JPS60155521A - Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process - Google Patents

Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Info

Publication number
JPS60155521A
JPS60155521A JP59012586A JP1258684A JPS60155521A JP S60155521 A JPS60155521 A JP S60155521A JP 59012586 A JP59012586 A JP 59012586A JP 1258684 A JP1258684 A JP 1258684A JP S60155521 A JPS60155521 A JP S60155521A
Authority
JP
Japan
Prior art keywords
adsorption
gas
stage
purge
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012586A
Other languages
Japanese (ja)
Other versions
JPS6410443B2 (en
Inventor
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Shigeo Matsui
松井 滋夫
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
JFE Steel Corp
Osaka Oxygen Industries Ltd
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd, Kawasaki Steel Corp filed Critical OSAKA OXGEN IND Ltd
Priority to JP59012586A priority Critical patent/JPS60155521A/en
Publication of JPS60155521A publication Critical patent/JPS60155521A/en
Publication of JPS6410443B2 publication Critical patent/JPS6410443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To recover high-purity CO stably from feed gas, by measuring the concentrations of CO2 and N2 in the feed gas, controlling the amount of waste gas in the adsorption process or the amount of purge gas used in the purge process according to the concentrations, and carrying out the concentration and separation of CO. CONSTITUTION:An adsorbent capable of selectively adsorbing CO2 is packed in the adsorption columns A and B, and the column A is evacuated after purging. The pressure in the column A is raised to the adsorption pressure, and the feed gas is passed through the column A. After the adsorption process for a prescribed period, the pressure in the column A is released to atmospheric pressure or thereabout to effect the desorption of CO2 adsorbed to the adsorbent. The waste gas sent from the second-stage treatment apparatus is introduced into the column A under reduced pressure to purge the adsorbed CO2, and the column A is transferred to the next step after the completion of the purging process. The above operations are repeated alternately in the columns A and B to effect the continuous adsorption and removal of CO2 with the adsorbent. Separately, the product gas free from CO2 and ejected from the top of the columns A, B in the first-stage treatment is introduced into the second-stage treatment apparatus to remove H2 and N2, and is recovered as the highly concentrated CO gas.

Description

【発明の詳細な説明】 本発明は圧力変動式吸着分離法(PSA法)によって、
少なくとも一酸化炭素、二酸化炭素、及び窒素を含む原
料ガス、例えば転炉又は高炉の排ガスから高純度の一酸
化炭素を安定して得る方法に関する。製鉄所において精
練容器から発生ずる排ガスは比較的多量のCOガスを含
有している。
Detailed Description of the Invention The present invention uses a pressure fluctuation adsorption separation method (PSA method) to
The present invention relates to a method for stably obtaining high-purity carbon monoxide from a raw material gas containing at least carbon monoxide, carbon dioxide, and nitrogen, such as exhaust gas from a converter or blast furnace. Exhaust gas generated from smelting vessels in steel plants contains a relatively large amount of CO gas.

その組成は転炉排ガス、高炉排ガスについては、以下に
示ず範囲内にある。
The composition of converter exhaust gas and blast furnace exhaust gas is within the range shown below.

もし、これらの排ガスから高純度のCOガスを安価に回
収そぎれば、合成化学原料、精練容器内溶融金属中への
吸込みガスとしての用途が拓ける。合成化学原料として
のCOガスを考える際には、合成反応が高温・高圧条件
下に行なわれるのが通例であることから、反応容器を損
なわさせる酸化性ガスの除去が必須であり、CO2濃度
を出来る限り低下させる必要がある。また反応効率を上
げるためには通常反応に関与しないN2も出来るだけ除
去するのが望ましい。一方、溶融金属の精練の効率化を
目的とする精練容器内へのガス吸込み操作は広く用いら
れているが、溶融金属中の不純ガス成分(窒素、水素な
ど)の濃度上昇を嫌う観点から高価なArガスが使用さ
れるのが通例である。製鉄所内で発生ずる転炉ガス、高
炉ガスから高純度COガスを安価に回収できれば、これ
をArに代替して吸込みガスとして使用することがほぼ
可能である。この際、高純度COガス中のN2.、N2
濃度は溶鉄の窒素濃度、水素濃度上昇を防止するために
低いのが望ましく、またCO2濃度も精練容器内張り耐
火物として汎用されている炭素系耐火物の酸化m傷防止
、或いは溶鉄中の酸素濃度上昇防止の観点から低いのが
望ましい。
If high-purity CO gas can be recovered at low cost from these exhaust gases, it could be used as a raw material for synthetic chemicals or as a suction gas into the molten metal in the scouring vessel. When considering CO gas as a raw material for synthetic chemicals, it is essential to remove oxidizing gases that would damage the reaction vessel, as synthesis reactions are usually carried out under high temperature and high pressure conditions. It is necessary to reduce it as much as possible. Furthermore, in order to increase the reaction efficiency, it is desirable to remove as much N2 as possible, which normally does not participate in the reaction. On the other hand, the gas suction operation into the scouring vessel is widely used to improve the efficiency of scouring molten metal, but it is expensive due to the risk of increasing the concentration of impure gas components (nitrogen, hydrogen, etc.) in the molten metal. Typically, Ar gas is used. If high-purity CO gas can be recovered at low cost from converter gas and blast furnace gas generated in steel plants, it is almost possible to use it as a suction gas in place of Ar. At this time, N2 in high purity CO gas. , N2
The concentration is preferably low to prevent increases in nitrogen and hydrogen concentrations in the molten iron, and the CO2 concentration is preferably low to prevent oxidation damage to carbon-based refractories, which are commonly used as refractory linings for smelting containers, or to prevent oxygen concentration in the molten iron. A low value is desirable from the viewpoint of preventing rise in temperature.

従来、上記排ガスを原料に高純瓜COガスを回収するプ
ロセスとしては、深冷分離法によりN2゜N2 、 C
O2を分lII[する方法、或いは、調液法、Coso
rb用といった、COを選択的に溶液に吸収させた上で
回収する方法が考えられてきた。しかしながら、前者に
おいては低温と高圧を必要とし、後者においては高温と
高圧を必要とし、両者共に設備が複雑かつ高価になる欠
点がある。また深冷分離法では、N2とCOの沸点が接
近しているため、N2とCOの分離を完全に行なうこと
も困難である。
Conventionally, the process of recovering high-purity melon CO gas using the above-mentioned exhaust gas as a raw material has been to collect N2゜N2, C by a cryogenic separation method.
Method for dividing O2 or liquid preparation method, Coso
A method for selectively absorbing CO into a solution and recovering it, such as for RB, has been considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the disadvantage that the equipment is complicated and expensive. Furthermore, in the cryogenic separation method, it is difficult to completely separate N2 and CO because the boiling points of N2 and CO are close to each other.

先に本出願人は、少なくともCO,CO2、N2を含む
原料ガス中からCOガスを安価な設備費と操業費のもと
に濃縮、分離する方法として圧力変動式吸着分離法(P
SA法)に関する発明を出願した。
Previously, the present applicant proposed a pressure fluctuation adsorption separation method (P
An application was filed for an invention related to the SA method.

即ち、先願発明(特願昭58−110616号参照)に
おいては少なくともCO,CO2、N2を含む混合ガス
中からPSA法によりCOを回収J゛るに際して第1段
階の吸着操作に′よりCO2を吸着除去し、第2段階の
吸着操作にJ:すN2を除去することにより、高純度C
Oガスを製品ガスとして回収する方法を示したのである
が、この方法に基くシステムを最適な条件のもとに操業
する方法についての解明は不′十分なものであった。即
ち、本システムの原料ガスとなる例えば転炉排ガスはそ
の組成を刻々と変化させているものであり、高純度CO
ガスを回収する際に転炉ガスから除去すべき、N2 、
 CO2といった不純ガス成分の聞は変動している。こ
の前促下で回収する高純度COガスの純度を一定レベル
以上に保ちつつ、最も経済的に本システムを操業する方
法は全く未解明であった。この点についで本発明者らは
鋭意研究を重ねた結果、本システムの最適な操業方法を
解明するに至ったものである。
That is, in the prior invention (see Japanese Patent Application No. 58-110616), when CO is recovered by the PSA method from a mixed gas containing at least CO, CO2, and N2, CO2 is collected from '' in the first stage adsorption operation. By adsorbing and removing J:N2 in the second stage adsorption operation, high purity
Although a method for recovering O gas as a product gas has been shown, the method for operating a system based on this method under optimal conditions has not been sufficiently elucidated. In other words, the composition of the converter exhaust gas, which is the raw material gas for this system, is constantly changing, and high-purity CO
N2, which should be removed from the converter gas when recovering the gas,
The content of impure gas components such as CO2 is fluctuating. The most economical method to operate this system while maintaining the purity of the high-purity CO gas recovered under this pre-promotion above a certain level has not yet been determined. As a result of extensive research into this point, the present inventors have finally discovered the optimal method of operating this system.

本発明は二段階吸着操作により、少なくとも一酸化炭素
、二酸化炭素及び窒素を含有する原料ガス中の一酸化炭
素を濃縮分111する方法において(a) その第1段
階の@着操作は原料ガス中の二酸化炭素に対して、選択
吸着性を有する吸着物質を収納した2つ以上の吸着塔を
使用し、その方法−は各吸着塔で少なくとも吸着工程及
びパージ操作を含む脱着工程を繰り返す圧力変動式吸着
分離に′よってその原料ガスから二酸化炭素を除去する
ことからなり、ぞして、 (b) 第2段階の吸着操作は、第1段階の吸着工程か
ら排出される二酸化炭素の除去されたガス(以後第1段
部製品ガスという)中の一酸化炭素に対して選択性を有
する吸着物質を充填した2つ以上の吸着塔を使用し、そ
の方法は、 (I) 第1段階製品ガスによる吸着塔の吸着工程 (II) その吸着塔のパージ (nl) 製品ガスの脱着回収 から成る少なくとも3工程を繰り返すことからなり、第
2段階処理の吸着工程から排出される廃棄ガスを第1段
階処理における吸着塔再生のパージ工程に使用し、そし
て、 (C) 原料ガス中の少なくとも二酸化炭素と窒素ガス
濃度を計測して、或いは、製品ガス中の少なくとも二酸
化炭素と窒素ガス濃度を計測して、その結果に基づいて
、次の三つの方法 (I) 第1段階処理のパージ工程で使用する減圧排気
機器の排気能ツノの制御 (II) 第2段階処理、吸着工程の廃棄ガス量の制御 (Iff) 第2段階処理、パージ工程に使用す′るパ
ージガス量の制御 のうち、少なくとも一つの操作を行なうことにより、−
酸化炭素の濃縮分離を行なうことを特徴どした方法に関
する。
The present invention provides a method for condensing carbon monoxide in a raw material gas containing at least carbon monoxide, carbon dioxide, and nitrogen by a two-stage adsorption operation. The method uses two or more adsorption towers containing an adsorbing material that selectively adsorbs carbon dioxide, and the method is a pressure fluctuation type in which at least an adsorption step and a desorption step including a purge operation are repeated in each adsorption tower. (b) The second stage adsorption operation consists of removing carbon dioxide from the raw material gas by adsorption separation. (hereinafter referred to as the first stage product gas) using two or more adsorption columns filled with adsorbent materials that are selective for carbon monoxide in the first stage product gas; Adsorption process of the adsorption tower (II) Purge of the adsorption tower (nl) Consists of repeating at least three steps consisting of desorption and recovery of product gas, and the waste gas discharged from the adsorption process of the second stage treatment is processed in the first stage. (C) measuring at least the carbon dioxide and nitrogen gas concentrations in the raw material gas, or measuring at least the carbon dioxide and nitrogen gas concentrations in the product gas; Based on the results, the following three methods (I) Control the exhaust capacity horn of the decompression exhaust equipment used in the purge process of the first stage treatment (II) Control the amount of waste gas in the second stage treatment and adsorption process ( If) By performing at least one operation of controlling the amount of purge gas used in the second stage treatment and purge step, -
The present invention relates to a method characterized by concentrating and separating carbon oxide.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は第1段階におCノる、少なくとも一酸化炭素、
二酸化炭素、窒素を含む原料ガスから、圧力変動式吸着
分離法により二酸化炭素を除去づる工程は通常のPSA
法、すなわち吸着、減圧、製品ガスによるパージおよび
製品ガスによる加圧の繰返しにより実施しても良く、又
少なくとも吸着工程及びパージ操作を含む脱着工程を含
む他の方法であっても良い。該原料ガスから二酸化炭素
を除去する好ましい方法は次の通りである。
The present invention provides at least carbon monoxide in the first step.
The process of removing carbon dioxide from a raw material gas containing carbon dioxide and nitrogen using a pressure fluctuation adsorption separation method is a normal PSA process.
The method may be carried out by repeating adsorption, depressurization, purging with product gas and pressurization with product gas, or other methods including at least an adsorption step and a desorption step including a purge operation. A preferred method for removing carbon dioxide from the raw material gas is as follows.

二酸化炭素に対して選択性を有する吸着物質を充填した
2つ以上の吸着塔を使用し、その方法は(I) 第1段
階製品ガスにより吸着塔を加圧する加圧工程、好マシ<
ハ0.2〜3.0KQ /ciG:J:で加圧する (I[) 原料ガスを吸着塔に流して主として二酸化炭
素を吸着させ、二酸化炭素の除去された第1段階製品ガ
スを回収する吸着工程 (In> 次いで、吸着塔を大気圧附近まで減圧する減
圧工程 (IV) 次いで、吸着塔を減圧排気機器により排気す
る排気工程(好ましくは、破棄は300T orr〜3
0Torrまで行なわれる)そして、(V) 第2段階
製着<I)工程からめ廃棄ガスを排気工程の終った吸着
塔に導入しつつ減圧排気機器による排気を行なうパージ
工程から成り、定期的に吸着塔間のガスの流れを変えて
上記操作を繰返すことからなる方法である。
The method uses two or more adsorption towers filled with an adsorption material that is selective to carbon dioxide, and the method includes (I) a pressurization step of pressurizing the adsorption tower with the first stage product gas;
Pressurize at 0.2 to 3.0 KQ/ciG:J (I[) Adsorption to flow the raw material gas into an adsorption tower to mainly adsorb carbon dioxide, and recover the first stage product gas from which carbon dioxide has been removed. Step (In>) Next, a depressurization step (IV) in which the adsorption tower is depressurized to near atmospheric pressure. Next, an evacuation step (IV) in which the adsorption tower is evacuated by a decompression exhaust device (preferably, the discarding is performed at 300 T orr to 3
0 Torr) and (V) 2nd stage production < I) consists of a purge process in which the waste gas from the process is introduced into the adsorption tower after the exhaust process and is exhausted by a decompression exhaust equipment, and the adsorption is periodically performed. This method consists of repeating the above operation by changing the gas flow between the columns.

本発明の第1段階処理の目的は二酸化炭素の吸着除去で
あるが、二酸化炭素の吸着剤に対する吸着能が大きいの
で、二酸化炭素を吸着除去した製品ガスを回収する吸着
工程に困難は少ない。しかし、逆に吸着塔を減圧させ、
次いで排気する工程で吸着剤に吸着している二酸化炭素
を脱着させ、吸着塔外に排出させる工程をスムーズに行
なう際に困難が伴う。即ち、吸着剤から脱着した二酸化
炭素が再吸着して容易には吸着塔外にV出されぬ事態が
生じやすい。脱着した二酸化炭素の吸着塔外への排出を
助けるために搬送ガスとしてパージガスの導入を行なう
方法は、通常のPSA法でも採用されているものである
が、本発明の方法においては、パージガスの導入を減圧
排気条f1下に行ないパージガス容積を大としたところ
に特徴を右すると共に、通常のPSA法では製品ガスを
パージガスとして使用し、その結果として、製品ガス回
収率の低下を余儀なくされていたものを、本発明では、
二段階吸着法の特徴を生かして、後述する第2段階処理
の吸着工程から排出される不用の廃棄ガスをパージガス
に利用する合理性も0(せ持っている。この特徴を有す
るパージ工程の採用により、吸着剤からの二酸化炭素の
182着をスムーズに行なうことが可能となり、その結
果として次の吸着工程における二酸化炭素の吸着除去が
支障なく行なえるようになった。このパージ工程の操業
方法と、二酸化炭素の吸着除去効率との関係を詳細に検
討したところ、第1図に示す関係がめられ、これが、二
酸化炭素の吸着除去をスムーズに行なうための操業指針
たり得ることを本発明者らは確認したわけである。第1
図は吸着塔内に充填されている吸着剤単位型M当りに1
サイクルの吸着工程で吸着し得る二酸化炭素の量が、パ
ージ工程のパージガス容積と共に増大している関係を示
す。即ち、パージガス容積の増大と共に、二酸化炭素の
吸着剤からの脱着効率が上昇し、従って次の吸着工程に
おける二酸化炭素の吸着が可能となる吸着サイトが増す
関係を発見したものである。
The purpose of the first stage treatment of the present invention is to adsorb and remove carbon dioxide, and since the adsorption capacity of carbon dioxide to the adsorbent is large, there are few difficulties in the adsorption step of recovering the product gas from which carbon dioxide has been adsorbed and removed. However, on the contrary, if the adsorption tower is depressurized,
Then, in the exhausting process, it is difficult to desorb the carbon dioxide adsorbed on the adsorbent and discharge it to the outside of the adsorption tower smoothly. That is, a situation is likely to occur in which carbon dioxide desorbed from the adsorbent is re-adsorbed and cannot be easily discharged outside the adsorption tower. The method of introducing purge gas as a carrier gas to help discharge the desorbed carbon dioxide to the outside of the adsorption tower is also adopted in the normal PSA method, but in the method of the present invention, the introduction of purge gas is The feature lies in the fact that the purge gas volume is increased by performing the process under the reduced pressure exhaust line f1, and in the normal PSA method, the product gas is used as the purge gas, and as a result, the product gas recovery rate is forced to decrease. In the present invention,
Taking advantage of the characteristics of the two-stage adsorption method, there is also no rationality for using the unnecessary waste gas discharged from the adsorption process of the second stage treatment, which will be described later, as a purge gas. As a result, carbon dioxide can be smoothly removed from the adsorbent, and as a result, carbon dioxide can be adsorbed and removed in the next adsorption step without any problems. After a detailed study of the relationship between carbon dioxide adsorption and removal efficiency, the relationship shown in Figure 1 was found, and the present inventors believe that this can serve as an operational guideline for smoothly adsorbing and removing carbon dioxide. This has been confirmed. 1st
The figure shows 1 unit per adsorbent unit type M filled in the adsorption tower.
It shows a relationship in which the amount of carbon dioxide that can be adsorbed in the adsorption step of the cycle increases with the purge gas volume in the purge step. That is, we have discovered a relationship in which as the purge gas volume increases, the desorption efficiency of carbon dioxide from the adsorbent increases, and therefore the number of adsorption sites that can adsorb carbon dioxide in the next adsorption step increases.

従って、原料ガス流量、原料ガス中の二酸化炭素ガス濃
度の計測値からまる吸着さけるべき二酸化炭素に対応す
るパージガス容積を図1により定めれば安定した二酸化
炭素吸着除去が可能となる。
Therefore, by determining the purge gas volume corresponding to the carbon dioxide to be completely adsorbed from the measured values of the raw material gas flow rate and the carbon dioxide gas concentration in the raw material gas according to FIG. 1, stable carbon dioxide adsorption and removal becomes possible.

パージガス容積の制御は第2段階処理から廃棄されるガ
スの導入量制御ににつで行なっても良いが、減圧排気機
器の排気能力の制御によっても良い。
The purge gas volume may be controlled by controlling the amount of gas introduced from the second stage treatment, but may also be controlled by controlling the exhaust capacity of the decompression exhaust equipment.

即ち、排気能ノコを上げればガス容積を上昇させること
が可能である。減圧排気機器に要する動力の削減は本シ
ステムの操業に要求される重要なポイントであり、図1
の関係を基にこの動力を必要最小限に制御する方法は極
めて重要な技術といえる。
That is, it is possible to increase the gas volume by increasing the exhaust capacity saw. Reducing the power required for the decompression exhaust equipment is an important point required for the operation of this system, and is shown in Figure 1.
The method of controlling this power to the necessary minimum based on the relationship between the two can be said to be an extremely important technology.

本発明の第2段階の吸着操作は、第1段階の吸着工程か
ら排出された第1段部製品ガス中の一酸化炭素に対して
選択性を右する吸着物質、例えば天然ゼオライト、改質
ゼオライト又は合成ゼオライト等を充填した2つ以上の
吸着塔を使用し、その好ましい方法は (I> 第1段部製品ガスにより吸着塔を加圧す′る加
圧工程 (II) さらに第1段部製品ガスを吸着塔に流して、
吸着塔出口におけるガス中の易吸着成分(−酸化炭素)
の濃度が、吸着塔入口におけるガス中の易吸着成分の濃
度に達するまで、或いは達した後適当な量又は時間の間
、第1段部製品ガスと流し続けるか、もしくは両者の濃
度が等しくなる点の少し前まで第1段部製品ガスを流し
て、吸着剤に易吸着成分を吸着させる吸着(1)工程。
The second stage adsorption operation of the present invention is performed using an adsorbent material that has selectivity to carbon monoxide in the first stage product gas discharged from the first stage adsorption process, such as natural zeolite or modified zeolite. Or, the preferred method is to use two or more adsorption towers filled with synthetic zeolite etc. Flow the gas into an adsorption tower,
Easily adsorbed components in the gas at the outlet of the adsorption tower (-carbon oxide)
Continue to flow with the product gas in the first stage section until the concentration of the easily adsorbed component in the gas reaches the concentration of the easily adsorbed component in the gas at the adsorption tower inlet, or for an appropriate amount or time after reaching the concentration, or the concentrations of both become equal. Adsorption (1) step in which the product gas in the first stage is allowed to flow until just before the point to allow the adsorbent to adsorb easily adsorbable components.

この工程で吸着塔から排出されるガスは、前記第1段1
12i<v>のパージ工程のパージガスとして使用され
る。
The gas discharged from the adsorption tower in this step is
It is used as a purge gas in the purge step of 12i<v>.

(I[[) 吸@(1)工程終了後、その吸着塔を吸着
圧力と大気圧との間の任意圧力まで減圧する工程、 (IV ) 減圧工程終了後、その吸着塔と排気脱着が
終った吸着塔を連結し、前者の吸着塔から後者の吸着塔
に前者のガスを導入し、前者の吸着塔の圧力を大気圧又
は大気圧近くまで時下させる減圧放圧工程。この際、両
者の吸着塔の圧力をほぼ均圧させても良い。また、前者
の吸着塔の圧力を降下させる際に放出されるガスを系外
に放出してしまい、後者の吸着塔に導入しない方法を取
っても良い。
(I[[) After the suction step (1), the process of reducing the pressure of the adsorption tower to an arbitrary pressure between the adsorption pressure and atmospheric pressure, (IV) After the completion of the depressurization process, the adsorption tower and exhaust desorption are completed. A depressurization and depressurization process in which two adsorption towers are connected, the former gas is introduced from the former adsorption tower to the latter adsorption tower, and the pressure of the former adsorption tower is reduced to atmospheric pressure or near atmospheric pressure. At this time, the pressures of both adsorption towers may be approximately equalized. Alternatively, a method may be adopted in which the gas released when lowering the pressure in the former adsorption tower is released outside the system and is not introduced into the latter adsorption tower.

(V) 次いで、減圧した吸着塔に製品ガスを導入して
難吸着成分をパージするパージ工程。本工程で吸着塔か
ら排出されるガスを後記する吸着(II)工程を終った
吸着塔に導入する工程は任意である。
(V) Next, a purge step in which the product gas is introduced into the depressurized adsorption tower to purge difficult-to-adsorb components. The step of introducing the gas discharged from the adsorption tower in this step into the adsorption tower that has completed the adsorption (II) step described later is optional.

(Vl) パージ工程を終った吸着塔を大気圧以下に排
気して、吸着剤に吸着されている易吸着成分を脱着させ
、製品ガスとして回収する回収工程。
(Vl) A recovery step in which the adsorption tower that has completed the purge step is evacuated to below atmospheric pressure, the easily adsorbed components adsorbed by the adsorbent are desorbed, and the gas is recovered as a product gas.

(■) 製品ガス回収が終った吸着塔と吸W(I)工程
を終った吸着塔を連結し、後者の吸着塔からの減圧放圧
ガスを前者の吸着塔に導入し、吸着剤に易吸着成分を吸
着させる吸着(I[)工程。
(■) The adsorption tower that has completed product gas recovery and the adsorption tower that has completed the absorption W (I) process are connected, and the depressurized and released gas from the latter adsorption tower is introduced into the former adsorption tower to easily absorb the adsorbent. Adsorption (I[) step to adsorb adsorbed components.

(■) 次いで、吸着(I)工程を終った吸@jhと減
圧放圧工程の終った吸着塔を連結し、後者の吸着塔のパ
ージ工程から排出されるガスを前者の吸着塔に導入し、
吸着剤に易吸着成分を吸着させる吸着(Ill)工程、 から成り、定期的に吸着塔間のガスの流れを変えて、上
記の操作を繰返すことを特徴とした方法である。尚、工
程(Vl)、(W)はそれぞれ工程(1)、(rV)の
方法に従って定まるものであり、その実施は任意となる
(■) Next, the suction @jh that has completed the adsorption (I) step and the adsorption tower that has completed the depressurization and release step are connected, and the gas discharged from the purge step of the latter adsorption tower is introduced into the former adsorption tower. ,
This method consists of an adsorption (Ill) step in which easily adsorbable components are adsorbed onto an adsorbent, and is characterized in that the above operation is repeated by periodically changing the flow of gas between adsorption towers. Note that steps (Vl) and (W) are determined according to the methods of steps (1) and (rV), respectively, and their implementation is arbitrary.

本発明の第2段階処理(I)は吸着塔に第1段111!
i製品ガスを尋人する吸着塔の加圧工程である。
In the second stage treatment (I) of the present invention, the first stage 111!
This is the pressurization process of the adsorption tower that absorbs the product gas.

本段階で回収すべきガスは易吸着成分であるので高い吸
着圧は必要でなく、3KO/dGl!i!度の吸着圧で
十分であり、それより低い吸着圧であっても良い。
Since the gas to be recovered at this stage is a component that is easily adsorbed, high adsorption pressure is not required, and only 3KO/dGl! i! It is sufficient to use an adsorption pressure of about 100%, and a lower adsorption pressure may also be used.

工程(IF)は吸着(I)工程であり、第1段階製品ガ
ス中の易吸着成分を吸着剤に吸着させる工程である。吸
着塔出口にお(プるガス中の易吸着成分の濃度が吸着塔
入口におりるガス中のぞれに等しくなった点というのは
、吸着剤の破過の終了を意味する。回収ずべぎ成分が易
吸着成分であり、所定の吸着剤量のもとで一ト分に多く
の製品ガス量を回収したり、純度の良い製品ガスをI]
収するためには、破過終了或いは破過終了後においても
なおかつ吸着剤に残存する吸着サイトに易吸着成分を吸
着させることが必要であり、破過終了後も一定量の第1
段階製品ガスを流すか、又は一定時間の間第1段階製品
ガスを流ずことを要する。或いは、破過終了に達する少
し前まで吸着を行なうにとどめても製品ガス純度の点か
ら問題の少ない場合もある。
Step (IF) is an adsorption (I) step, which is a step in which easily adsorbable components in the first stage product gas are adsorbed onto an adsorbent. The point at which the concentration of easily adsorbable components in the gas flowing into the adsorption tower outlet becomes equal to that in the gas flowing into the adsorption tower inlet means the end of adsorbent breakthrough. Since the adsorbent component is easily adsorbed, it is possible to recover a large amount of product gas per ton with a predetermined amount of adsorbent, or to collect product gas with good purity.
In order to achieve this, it is necessary to adsorb easily adsorbable components to the adsorption sites that remain in the adsorbent even after the completion of breakthrough or after the completion of breakthrough.
It requires flowing a stage product gas or flowing a first stage product gas for a period of time. Alternatively, there may be fewer problems in terms of product gas purity even if the adsorption is performed until a little before reaching the end of breakthrough.

この吸着(I)工程を吸着剤の破過の前後のどの水準迄
継続するには製品ガスの純度を定める上で重要であるの
で、この点の検討を詳細に行なった。本発明の第1段階
製品ガス中の易吸着成分は一酸化炭素であり、難吸着成
分は窒素である。破過終了以前においては難吸着成分で
ある窒素も吸着剤に共吸着しており、このまま12着さ
せ製品ガスとして回収した場合には製品純度の低下は1
lIGプ難い。但し、難吸着成分の共吸着の度合は、第
1段階製品ガスの組成に依存するものであり、難吸着成
分の少ないガスを吸着(I)工程に導入する場合に於い
ては、破過終了前に吸@(1)工程を終っても良いこと
になる。吸着(I)工程を破過終了後も過大に継続する
ことは易吸着成分を多量に廃棄することになり、望まし
いことぐはない。
Since it is important to determine the purity of the product gas that the adsorption (I) step is continued to any level before or after the adsorbent breakthrough, this point was studied in detail. The easily adsorbed component in the first stage product gas of the present invention is carbon monoxide, and the poorly adsorbed component is nitrogen. Before the breakthrough ends, nitrogen, which is a difficult-to-adsorb component, is also co-adsorbed on the adsorbent, and if the product gas is collected as is, the product purity will decrease by 1.
It's hard to play. However, the degree of co-adsorption of poorly adsorbed components depends on the composition of the first stage product gas, and when a gas with a small amount of poorly adsorbed components is introduced into the adsorption (I) process, the breakthrough ends. It is also possible to finish the suction step (1) beforehand. It is not desirable to continue the adsorption (I) step for an excessively long time even after the breakthrough has been completed, as this results in a large amount of easily adsorbable components being discarded.

従って、製品ガス純度を一定に維持しつつ、かつ、易吸
着成分の廃棄Mを最少限にとどめる吸着(I)工程の制
御が望まれる。検討すると吸着(I)工程を破過終了以
前あるいは破過終了後のどの水準で終らせるかを決定す
る指釘が望まれるわりである。
Therefore, it is desired to control the adsorption (I) process in such a way that the purity of the product gas is maintained constant and the waste M of easily adsorbed components is kept to a minimum. Upon consideration, it would be desirable to have a fingernail that can determine at which level the adsorption (I) process should be completed before or after the breakthrough.

この点の検討結果が図2に示すものである。図2は、第
2段階処理の前後でガス中の難吸着成分濃度の比率が、
吸着(1)工程で1サイクル当り単位吸着剤重量当りの
廃棄ガス荀によって変化する関係を示す。第1段階製品
ガス中の難吸着成分濃度が増した場合には廃棄ガス四を
増加させることにより製品ガス中の難吸着成分濃度の絶
対値を一定に維持するのが可能となる。従って第1段階
製品ガス中の難吸着成分濃度を計測しつつ、一定の製品
ガス純度を維持するのに必要最低限の吸着(I)工程廃
棄ガス徂を図2よりめて、易吸着成分の回収を最大にも
って行く操業が可能と0えるわけであり、これも重要な
技術である。
The results of this study are shown in Figure 2. Figure 2 shows that the ratio of the concentration of poorly adsorbed components in the gas before and after the second stage treatment is
The relationship that changes depending on the amount of waste gas per unit weight of adsorbent per cycle in the adsorption (1) process is shown. When the concentration of the poorly adsorbed component in the first stage product gas increases, the absolute value of the concentration of the poorly adsorbed component in the product gas can be maintained constant by increasing the amount of waste gas. Therefore, while measuring the concentration of poorly adsorbed components in the first stage product gas, we determined from Figure 2 the minimum adsorption (I) process waste gas level necessary to maintain a constant product gas purity. This means that it is possible to operate to maximize recovery, and this is also an important technology.

工程(Ill)は、吸着工程終了後、吸着圧と大気圧と
の間の任意の圧力はぼ大気圧まで好ましく【よ並流方向
に減圧して吸着塔の出口附近に残留している難吸着成分
を廃棄゛する。この工程(よ必ずしも行なわなくても良
い。
In the step (Ill), after the adsorption step is completed, any pressure between the adsorption pressure and atmospheric pressure is preferably reduced to about atmospheric pressure. Discard the ingredients. This process (doesn't necessarily have to be done).

工程(IV)は吸着(I)工程が終った吸着塔内の圧力
を減少させ、@着剤と吸着剤の空隙に存在する難吸着成
分に富んだガスを該吸着塔外に放出するために行なうも
のである。この操作&よ該吸着塔圧力を大気圧まで減少
させるか、また【よ大気圧以上の適当な圧力で中止する
か、もしく番よ大気圧以下で製品ガス回収を終つ他の吸
着塔に均圧させるまで低下させても良い。尚、製品ガス
回収の終った吸着塔への減圧ガスの導入は任意である。
Step (IV) is to reduce the pressure inside the adsorption tower after the adsorption (I) step, and release the gas rich in difficult-to-adsorb components present in the gap between the adsorbent and the adsorbent to the outside of the adsorption tower. It is something to do. Either reduce the pressure of this adsorption tower to atmospheric pressure, or stop it at an appropriate pressure above atmospheric pressure, or use another adsorption tower that finishes product gas recovery below atmospheric pressure. The pressure may be lowered until the pressure is equalized. Note that it is optional to introduce reduced pressure gas into the adsorption tower after product gas recovery.

工程(V)は減圧した吸着塔に製品ガスを導入して、吸
着剤量の空隙になお残存している難吸着成分をパージす
る。この場合の製品ガスの導入圧は吸着圧より低く、大
気圧より高い方が望ましし1゜この工程に使用するパー
ジガスの5′1はこの工程に引き続く製品ガス回収工程
で回収される製品ガス純度に大きな変化を与えるので、
適切に制御しなければならない。即ら、パージガス量が
過少であれば吸着剤量空隙にある難吸着成分の吸着塔外
への放出が不十分であり、引き続いて回収される製品ガ
ス中に難吸着成分が共在Jることになり、製品ガス純度
の向上は望めない。但し、製品ノJスを余りに多量にパ
ージガスとして還流させてしまうと、製品ガス純度の向
上はあるものの、製品として使用し得る製品ガス量が低
下してしまう不利益が伴う。従って、パージガス分を場
合に応じて最適に制御し、製品ガス純度と製品ガス量の
確保をはかる方法の確立が望まれる。この点について詳
細な検討を行なったところ、図3に示す関係が得られた
In step (V), the product gas is introduced into the adsorption tower under reduced pressure to purge the hardly adsorbable components still remaining in the voids of the adsorbent. In this case, the introduction pressure of the product gas is preferably lower than the adsorption pressure and higher than atmospheric pressure. Because it makes a big difference in purity,
Must be properly controlled. In other words, if the amount of purge gas is too small, the poorly adsorbed components in the adsorbent volume voids will not be sufficiently released to the outside of the adsorption tower, and the poorly adsorbed components will co-exist in the product gas that is subsequently recovered. Therefore, no improvement in product gas purity can be expected. However, if too much product gas is refluxed as purge gas, although the purity of the product gas is improved, there is the disadvantage that the amount of product gas that can be used as a product is reduced. Therefore, it is desired to establish a method for optimally controlling the amount of purge gas depending on the case and ensuring product gas purity and product gas amount. When this point was examined in detail, the relationship shown in FIG. 3 was obtained.

即ち、難吸着成分の第2段階処理における除去率はパー
ジ工程に使用するパージガス量と共に向上する関係であ
る。従って、餉2段階処理に供される第1段階製品ガス
中の難吸着成分濃度が低い場合には、難吸着成分除去率
の低いパージ操作、即ちパージガス量を低下させても、
一定の製品ガス純度を確保できることが、図3の関係か
らいえる。従って、第2段階処理に供する原料ガス(゛
ある第1段階製品ガス中の難吸着成分濃度を実測するか
、或いは原料ガス中のその濃度と、第1段階処理の二酸
化炭素除去の効率から予測される第1段階製品ガス中難
吸着成分濃度の推定値に基き、所要の製品ガス純度を参
照して、難吸着成分除去率を決定し、それに必要なパー
ジガス量を決定し、制御づ−る方法を採用することによ
り、製品ガス純度の確保と、製品ガス回収量の最大値の
確保を同時に達成できることになる。
That is, the removal rate of poorly adsorbed components in the second stage treatment increases with the amount of purge gas used in the purge step. Therefore, if the concentration of the poorly adsorbed component in the first stage product gas subjected to the two-stage process is low, even if the purge operation has a low removal rate of the poorly adsorbed component, that is, the amount of purge gas is reduced,
It can be said from the relationship shown in FIG. 3 that a constant product gas purity can be ensured. Therefore, it is possible to actually measure the concentration of a difficult-to-adsorb component in the raw material gas to be subjected to the second stage treatment (a certain first stage product gas, or to predict it from the concentration in the raw material gas and the efficiency of carbon dioxide removal in the first stage treatment). Based on the estimated concentration of the poorly adsorbed component in the first stage product gas, the removal rate of the poorly adsorbed component is determined with reference to the required product gas purity, and the amount of purge gas required for this is determined and controlled. By adopting this method, it is possible to simultaneously ensure the purity of the product gas and the maximum amount of product gas recovered.

尚、本パージ工程において、吸着塔から排出されるガス
は、製品ガスに吸着剤量空隙の難吸着成分に富むガスが
加わったものであり、十分に易吸着成分に富む組成のガ
スであり、製品ガス回収、あるいは減圧ガスの回収であ
る吸着(I[)工程を終った他の吸着塔に導入して、易
吸着成分の吸着回収をはかるのが望ましいが、系外に廃
棄してもかまわない。
In addition, in this purge step, the gas discharged from the adsorption tower is the product gas plus gas rich in poorly adsorbed components in the adsorbent volume voids, and has a composition sufficiently rich in easily adsorbed components. It is preferable to introduce it into another adsorption tower that has completed the adsorption (I[) step, which is product gas recovery or vacuum gas recovery, to adsorb and recover easily adsorbable components, but it may also be disposed of outside the system. do not have.

工程(Vl)はパージ工程が終った吸着塔を減圧排気装
置を用いて300TOrr以下、好ましくは300〜3
0T orrまで減圧し、吸着剤に吸着されていた成分
を脱着させ製品ガスとして回収する。
In the step (Vl), the adsorption tower after the purge step is heated to 300 TOrr or less, preferably 300 to 3
The pressure is reduced to 0T orr, and the components adsorbed by the adsorbent are desorbed and recovered as a product gas.

工程′(■)は製品ガス回収が終った吸着塔と吸着(1
)工程を終った吸着塔を連結し、後者の吸着塔からの減
圧方圧ガスを前者の吸着塔に導入し、吸着剤に易吸着成
分を吸着させる吸着(If)工程。
Step ′ (■) is the adsorption tower and adsorption (1
) An adsorption (If) step in which the adsorption towers that have completed the process are connected, and the reduced pressure gas from the latter adsorption tower is introduced into the former adsorption tower to cause the adsorbent to adsorb easily adsorbable components.

工程(■)は、吸着(If)工程を終った吸着塔と減圧
放圧工程の終った吸着塔とを連結し、後者の吸着塔のパ
ージ工程から排出されるガスを前者の吸着塔に導入し、
吸着剤に易吸着成分を吸着させる吸着(I[[−)工程
である。この工程(■)は任意である。
Step (■) connects the adsorption tower that has completed the adsorption (If) process and the adsorption tower that has completed the depressurization and release process, and introduces the gas discharged from the purge process of the latter adsorption tower into the former adsorption tower. death,
This is an adsorption (I [[-) step] in which easily adsorbable components are adsorbed onto the adsorbent. This step (■) is optional.

以下、本発明の代表的な具体例である転炉排ガス中の二
酸化炭素をまず除去し、次いで、窒素、水素を除去して
一酸化炭素を分離回収する方法に基いて本発明の詳細な
説明するが、本発明の方法はこれらの具体例に限定され
るものではない。
Hereinafter, a detailed explanation of the present invention will be given based on a method of first removing carbon dioxide in converter exhaust gas, then removing nitrogen and hydrogen, and separating and recovering carbon monoxide, which is a typical example of the present invention. However, the method of the present invention is not limited to these specific examples.

第4図は、吸着サイクルにより連続的に転炉排ガスから
一酸化炭素を分離回収するシステムのフローシートであ
り、第5図は第4図のシステムの制御系の概念を示すフ
ローシートである。第5図で、G、Hはそれぞれ第1段
階、第2段階処理装置を代表する。
FIG. 4 is a flow sheet of a system for continuously separating and recovering carbon monoxide from converter exhaust gas by an adsorption cycle, and FIG. 5 is a flow sheet showing the concept of the control system of the system of FIG. In FIG. 5, G and H represent the first and second stage processing devices, respectively.

まず、第4図に基いて、吸着操作を説明する。First, the suction operation will be explained based on FIG.

吸着塔A、Bには二酸化炭素を選択的に吸@づる吸着剤
が収納されている。吸着塔Aはパージ工程を終りバルブ
1〜6は閉の状態にありかつ、吸着塔圧力は300To
rr以下、好ましくは30Torr迄減圧されている。
Adsorption towers A and B house adsorbents that selectively absorb carbon dioxide. Adsorption tower A has completed the purge process, valves 1 to 6 are closed, and the adsorption tower pressure is 300To.
The pressure is reduced to below rr, preferably to 30 Torr.

一方吸着塔Bは吸着工程を終り、減圧工程に採るべく、
バルブ7〜12が全て閑の状態からバルブ9のみ開の状
態に移る。この状態を基準に吸着塔Aに着目して、吸着
のサイクルを例示すると次のようになる。まず、吸着塔
Aに第1段階製品ガスを導入するためにバルブ6を聞く
On the other hand, adsorption tower B has completed the adsorption process and is ready for the depressurization process.
All valves 7 to 12 are in an idle state, and only valve 9 is in an open state. Taking this state as a reference and focusing on the adsorption tower A, an example of the adsorption cycle is as follows. First, valve 6 is turned on to introduce the first stage product gas into adsorption tower A.

吸着塔Aの圧力が、0.01〜” k(1/ ci G
、好まL/ < &;t O,2Jl 〜1.0kll
l/ cIIGの吸着圧ノコに達したら、バルブ6を閉
じ、バルブ1.2を開にして前記吸着圧力を維持するよ
うに原料ガスを吸着f?31Aに流す。一定時間、一定
原料ガス量の吸着工程終了後バルブ1,2は閉じ、次い
でバルブ3を聞いて、吸着塔の塔内圧力を大気圧附近ま
で減圧方圧させる。吸着塔Aの圧力が大気圧附近に達す
るとバルブ3を閉じ、次いでバルブ4を開にして、真空
ポンプ40を用いて、減圧iJI気を行ない、吸着剤に
吸着している二酸化炭素を脱着させる。この際の排気圧
力が300T orr以下、好ましくは30TOrrに
なる迄排気を行ない、次いでバルブ5を問いて、第2段
階処理装置からの廃棄ガスを減圧下に導入するパージ工
程を行なう。パージ工程が終了するとバルブ4,5は閉
となる。次の工程【よ最初にもどり、バルブ6を聞くこ
とになる。
The pressure of adsorption tower A is 0.01~”k(1/ci G
, preferred L/ <&;t O,2Jl ~1.0kll
When the adsorption pressure of l/cIIG is reached, valve 6 is closed and valve 1.2 is opened to adsorb the raw material gas to maintain the adsorption pressure f? Flow to 31A. After completion of the adsorption process for a certain amount of raw material gas for a certain period of time, valves 1 and 2 are closed, and then valve 3 is turned on to reduce the internal pressure of the adsorption tower to near atmospheric pressure. When the pressure in adsorption tower A reaches near atmospheric pressure, valve 3 is closed, then valve 4 is opened, and vacuum pump 40 is used to perform reduced pressure iJI gas to desorb carbon dioxide adsorbed on the adsorbent. . Evacuation is performed until the exhaust pressure at this time becomes 300 Torr or less, preferably 30 Torr, and then a purge step is performed in which the valve 5 is opened and the waste gas from the second stage treatment device is introduced under reduced pressure. When the purge process is completed, valves 4 and 5 are closed. The next step is to go back to the beginning and listen to valve 6.

上記操作を吸着塔A、Bのそれぞれにおいて順次繰返す
ことによって連続的に吸着剤に二酸化炭素を吸着させ除
去しようとするものである。第1段階処理において、吸
着塔A、Bの塔上から流出する二酸化炭素が除去された
第1段階製品ガスは第2段階処理装置に導入され、ここ
で水素、窒素が除去され、高濃度に濃縮された一酸化炭
素ガスとして回収される。吸着塔C,l)’、E、Fに
は易吸着成分(−酸化炭素)を選択的に吸着する吸着剤
が収納されている。吸着塔CとDk、!目して、吸着工
程を説明する。吸着塔Cが吸@(I)工程、吸着塔りが
製品ガス回収工程に有る状況を基準にとる。このとき、
バルブ18.17が閏となり第1段111!i製品ガス
が吸着塔Cに流れており、一方、バルブ27は開となっ
て吸着塔りの吸着剤に吸着している易吸着成分の脱着・
製品ガスとしての回収が行なわれている。吸着塔Cの吸
着圧力は、第1段階製品ガスの圧力によりおのずから定
まるが、0、01〜3.0k(1/ crtr G %
好ましくはO,,2〜1.0kg/ air Gが適当
である。一方吸着塔りの製品ガス回収工程は吸着塔圧力
300T orr以下、好ましくは30Torrまで維
持するのが望ましい。
By sequentially repeating the above operations in each of the adsorption towers A and B, carbon dioxide is continuously adsorbed onto the adsorbent and removed. In the first stage treatment, the first stage product gas from which carbon dioxide has been removed flowing out from the tops of adsorption towers A and B is introduced into the second stage treatment equipment, where hydrogen and nitrogen are removed and the product gas is highly concentrated. It is recovered as concentrated carbon monoxide gas. Adsorption towers C, l)', E, and F house adsorbents that selectively adsorb easily adsorbable components (-carbon oxide). Adsorption towers C and Dk,! The adsorption process will be explained below. This is based on the situation where adsorption tower C is in the absorption@(I) process and adsorption tower C is in the product gas recovery process. At this time,
Valve 18.17 becomes a leap and the first stage 111! i Product gas is flowing into the adsorption tower C, while the valve 27 is open to desorb and desorb easily adsorbed components adsorbed on the adsorbent in the adsorption tower.
It is recovered as product gas. The adsorption pressure of the adsorption tower C is naturally determined by the pressure of the first stage product gas, but is 0.01 to 3.0k (1/crtr G %
Preferably, 2 to 1.0 kg/air G is appropriate. On the other hand, in the process of recovering product gas from the adsorption tower, it is desirable to maintain the adsorption tower pressure at 300 Torr or less, preferably at 30 Torr.

一定時間、或いは一定ガス量を吸着塔Cに流し、−酸化
炭素を吸着剤に吸着させる吸着(I>工程終了後、バル
ブ18.17を閉じ、同時にバルブ21を閉じて吸着塔
りの製品ガス回収工程を終る。次いで、吸着塔CとDの
連結バイブにあるバルブ19を開き、吸着塔Cの塔内圧
力を大気圧附近まで減圧する。このどき放出されたガス
は、吸着塔りに導入され、易吸着成分を吸着剤に吸着さ
せる(吸着<II)工程)。吸着塔C(7)塔内圧力が
大気圧附近になるとバルブ20を開いて製品ガスタンク
42より製品ガスを吸着塔CC導入し、吸着剤間の空隙
に存在する難吸會成分ガスを追い出づパージ工程を行な
う。この際吸着塔Cの塔上から流出するガスはバルブ1
9を介して吸着塔りに導入され、易吸着成分が吸着剤に
吸着される(吸@(■)工程)。
Adsorption (I) in which carbon oxide is adsorbed by the adsorbent by flowing a certain amount of gas into the adsorption tower C for a certain period of time or a certain amount The recovery process is completed.Next, the valve 19 in the connecting pipe between adsorption towers C and D is opened to reduce the internal pressure of adsorption tower C to near atmospheric pressure.The gas released at this time is introduced into the adsorption tower. (adsorption<II) step). Adsorption tower C (7) When the internal pressure of the tower approaches atmospheric pressure, the valve 20 is opened to introduce the product gas from the product gas tank 42 into the adsorption tower CC, thereby expelling the difficult-to-adsorb component gas present in the gaps between the adsorbents. Perform a purge step. At this time, the gas flowing out from the top of adsorption tower C is controlled by valve 1.
9 into the adsorption column, and easily adsorbed components are adsorbed by the adsorbent (adsorption step (■)).

パージ工程が終了すると、バルブ19.20は閉じられ
、バルブ21及びバルブ22を開とする。この操作によ
り吸着塔Cは減圧排気機器41を用いて減圧下の製品ガ
ス回収工程に移り、一方吸着塔りは吸着(II)工程、
吸着(I[)工程に引ぎ続(、第1段階製品ガスによる
加圧工程に入る。加圧工程により吸着[0の塔内圧力が
所定の吸む圧力に達したならば、バルブ23を開き、吸
着塔りは吸5t(I)工程に移る。以上の操作が、吸着
塔CとDが役割りを変えてはいるが基準の状況に帰る迄
の工程である。この操作を順次繰り返すことによって連
続的に吸着剤に易吸着成分である−・酸化炭素ガスを吸
着させで、分離精製することが山奥る。尚、吸着jME
、FもC,Dと同様の工程を繰り返寸ものである。
When the purge process is completed, valves 19, 20 are closed and valves 21 and 22 are opened. With this operation, the adsorption tower C moves to the product gas recovery process under reduced pressure using the decompression exhaust equipment 41, while the adsorption tower C moves to the adsorption (II) process,
Following the adsorption (I[) step, a pressurization step using the first stage product gas begins. When the pressure inside the column of adsorption [0] reaches a predetermined suction pressure in the pressurization step, the valve 23 is closed. The adsorption tower is opened and the adsorption tower moves to the suction 5t (I) step.The above operations are the steps until the adsorption towers C and D return to the standard situation, although their roles have changed.This operation is repeated in sequence. As a result, it is difficult to separate and purify carbon oxide gas, which is an easily adsorbed component, by continuously adsorbing it on the adsorbent.
, F are also made by repeating the same process as C and D.

次に、第5図に基き、本システムの最適な操業方法を示
す。原料ガス中の二酸化炭素、窒素濃度は分析計45、
第1段111!i製品ガス中のそれは分析計46、製品
ガス中のそれは分析計47によりそれぞれ連続的に測定
されている。分析計はガスクロマトグラフィー、赤外線
吸収計などを使用出来る。これらの分析信号は流量計(
図示せず)信号と共に計算機44に伝送される。第1段
階処理における二酸化炭素除去を最も効率的に行なう為
の制御(よ次のように行なう。分析計45の二酸化炭素
111信号と原料ガス流量信号に基き、吸着させるべき
、二酸化炭素量を計算機44で演算し、第1図の関係よ
り所要のパージガス容積をめる。次いで、パージに供し
うる第2段階廃棄ガス量を流量信号に基いて定め、所要
のパージガス容積と1−るに必要な、減圧排気機器40
の排気能力を算出する。減圧排気機器40が、例えば電
圧、周波数可変電動機によるものであれば、所要の排気
能力に見合う計算機信号の伝送制御は極めて容易であり
、また減圧排気機器を複数個直列ないしは量列に設置し
てお(\て、必要に応じて個々の機器の駆動、停止を支
持するシステムでも良い。これらの操作により、原料ガ
ス中の二酸化炭素濃度が高くなった際でも排気能力を上
げることにより二酸化炭素除去を確実に行なうことを可
能とし、逆に原料ガス中の二液化炭ic度が低下した際
には排気能力の低下を計ることによりシステムの操業動
力コストの削減を達成するのが可能となる。
Next, based on FIG. 5, the optimal operating method of this system will be described. The concentration of carbon dioxide and nitrogen in the raw material gas is measured using an analyzer 45.
1st stage 111! The i-product gas is continuously measured by an analyzer 46, and the product gas is continuously measured by an analyzer 47. Gas chromatography, infrared absorption meter, etc. can be used as the analyzer. These analytical signals are transmitted by the flowmeter (
(not shown) is transmitted to the computer 44 together with the signal. Control to most efficiently remove carbon dioxide in the first stage treatment (carry out as follows.Based on the carbon dioxide 111 signal of the analyzer 45 and the raw material gas flow rate signal, the amount of carbon dioxide to be adsorbed is determined by a computer. 44 and determine the required purge gas volume from the relationship shown in Figure 1. Next, the amount of second stage waste gas that can be used for purging is determined based on the flow rate signal, and the required purge gas volume and 1- , decompression exhaust equipment 40
Calculate the exhaust capacity of If the decompression exhaust device 40 is a variable voltage/frequency electric motor, for example, it is extremely easy to control the transmission of computer signals that match the required exhaust capacity, and it is also possible to install a plurality of decompression exhaust devices in series or in series. Alternatively, a system may also be used that supports starting and stopping individual equipment as needed. Through these operations, even when the carbon dioxide concentration in the raw material gas becomes high, it is possible to remove carbon dioxide by increasing the exhaust capacity. On the other hand, when the degree of biliquefied carbon in the raw material gas decreases, by measuring the decrease in exhaust capacity, it becomes possible to reduce the operating power cost of the system.

次に第2段階処理における難吸着成分、特に窒素の一酸
化炭素からの分離を効率的に行なう方法を説明する。分
析計46により第1段部製品ガス中窒素濃度(分析計4
5による原料ガス中窒素濃度を基に、計算1144で推
算した濃度でも良い)と、所定の製品ガス純度から定ま
る難吸着成分除去率を計算し、図2、あるいは図3の関
係から、所要の吸着(I)工程廃棄ガス量あるいはパー
ジ工程に使用する製品ガスmを決定する操作を計算vA
44で行なう。これに基ぎ、吸着(I)工程の廃棄ガス
m@調整する流m調節弁14の開度制御、あるいは、パ
ージガス量を調整する流m調節弁43の開度制御を行な
うものである。以上の操作の一つ、あるいは二つを同時
に行なう°ことににす、原料ガス中の窒素濃度が高い場
合でも流量調節弁14、あるいは/及び43の開度を上
げることにより窒素除去率を向上させることで製品ガス
純度を一定に保ち得、また逆に原料ガス中の窒素濃度が
低い場合には、廃棄ガス量の低減、パージガス量の低減
のアクションにより当システムの製品ガス回収率及び回
収量の向上を達成できることになる。
Next, a method for efficiently separating difficult-to-adsorb components, particularly nitrogen from carbon monoxide, in the second stage treatment will be explained. The analyzer 46 measures the nitrogen concentration in the first stage product gas (analyzer 4
Based on the nitrogen concentration in the raw material gas according to 5, the concentration estimated by calculation 1144 may be used) and the removal rate of difficult-to-adsorb components determined from the predetermined product gas purity, and from the relationship in FIG. 2 or 3, the required Calculate the operation to determine the amount of waste gas in the adsorption (I) process or the product gas m used in the purge process vA
Do it at 44. Based on this, the opening degree of the flow m regulating valve 14 for regulating the waste gas m@ of the adsorption (I) step or the opening degree of the flow m regulating valve 43 for regulating the amount of purge gas is controlled. By performing one or both of the above operations at the same time, the nitrogen removal rate can be improved by increasing the opening degree of the flow control valve 14 and/or 43 even when the nitrogen concentration in the raw material gas is high. By doing so, the product gas purity can be kept constant, and conversely, when the nitrogen concentration in the raw material gas is low, the product gas recovery rate and recovery amount of this system can be improved by reducing the waste gas amount and purge gas amount. It is possible to achieve an improvement in

以上の説明では原料ガス濃度信号に基く、フィードフォ
ワード制御の例を示したが、分析計41の製品ガス濃度
信号に基き、図1〜図3の関係よりフィードバック制御
するシステムも同様に有効である。
Although the above explanation shows an example of feedforward control based on the raw material gas concentration signal, a feedback control system based on the product gas concentration signal of the analyzer 41 based on the relationships shown in FIGS. 1 to 3 is equally effective. .

尚、第1段階、第2段階処理の吸着塔に使用する吸着剤
としては活性炭、活性アルミナ、合成または天然(改質
したものも含む)ゼオライトなどが適合する。
In addition, activated carbon, activated alumina, synthetic or natural (including modified ones) zeolite, etc. are suitable as the adsorbent used in the adsorption tower for the first and second stage treatments.

実施例 本発明の詳細な説明するために、実施例を説明する。第
6図は、第4図、第5図のフローシートに示した機能を
有するシステムにより転炉排ガスを原料に、製品ガス回
収を行なった際の原料ガス及び製品ガス中のN2 、 
CO211度を連続一定した結果である。実施例(I)
は、第5図に示す動的な制御系を使用Vず、最初の原料
ガス組成に対して適当な第1段階減圧排気機器能力の設
定、及び第2段階処理の吸着工程廃棄ガス量、パージ工
程パージガス量設定を行なったまま連続操業した結果で
ある。所要の99%CO純度の製品ガス回収はほぼ達成
されているものの、原料ガス組成によっては純度が悪化
し、98%CO程度になっている場合もある。
Examples Examples will be described to provide a detailed explanation of the present invention. Figure 6 shows N2 in the raw material gas and product gas when product gas is recovered using converter exhaust gas as raw material by a system having the functions shown in the flow sheets of Figures 4 and 5.
This is the result of keeping CO2 constant at 11 degrees. Example (I)
The dynamic control system shown in Fig. 5 is used to set the capacity of the first stage decompression exhaust equipment appropriate for the initial raw material gas composition, and to adjust the adsorption process waste gas amount and purge of the second stage treatment. This is the result of continuous operation with the process purge gas amount set. Although product gas recovery with the required 99% CO purity has almost been achieved, depending on the raw material gas composition, the purity may deteriorate to about 98% CO.

一方、実施例(II)は、原料ガス組成に応じて、第5
図の制御ループに従う制御を行なった結果であり安定し
て99%COの製品ガスの回収が行なわれている。
On the other hand, in Example (II), the fifth
This is the result of performing control according to the control loop shown in the figure, and product gas containing 99% CO is stably recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパージガス容積とCO2吸@敞との関係を示す
グラフである; 第2図及び第3図は吸着(I)工程廃棄ガス量と難吸着
成分除去率との関係を示すグラフである第4図は本発明
を実施する好ましい装置のフローシートである: 第5図は本発明の操業システムのフ【]−シートである
:そして 第6図は本発明を実施した際のN2 、 CO21JA
@測定した結果を示すグラフである。 特許出願人 川崎製鉄株式会社 同 大阪酸素工業株式会社 (外4名)
Figure 1 is a graph showing the relationship between the purge gas volume and CO2 absorption @ Figures 2 and 3 are graphs showing the relationship between the amount of waste gas in the adsorption (I) process and the removal rate of difficult-to-adsorb components. FIG. 4 is a flow sheet of a preferred apparatus for carrying out the present invention; FIG. 5 is a flow sheet for the operating system of the present invention; and FIG. 6 is a flow sheet of a preferred apparatus for carrying out the present invention;
@It is a graph showing the measured results. Patent applicant: Kawasaki Steel Corporation Osaka Sanso Kogyo Co., Ltd. (4 others)

Claims (1)

【特許請求の範囲】 二段階吸着操作により、少なくとも一酸化炭素、二酸化
炭素及び窒素を含有J°る原料ガス中の一酸化炭素を濃
縮分離する方法において (a) その第1段階の吸着操作は原料ガス中の二酸化
炭素に対して、選択吸着法を有する吸着物質を収納した
2つ以上の吸着塔を使用し、その方法は各吸着塔で少な
くとも吸着工程及びパージ操作を含む脱着工程を繰り返
す圧力変動式吸着分離によってその原料ガスから二酸化
炭素を除去することからなり、そして、 (b) 第2段階の吸着操作は、第1段階の吸着工程か
ら排出される二酸化炭素の除去されたガス(以後箱1段
階調品ガスという)中の一酸化炭素に対して選択性を有
する吸着物質を充填した2つ以上の吸着塔を使用し、そ
の方法は、 (I) 第1段部製品ガスによる吸老塔の吸着工程 (IF) その吸着塔のパージ (III) 製品ガスのIl1着回収 から成る少なくとも3工程を繰り返1ことからなり、第
2段階処理の吸着工程から排出される廃棄ガスを第1段
階処理における吸着塔再生のパージ工程に使用し、そし
て、 (C) 原料ガス中の少なくとも二酸化炭素と窒素ガス
濃度を計測して、或いは、製品ガス中の少なくとも二酸
化炭素と窒素ガス濃度を計測して、その結果に基いて、
次の三つの方法 (I) 第1段階処理のパージ工程で使用する減圧排気
機器の排気能力の制御 (IF> 第2段階の処理の吸着工程の廃棄ガス量の制
御 (III) 第2段階処理のパージ工程に使用プるパー
ジガス量の制御 のうち、少なくとも一つの操作を行なうことにより、−
・酸化炭素の濃縮分離を行なうことを特徴とした方法。
[Claims] In a method for concentrating and separating carbon monoxide in a raw material gas containing at least carbon monoxide, carbon dioxide, and nitrogen by a two-stage adsorption operation, (a) the first stage adsorption operation comprises: Two or more adsorption towers containing an adsorbing material that has a selective adsorption method for carbon dioxide in the raw material gas are used, and the method uses a pressure reduction process in which at least an adsorption step and a desorption step including a purge operation are repeated in each adsorption tower. (b) the second stage adsorption operation consists of removing carbon dioxide from the feed gas by variable adsorption separation; The method uses two or more adsorption towers filled with adsorbent materials that are selective for carbon monoxide in the first stage product gas (1) Adsorption process of the old tower (IF) Purging of the adsorption tower (III) Consists of repeating at least three steps consisting of recovery of the product gas, and the waste gas discharged from the adsorption process of the second stage treatment is (C) Measuring at least the carbon dioxide and nitrogen gas concentrations in the raw material gas, or measuring at least the carbon dioxide and nitrogen gas concentrations in the product gas. And based on the results,
The following three methods (I) Control the exhaust capacity of the decompression exhaust equipment used in the purge process of the first stage treatment (IF> Control the amount of waste gas in the adsorption process of the second stage treatment (III) Second stage treatment By performing at least one operation of controlling the amount of purge gas used in the purge process of -
- A method characterized by concentrating and separating carbon oxide.
JP59012586A 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process Granted JPS60155521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012586A JPS60155521A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012586A JPS60155521A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Publications (2)

Publication Number Publication Date
JPS60155521A true JPS60155521A (en) 1985-08-15
JPS6410443B2 JPS6410443B2 (en) 1989-02-21

Family

ID=11809455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012586A Granted JPS60155521A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Country Status (1)

Country Link
JP (1) JPS60155521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261824A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Method for separating and recovering carbon monoxide in raw gas
WO2020067181A1 (en) * 2018-09-25 2020-04-02 積水化学工業株式会社 Gas treatment method and gas treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3848111B1 (en) 2020-01-08 2021-12-15 Arnold Jäger Holding GmbH Strip fan and fan arrangement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261824A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Method for separating and recovering carbon monoxide in raw gas
WO2020067181A1 (en) * 2018-09-25 2020-04-02 積水化学工業株式会社 Gas treatment method and gas treatment device
JP6680960B1 (en) * 2018-09-25 2020-04-15 積水化学工業株式会社 Gas processing method and gas processing apparatus
CN112654414A (en) * 2018-09-25 2021-04-13 积水化学工业株式会社 Gas processing method and gas processing apparatus
EP3858464A4 (en) * 2018-09-25 2022-07-06 Sekisui Chemical Co., Ltd. Gas treatment method and gas treatment device
US11772039B2 (en) 2018-09-25 2023-10-03 Sekisui Chemical Co., Ltd. Gas treatment method and gas treatment apparatus

Also Published As

Publication number Publication date
JPS6410443B2 (en) 1989-02-21

Similar Documents

Publication Publication Date Title
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
KR950006510B1 (en) Process for separating carbon monoxide having substantially constant purity
JPS6137968B2 (en)
JPH07745A (en) Gas separation
CN103569979B (en) The purification process and purification devices of argon gas
JPS6391120A (en) Pressure change-over apparatus
GB2154465A (en) Gas separation method and apparatus
JPS60155521A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH0112529B2 (en)
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPH0532087B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH03242313A (en) Purification of carbon monoxide
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JPS6139087B2 (en)
JPS62153388A (en) Concentration of methane
JPS61146705A (en) Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide
JPS62125820A (en) Purifying apparatus for gas
JPS62241523A (en) Separation and purification for carbon monoxide excellent in recovery efficiency
JPS63166708A (en) Concentration of carbon monoxide from mixed gas containing carbon monoxide using adsorption method