-decompression/adsorption (). A steel adsorption tower (12 B x 1.7 m) filled with activated zeoherb (50Kg 1/16″ pellets) is used for the first stage CO 2 removal PSA equipment, and an activated steel adsorption tower (12 B × 1.7 m) is used for the second stage N 2 removal equipment. Activated alumina (30Kg, Sumitomo KHD-
A steel adsorption tower (16 B × 2.4
m) was used. <Experimental conditions> Converter exhaust gas composition: CO = 86% CO 2 = 3% N 2 = 4% H 2 = 7% Operating temperature: 30℃ Adsorption pressure: 1.0Kg/cm 2 G Vacuum exhaust: CO 2 PSA ~ 120Torr N removal 2 PSA~80Torr Supply gas amount is 30.2m3 , double contact CO gas amount is
The CO gas recovery rate was 51.58% at 13.5m3 . At this time, the gas composition after replication is CO = 99.0% CO 2 =
0.3% N 2 =0.7% Example 4 Using the same equipment as in Example 3, purification using converter exhaust gas was attempted under the following experimental conditions. <Experimental conditions> Converter exhaust gas composition: CO = 85% CO 2 = 3% N 2 = 5% H 2 = 7% Operating temperature: 35°C Adsorption pressure: 0.5Kg/cm 2 G Vacuum exhaust: CO 2 PSA ~ 120Torr N removal 2 PSA~80Torr Supply gas amount is 36.2m3 , while purified CO gas amount is 15.3
The recovery rate of CO gas in m 3 was 49.4%. Gas composition after purification is CO = 99.4% CO 2 = 0.4%
N2 =0.2%

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するための好ましい態様を示
すフローシートである。
The figure is a flow sheet showing a preferred embodiment for carrying out the invention.

Claims (1)

【特許請求の範囲】 1 二段階吸着操作により、少なくとも二酸化炭
素、一酸化炭素及び窒素を含む原料ガス中の一酸
化炭素を濃縮する方法において、 (a) その第1段階の吸着操作は二酸化炭素に対し
て選択性を有する吸着物質を充填した2つ以上
の吸着塔を使用し、その方法は各吸着塔で吸着
および脱着を繰返す圧力変動式吸着分離によつ
てその原料ガスから二酸化炭素を除去すること
からなり、そして、 (b) 第2段階の吸着操作は、第1段階の吸着工程
から排出されたガス(以下、第1段階製品ガス
という)中の一酸化炭素に対して選択性を有す
る吸着物質を充填した2つ以上の吸着塔を使用
し、その方法は (i) 第1段階製品ガスにより吸着塔を加圧する
加圧工程 (ii) さらに第1段階製品ガスを吸着塔に流し
て、吸着塔出口における易吸着成分の濃度が
吸着塔入口における易吸着成分の濃度に達す
るまで又は両者の濃度が等しくなる点の少し
前まで吸着剤に易吸着成分を吸着させる吸着
()工程、 (iii) 吸着()工程終了後その吸着塔と真空脱
着が終つた吸着塔とを連結し、前者の吸着塔
からガスを後者の吸着塔に導入し、前者の吸
着塔の圧力を降下させる減圧放圧工程、 (iv) 減圧した吸着塔に第2段階製品ガスを導入
して難吸着成分をパージするパージ工程、 (v) パージ工程を終つた吸着塔を大気圧以下に
排気して、吸着剤に吸着されている易吸着成
分を脱着させ製品ガスを回収する回収工程、
及び (vi) 製品ガス回収が終つた吸着塔と吸着()
工程が終つた吸着塔とを連結して後者の吸着
塔からのガスを前者の吸着塔に導入する吸着
()工程、 からなり、定期的に吸着塔間の流れを変えて、
上記操作を繰返すことを特徴とした方法。 2 前記第1段階の吸着操作は (i) 第1段階製品ガスによる吸着塔を加圧する加
圧工程、 (ii) 原料ガスを吸着塔に流して主として二酸化炭
素を吸着物質に吸着させる吸着工程、 (iii) 次いで吸着を大気圧附近まで減圧する減圧工
程、 (iv) 次いで吸着塔を真空ポンプ等により排気する
排気工程、そして、 (v) 次いで第2段階からの廃棄ガスを利用するパ
ージ工程 から成り、定期的に吸着塔間の流れを変えて、上
記操作を繰返すことから成る特許請求の範囲第1
項に記載の方法。
[Scope of Claims] 1. A method for concentrating carbon monoxide in a raw material gas containing at least carbon dioxide, carbon monoxide, and nitrogen by a two-stage adsorption operation, including: (a) the first stage adsorption operation The method uses two or more adsorption towers filled with an adsorbent material that is selective to (b) The second stage adsorption operation increases the selectivity to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). The method includes (i) pressurizing the adsorption tower with the first stage product gas; and (ii) further flowing the first stage product gas into the adsorption tower. an adsorption () step in which the easily adsorbable component is adsorbed on the adsorbent until the concentration of the easily adsorbable component at the outlet of the adsorption tower reaches the concentration of the easily adsorbable component at the inlet of the adsorption tower, or until slightly before the point where both concentrations become equal; (iii) After the adsorption () process is completed, the adsorption tower is connected to the adsorption tower where vacuum desorption has been completed, and gas is introduced from the former adsorption tower to the latter adsorption tower to reduce the pressure in the former adsorption tower. (iv) A purge step in which the second-stage product gas is introduced into the depressurized adsorption tower to purge the difficult-to-adsorb components; (v) After the purge step, the adsorption tower is evacuated to below atmospheric pressure and the adsorption begins. A recovery process in which easily adsorbable components adsorbed by the agent are desorbed and product gas is recovered;
and (vi) adsorption tower and adsorption after product gas recovery ().
The process consists of an adsorption () process in which the gas from the latter adsorption tower is introduced into the former adsorption tower by connecting the adsorption tower after the process has been completed, and the flow between the adsorption towers is changed periodically.
A method characterized by repeating the above operations. 2. The first stage adsorption operation includes (i) a pressurizing step in which the adsorption tower is pressurized by the first stage product gas, (ii) an adsorption step in which the raw material gas is passed through the adsorption tower and mainly carbon dioxide is adsorbed on the adsorbent material; (iii) Next, there is a depressurization process in which the adsorption is depressurized to near atmospheric pressure, (iv) Next, there is an exhaust process in which the adsorption tower is evacuated by a vacuum pump, etc., and (v) Next, there is a purge process in which the waste gas from the second stage is used. Claim 1 consists of repeating the above operation by periodically changing the flow between the adsorption towers.
The method described in section.
JP58187480A 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method Granted JPS6078613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187480A JPS6078613A (en) 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187480A JPS6078613A (en) 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Publications (2)

Publication Number Publication Date
JPS6078613A JPS6078613A (en) 1985-05-04
JPS6139087B2 true JPS6139087B2 (en) 1986-09-02

Family

ID=16206809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187480A Granted JPS6078613A (en) 1983-10-06 1983-10-06 Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Country Status (1)

Country Link
JP (1) JPS6078613A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242313A (en) * 1990-02-19 1991-10-29 Kawasaki Steel Corp Purification of carbon monoxide
US5096470A (en) * 1990-12-05 1992-03-17 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543822A (en) * 1977-06-13 1979-01-12 Kobe Steel Ltd Glass having lubricating surface for hot extrusion
JPS5546208A (en) * 1978-09-25 1980-03-31 Tokyo Shibaura Electric Co Glass fiber product for electric insulation
JPS5716653A (en) * 1980-03-21 1982-01-28 Rhone Poulenc Ind Expansible composition , unmelt preparation and method

Also Published As

Publication number Publication date
JPS6078613A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
US4539020A (en) Methods for obtaining high-purity carbon monoxide
JPS6137968B2 (en)
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
WO2009073928A1 (en) A plant and process for recovering carbon dioxide
CA1238868A (en) Method for obtaining high-purity carbon monoxide
JPS6297637A (en) Method and apparatus for oxidizing carbonaceous material
JPS6137970B2 (en)
JPH0422848B2 (en)
JPH0112529B2 (en)
JPS6139087B2 (en)
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS621767B2 (en)
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JPS6139090B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS60155518A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS6078612A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method
JPH0221285B2 (en)
JPS60155521A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH0768119A (en) Method for separation and recovery of carbon monoxide
JPS61146705A (en) Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPS6139089B2 (en)
JPH05111610A (en) Separation of gaseous co not containing ch4

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees