JP2000317245A - Separation and purification of gas - Google Patents

Separation and purification of gas

Info

Publication number
JP2000317245A
JP2000317245A JP11127758A JP12775899A JP2000317245A JP 2000317245 A JP2000317245 A JP 2000317245A JP 11127758 A JP11127758 A JP 11127758A JP 12775899 A JP12775899 A JP 12775899A JP 2000317245 A JP2000317245 A JP 2000317245A
Authority
JP
Japan
Prior art keywords
gas
adsorption
pressure
adsorption tower
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11127758A
Other languages
Japanese (ja)
Inventor
Taku Takeda
卓 武田
Osamu Wakamura
修 若村
Katsushi Kosuge
克志 小菅
Yoshiyuki Yuki
良之 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11127758A priority Critical patent/JP2000317245A/en
Publication of JP2000317245A publication Critical patent/JP2000317245A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently operate a PSA process, to enhance the throughput and recovery rate while restraining a raise in cost and to conduit efficient and safe operation. SOLUTION: When an inflammable component comprising hydrocarbons and/or H2 is recovered from a gaseous starting material mainly comprising the inflammable component and a noninflammable component comprising CO2 and/or N2, at least three adsorption towers and an adsorbent having pore size between molecular diameters of the inflammable component and the noninflammable component are used so that a cycle comprising an adsorption step, a pressure-reducing step, a desorption step and a pressurizing step is carried out at each adsorption tower while postponing the cycle time. It is preferable that the exhaust gas at the pressure-reducing step is supplied to the adsorption step as a recycle gas together with the gaseous starting material and that the desorption step is carried out after carrying out a washing step using the gas exhausted at the desorption step as a washing gas after the pressure-reducing step is ended. It is also preferable that a pressure-equalizing step is carried out by connecting the tower where the adsorption step is ended to the tower where the desorption step is ended. According to this method, a high calorie town gas can be steadily supplied from a coke furnace gas, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数成分からなる
原料ガスを吸着塔に導入し、塔内の圧力を上下させるこ
とで特定成分のガスを吸着分離し、所望成分の製品ガス
を回収するPSA法(Pressure Swing Adsorption,圧力
スイング吸着法)において、処理量および回収率を高
め、かつ効率的な操業を安定して行うことのできるガス
の分離精製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which a raw material gas comprising a plurality of components is introduced into an adsorption column, and a gas of a specific component is adsorbed and separated by raising and lowering the pressure in the column to recover a product gas of a desired component. The present invention relates to a gas separation and purification method capable of increasing the throughput and the recovery rate and stably performing efficient operation in PSA (Pressure Swing Adsorption).

【0002】[0002]

【従来の技術】空気から酸素ガスあるいは窒素ガスを回
収するなど、複数成分の原料ガスから所望成分の製品ガ
スを回収する分離精製方法として、上記PSA法が知ら
れている。この方法で、例えば成分aと成分bからなる
ガスを原料ガスとし、成分aを吸着し難く成分bを吸着
し易い吸着剤を使用して両成分を分離精製する場合、つ
ぎのような工程により行われる。
2. Description of the Related Art The PSA method is known as a separation and purification method for recovering a product gas of a desired component from a raw material gas of a plurality of components, such as recovering oxygen gas or nitrogen gas from air. In this method, for example, when a gas consisting of component a and component b is used as a raw material gas and both components are separated and purified by using an adsorbent that hardly adsorbs component a and easily adsorbs component b, the following steps are used. Done.

【0003】成分aを製品ガスとして回収するには、吸
着塔に原料ガスを導入して成分bを吸着させ成分aを導
出する吸着工程と、塔内を減圧して吸着した成分bを導
出する減圧工程と、導出した成分aの一部を戻して塔内
を元の圧にする昇圧工程とが順に繰返される。成分bを
製品ガスとして回収するには、上記吸着工程と減圧工程
の間に、前工程で導出した成分bの一部を塔内に戻して
残留する成分aを追出す洗浄工程が入り、昇圧工程で
は、原料ガスまたは吸着工程で吸着塔を通過したガス
(成分a)等が使用される。
In order to recover the component a as a product gas, a raw material gas is introduced into an adsorption tower to adsorb the component b to derive the component a, and the pressure in the column is reduced to derive the adsorbed component b. The pressure reducing step and the pressure increasing step in which a part of the derived component a is returned and the inside of the column is restored to the original pressure are sequentially repeated. In order to recover the component b as a product gas, a washing step for returning a part of the component b derived in the previous step into the column and purging out the remaining component a is provided between the adsorption step and the decompression step. In the step, a raw material gas or a gas (component a) that has passed through the adsorption tower in the adsorption step is used.

【0004】製品ガスを連続的に回収するには、吸着塔
を複数基設置し、これら各工程のサイクルが各吸着塔間
で順にずらして行われる。例えば、上記のように吸着−
減圧−昇圧の各工程をサイクルとし、成分aを製品ガス
として回収する場合、3基の吸着塔A,B,Cを使用
し、図1に示すように、吸着塔Aが吸着工程のとき吸着
塔Bで昇圧工程、吸着塔Cで減圧工程が行われる。
[0004] In order to continuously recover product gas, a plurality of adsorption towers are installed, and the cycle of each of these steps is sequentially shifted between the adsorption towers. For example, as described above,
When recovering the component a as a product gas by using the steps of depressurization and pressurization as a cycle, three adsorption towers A, B, and C are used, and as shown in FIG. The pressure raising step is performed in the tower B, and the pressure reducing step is performed in the adsorption tower C.

【0005】このようなPSA法において、特開平6−
304430号公報には、吸着剤の吸着能が余力を有す
る段階で次の吸着塔による吸着工程を開始し、各吸着塔
における吸着工程を重複させることにより、減圧工程と
昇圧工程を短縮し、設備稼働率を向上させることが開示
されている。また特開平7−80231号公報には、吸
着塔に原料ガスを供給する原料ブロワ、製品圧縮機、お
よび真空ポンプの回転数を制御し、操業条件に応じてこ
れら各設備の電力消費量をそれぞれ無段階に変動させる
ことにより、各1台の設備で操業条件に応じた対応を可
能とする操業方法が開示されている。
In such a PSA method, Japanese Unexamined Patent Publication No.
Japanese Patent No. 304430 discloses that the adsorption step by the next adsorption tower is started when the adsorption capacity of the adsorbent has a margin, and the adsorption step in each adsorption tower is overlapped, thereby shortening the depressurization step and the pressure increase step, It is disclosed that the operation rate is improved. Japanese Patent Application Laid-Open No. 7-80231 discloses that the number of rotations of a raw material blower, a product compressor, and a vacuum pump for supplying a raw material gas to an adsorption tower is controlled, and the power consumption of each of these facilities is controlled in accordance with operating conditions. There is disclosed an operation method in which a single facility can cope with operation conditions by changing the operation steplessly.

【0006】また、合成ガス、天然ガス、燃焼ガス等の
各種ガス中からCO2 を分離する手段として、PSA法
のほか、吸収法や膜分離法が知られている。吸収法は溶
媒にCO2 を吸収させて除去するもの、膜分離法は、C
2 と他のガスに対して透過性に差を有する膜にガスを
通して分離するものである。
[0006] In addition to the PSA method, an absorption method and a membrane separation method are known as means for separating CO 2 from various gases such as synthesis gas, natural gas, and combustion gas. The absorption method removes CO 2 by absorbing it in a solvent, and the membrane separation method uses C 2
The gas is separated through a membrane having a difference in permeability between O 2 and another gas.

【0007】[0007]

【発明が解決しようとする課題】近年、コークス炉ガス
などの副生ガスから不燃成分を分離し、高カロリーの燃
焼ガス、例えば都市ガスとして供給するニーズが高まっ
ている。副生ガスには、可燃成分としてCH4 リッチの
炭化水素ガスとH2 の一方または双方が多量に含まれる
が、不燃成分としてCO2 とN2 の一方または双方も含
まれるので、高カロリー化するにはこの不燃成分を分離
するための精製法が必要である。上記のような副生ガ
ス、特に可燃成分として炭化水素やH2 を多量に含有す
るガスを精製し、都市ガス等として供給する場合、不燃
成分のCO2 やN2 を分離して可燃成分を回収するにあ
たり、その処理量および回収率を高め、かつ効率的な操
業を安定して行うことで処理コストを低減することが要
求される。
In recent years, there has been an increasing need to separate incombustible components from by-product gases such as coke oven gas and supply them as high calorie combustion gas, for example, city gas. The by-product gas contains a large amount of one or both of CH 4 -rich hydrocarbon gas and H 2 as a combustible component, but also contains one or both of CO 2 and N 2 as a non-combustible component. For this purpose, a purification method for separating the incombustible components is required. When purifying the above-mentioned by-product gas, especially a gas containing a large amount of hydrocarbons and H 2 as a combustible component and supplying it as a city gas, etc., the non-combustible components CO 2 and N 2 are separated to separate the combustible component. For recovery, it is required to increase the processing amount and recovery rate and to reduce the processing cost by stably performing efficient operation.

【0008】上記各公報に開示されている従来のPSA
法は、それなりの効果を発揮することができるが、製品
ガスの回収率向上に関しては十分とは言えず、改良の余
地を残していた。またCO2 分離に関する上記吸収法お
よび膜分離法では、CO2 とN2 を同時に分離して炭化
水素とH2 を同時に回収することができないほか、吸収
法ではCO2 を吸収した溶媒の後処理や、装置の起動お
よび停止に時間を要し、膜分離法では膜の経年劣化や交
換のため、大規模処理を行うにはコスト上昇が避けられ
ないといった問題がある。
The conventional PSA disclosed in each of the above publications
Although the method can exert a certain effect, it cannot be said that the improvement in the recovery rate of the product gas is sufficient, and leaves room for improvement. In addition the absorption method and a membrane separation method relates CO 2 separation, CO 2 and N 2 at the same time except that separate to not be able to recover hydrocarbons and H 2 at the same time, post-processing of the absorption method has absorbed CO 2 solvent Also, it takes time to start and stop the apparatus, and the membrane separation method has a problem that the cost is unavoidable for large-scale processing due to aging and replacement of the membrane.

【0009】そこで本発明が解決しようとする課題は、
複数成分の原料ガスから特定成分ガスを分離し、所望成
分の製品ガスを回収するPSA法において、炭化水素ガ
スとH2 の一方または双方からなる可燃成分に、CO2
とN2 の一方または双方からなる不燃成分等が混入した
副生ガスなどの原料ガスから、不燃成分を分離して可燃
成分リッチの高カロリー製品ガスを回収し、都市ガス等
として供給するに際し、複数の不燃成分をも同時に分離
し、かつ複数の可燃成分をも同時に回収することで処理
を効率化し、処理コストの上昇を抑えて処理量および回
収率を高め、かつ効率的な操業を安定して行うことであ
る。
Therefore, the problem to be solved by the present invention is as follows:
In the PSA method in which a specific component gas is separated from a plurality of component source gases and a product gas of a desired component is recovered, a combustible component comprising one or both of a hydrocarbon gas and H 2 is provided with CO 2
Upon from raw material gas, such as by-product gas either or incombustible components such as consisting of both N 2 is mixed, high-calorie product gas of the combustible component rich recovered by separating incombustible components, supplied as city gas or the like, Simultaneous separation of multiple non-combustible components and simultaneous recovery of multiple combustible components also increase the efficiency of processing, reduce the increase in processing costs, increase the throughput and recovery rate, and stabilize efficient operation. It is to do.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明法は、原料ガス中の特定成分ガスを吸着する吸
着剤を充填した吸着塔が3基以上からなり、原料ガスを
昇圧状態の前記吸着塔に供給し、該原料ガス中の特定成
分ガスを吸着させ、吸着塔を通過するガスを製品ガスと
して回収する吸着工程と、吸着塔内を大気圧付近まで減
圧する減圧工程と、減圧後の吸着塔内を負圧にさらに減
圧し、吸着した前記特定成分ガスを脱離再生させる脱着
工程と、前記回収した製品ガスの一部を吸着塔に戻し
て、塔内を元の圧力に戻す昇圧工程とからなり、前記各
工程からなるサイクルを各吸着塔間でずらして行うガス
の分離精製方法において、前記原料ガスを、炭化水素と
2の一方または双方からなる可燃成分と、CO2 とN
2 の一方または双方からなる不燃成分とで主として構成
されるガスとし、前記吸着剤の細孔径を、該可燃成分の
分子径と該不燃成分の分子径の間の径とした吸着剤を用
いることを特徴とするガスの分離精製方法である。そし
て、前記減圧工程で吸着塔から導出したガスを、リサイ
クルガスとして、吸着工程の吸着塔内に原料ガスととも
に供給することが好ましい。また、前記脱着工程で吸着
塔から導出したガスを、洗浄ガスとして、減圧工程終了
後の吸着塔内に導入する洗浄工程を行った後に脱着工程
を行うことが好ましい。さらに、前記吸着工程終了後の
吸着塔と、前記脱着工程終了後の吸着塔とを連結して、
両吸着塔内の圧力を均一化する均圧工程を行うことが好
ましい。
According to the present invention, there is provided a method for solving the above-mentioned problems, comprising three or more adsorption towers filled with an adsorbent for adsorbing a specific component gas in a raw material gas. Supply to the adsorption tower, the specific component gas in the raw material gas is adsorbed, an adsorption step of recovering a gas passing through the adsorption tower as a product gas, and a depressurization step of reducing the pressure in the adsorption tower to near atmospheric pressure, The pressure in the adsorption tower after the depressurization is further reduced to a negative pressure, a desorption step of desorbing and regenerating the adsorbed specific component gas, and a part of the recovered product gas is returned to the adsorption tower, and the pressure in the tower is returned to the original pressure. consists of a step-up process returned to the in separation and purification method for a gas for performing a cycle composed each step is shifted between each of the adsorption columns, a combustible component comprising the raw material gas, from one or both of a hydrocarbon and H 2, CO 2 and N
(2) A gas mainly composed of one or both of the non-flammable components, and an adsorbent having a pore diameter of the adsorbent having a diameter between the molecular diameter of the combustible component and the molecular diameter of the non-flammable component. And a method for separating and purifying a gas. Then, it is preferable that the gas derived from the adsorption tower in the pressure reduction step be supplied as a recycled gas into the adsorption tower in the adsorption step together with the raw material gas. Further, it is preferable that the desorption step is performed after the cleaning step of introducing the gas derived from the adsorption tower in the desorption step as a cleaning gas into the adsorption tower after the completion of the pressure reduction step. Furthermore, by connecting the adsorption tower after the adsorption step and the adsorption tower after the desorption step,
It is preferable to perform a pressure equalization step for equalizing the pressure in both adsorption towers.

【0011】[0011]

【発明の実施の形態】本発明法は、図2の例のような吸
着塔1を3基以上使用して、原料ガス中の特定成分ガス
を分離し、所望の製品ガスを連続的に回収する。吸着塔
1は吸着剤2を内蔵し、第1開口3と第2開口4を設け
てあり、吸着工程、減圧工程、脱着工程、昇圧工程の順
のサイクルを、各吸着塔間でずらして行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention uses three or more adsorption towers 1 as shown in FIG. 2 to separate a specific component gas in a raw material gas and continuously recover a desired product gas. I do. The adsorption tower 1 has a built-in adsorbent 2 and is provided with a first opening 3 and a second opening 4, and the cycle of the adsorption step, the depressurization step, the desorption step, and the pressure increase step is performed while being shifted between the adsorption towers. .

【0012】吸着工程では、原料ガスを昇圧状態の吸着
塔1に第1開口3から供給し、該原料ガス中の特定成分
ガスを吸着剤2に吸着させ、第2開口4から製品ガスを
導出して回収する。減圧工程では、吸着塔1内を大気圧
付近まで減圧して、吸着剤2に吸着されず吸着塔1内に
残留している製品ガスリッチのガスを第1開口3から導
出する。脱着工程では、減圧後の吸着塔1内を大気圧よ
りも低い負圧にさらに減圧して、吸着剤2に吸着された
特定成分ガスを脱離させ、第1開口3から導出して吸着
剤2を再生させる。昇圧工程では、吸着工程で回収した
製品ガスの一部を第2開口4から吸着塔1内に戻して、
塔1内を吸着工程の昇圧状態に戻す。
In the adsorption step, a raw material gas is supplied to the adsorption tower 1 in a pressurized state from a first opening 3, a specific component gas in the raw material gas is adsorbed by an adsorbent 2, and a product gas is derived from a second opening 4. And collect. In the decompression step, the pressure inside the adsorption tower 1 is reduced to near the atmospheric pressure, and the product gas-rich gas remaining in the adsorption tower 1 without being adsorbed by the adsorbent 2 is led out from the first opening 3. In the desorption step, the pressure inside the adsorption tower 1 after the depressurization is further reduced to a negative pressure lower than the atmospheric pressure to desorb the specific component gas adsorbed by the adsorbent 2, and the desorbed adsorbent is drawn out from the first opening 3. Regenerate 2. In the pressurization step, a part of the product gas collected in the adsorption step is returned from the second opening 4 into the adsorption tower 1,
The inside of the tower 1 is returned to the pressurized state in the adsorption step.

【0013】これら各工程からなるサイクルを、例えば
図3のように3基の吸着塔A,B,Cを設けて順にずら
して行う。すなわち吸着塔Aが吸着工程のとき、吸着塔
Bでは昇圧工程、吸着塔Cでは減圧工程と脱着工程を行
うことで、吸着工程が連続的に行われ、製品ガスが連続
的に回収されるようにする。このほか、吸着塔Aが吸着
工程のとき、吸着塔Bで減圧工程と脱着工程、吸着塔C
で昇圧工程が行われるようにしてもよい。
The cycle consisting of these steps is carried out, for example, by disposing three adsorption towers A, B and C as shown in FIG. That is, when the adsorption tower A is in the adsorption step, the adsorption step is performed continuously by performing the pressure increasing step in the adsorption tower B and the depressurizing step and the desorption step in the adsorption tower C, so that the product gas is continuously collected. To In addition, when the adsorption tower A is in the adsorption step, the pressure reduction step and the desorption step are performed in the adsorption tower B, and the adsorption tower C is used.
May be used to perform the boosting step.

【0014】そして、原料ガスを、炭化水素とH2 の一
方または双方からなる可燃成分と、CO2 とN2 の一方
または双方からなる不燃成分とで主に構成されるガスと
し、吸着剤2の細孔径を、該可燃成分の分子径と該不燃
成分の分子径の間の径としたものを用いる。このような
吸着剤2を使用することで、原料ガス中の、CO2 とN
2 の一方または双方からなる不燃成分を分離し、炭化水
素とH2 の一方または双方からなる可燃成分リッチな製
品ガスを回収する。不燃成分がCO2 およびN 2 の双方
を含む場合は、双方を同時に分離でき、可燃成分が炭化
水素およびH2の双方を含む場合は双方を同時に回収で
きる。
The raw material gas is a mixture of hydrocarbon and HTwoOne
One or both of the combustible components and COTwoAnd NTwoOne of
Or a gas mainly composed of non-combustible components consisting of both
The pore size of the adsorbent 2 is determined by the molecular size of the combustible
Use a diameter between the molecular diameters of the components. like this
By using the adsorbent 2, CO 2 in the raw material gasTwoAnd N
TwoOf non-flammable components consisting of one or both of
Elementary and HTwoCombustion-rich product consisting of one or both of
Collect product gas. Non-combustible component is COTwoAnd N TwoBoth sides
In the case of containing, both can be separated at the same time and the combustible
Hydrogen and HTwoIf both are included, both can be collected simultaneously
Wear.

【0015】なお、本発明法における減圧工程は、前記
従来技術における減圧工程とは異なる。前記従来技術に
おける減圧工程は、吸着剤2に吸着されたガスを吸引し
て導出するため、真空ポンプ等により塔1内を負圧とす
るのに対し、本発明における減圧工程では、吸着剤2に
吸着された特定成分ガスは導出せず、吸着されずに吸着
塔1内に残留するガスを導出するため、塔1内を大気圧
付近の常圧とする。また本発明法における脱着工程で
は、吸着剤2に吸着した特定成分ガスを吸引して導出す
るため、真空ポンプ等により塔1内を負圧にする。した
がって本発明法における工程は、従来技術の減圧工程に
相当する脱着工程の前に、吸着剤2に吸着されたガスは
吸引せず、塔1内に残留するガスを導出する工程(これ
を本発明法では減圧工程という)を設けている。
The depressurizing step in the method of the present invention is different from the depressurizing step in the conventional technique. In the decompression step in the prior art, the gas adsorbed by the adsorbent 2 is suctioned and led out, so that the inside of the tower 1 is set to a negative pressure by a vacuum pump or the like. In order to derive the gas remaining in the adsorption tower 1 without being adsorbed and without deriving the specific component gas adsorbed in the column 1, the inside of the tower 1 is set to a normal pressure near the atmospheric pressure. In addition, in the desorption step in the method of the present invention, the inside of the tower 1 is made to have a negative pressure by a vacuum pump or the like in order to suck and extract the specific component gas adsorbed by the adsorbent 2. Therefore, the step in the method of the present invention is a step of extracting the gas remaining in the column 1 without sucking the gas adsorbed by the adsorbent 2 before the desorption step corresponding to the decompression step of the prior art (this is referred to as the present step). In the invention method, a pressure reduction step is provided.

【0016】つぎに本発明法において、減圧工程で吸着
塔1から導出したガスを、リサイクルガスとして、吸着
工程の吸着塔1内に原料ガスとともに供給することが好
ましい。減圧工程では、吸着工程後の吸着塔1内で、吸
着剤2に吸着されずに残存する可燃成分リッチのガスが
第1開口3から導出されるので、このガスをリサイクル
ガスとし、他の吸着塔1での吸着工程において原料ガス
とともに、第1開口3から塔1内に導入することで、可
燃成分ガスの回収率を高めることができる。また本発明
法において、脱着工程で吸着塔1から導出したガスを、
洗浄ガスとして、減圧工程終了後の吸着塔1内に導入す
る洗浄工程を行った後に、脱着工程を行うことが好まし
い。例えば3基の吸着塔A,B,Cを設けた工程例を示
すと、図4のようになる。この場合も、吸着塔Aが吸着
のとき、吸着塔Bで減圧−洗浄−脱着、吸着塔Cで昇圧
となるようにずらしてもよい。
Next, in the method of the present invention, it is preferable that the gas derived from the adsorption tower 1 in the pressure reduction step is supplied as a recycled gas into the adsorption tower 1 in the adsorption step together with the raw material gas. In the decompression step, the combustible component-rich gas remaining without being adsorbed by the adsorbent 2 is led out of the first opening 3 in the adsorption tower 1 after the adsorption step. By introducing the raw material gas into the tower 1 through the first opening 3 in the adsorption step in the tower 1, the recovery rate of the combustible component gas can be increased. In the method of the present invention, the gas derived from the adsorption tower 1 in the desorption step is
It is preferable to perform the desorption step after performing the cleaning step of introducing the cleaning gas into the adsorption tower 1 after the completion of the pressure reduction step. For example, FIG. 4 shows a process example in which three adsorption towers A, B, and C are provided. In this case as well, when the adsorption tower A performs adsorption, the pressure may be shifted so that the pressure is reduced, washed and desorbed in the adsorption tower B, and the pressure is increased in the adsorption tower C.

【0017】減圧工程では、吸着塔1内を吸引せずに残
存ガスを導出するので、減圧工程終了後の吸着塔1内に
は、まだ可燃成分ガスが残存している。そこでこの好ま
しい態様では、脱着工程で導出したガスを洗浄ガスとし
て、減圧工程終了後の他の吸着塔1内に第1開口3から
導入する洗浄工程を行う。この洗浄工程では、吸着剤2
に吸着されず吸着剤2の間に残存している可燃成分ガス
を洗浄ガスが押出すとともに、洗浄ガス中の不燃成分は
吸着剤2の未吸着部に吸着されて、可燃成分が第2開口
4から回収されることになり、可燃成分ガスの回収率を
さらに高めることができる。
In the decompression step, the residual gas is led out without sucking the inside of the adsorption tower 1, so that the combustible component gas still remains in the adsorption tower 1 after the end of the decompression step. Therefore, in this preferred embodiment, a cleaning step is performed in which the gas derived in the desorption step is introduced as a cleaning gas into the other adsorption tower 1 from the first opening 3 after the completion of the pressure reduction step. In this washing step, the adsorbent 2
The cleaning gas extrudes the combustible component gas remaining between the adsorbents 2 without being adsorbed by the adsorbent 2, and the non-combustible components in the cleaning gas are adsorbed by the non-adsorbed portion of the adsorbent 2, so that the combustible components are removed from the second opening. 4, and the recovery rate of combustible component gas can be further increased.

【0018】さらに本発明法において、吸着工程終了後
の吸着塔1と、脱着工程終了後の吸着塔1とを連結し
て、両吸着塔内の圧力を均一化する均圧工程を行うこと
が好ましい。例えば3基の吸着塔A,B,Cを設けた工
程例を示すと、図5のようになる。この場合も、吸着塔
Aが吸着のとき、吸着塔Bで均圧−減圧−洗浄−脱着、
吸着塔Cで均圧−昇圧となるようにずらしてもよい。こ
の好ましい態様によれば、吸着工程終了後の吸着塔1内
に残存する可燃成分が、脱着工程終了後の他の吸着塔1
内に移行することで、減圧工程で回収されるリサイクル
ガスが減少し、回収タンクやコンプレッサーなどのリサ
イクルライン機器の負荷が軽減される。
Further, in the method of the present invention, the adsorption tower 1 after the completion of the adsorption step and the adsorption tower 1 after the completion of the desorption step are connected to perform a pressure equalization step for equalizing the pressure in both the adsorption towers. preferable. For example, FIG. 5 shows a process example in which three adsorption towers A, B, and C are provided. Also in this case, when the adsorption tower A performs adsorption, the pressure equalization-pressure reduction-washing-desorption in the adsorption tower B,
The pressure may be shifted so that the pressure in the adsorption tower C becomes equal to the pressure. According to this preferred embodiment, the combustible components remaining in the adsorption tower 1 after the end of the adsorption step are removed from the other adsorption towers 1 after the end of the desorption step.
By moving inside, the amount of recycled gas collected in the decompression process is reduced, and the load on the recycling line equipment such as the collection tank and the compressor is reduced.

【0019】またこの均圧工程は、洗浄工程を行わない
工程にも適用することができる。4基の吸着塔A,B,
C,Dを設けた設備により本発明法を行う工程例を図6
および図7に示す。図6は、洗浄工程を行わない場合の
例、図7は洗浄工程を行う場合の例である。
The equalizing step can be applied to a step in which the cleaning step is not performed. The four adsorption towers A, B,
FIG. 6 shows an example of a process in which the method of the present invention is performed using equipment provided with C and D.
And FIG. FIG. 6 shows an example in which the cleaning step is not performed, and FIG. 7 shows an example in which the cleaning step is performed.

【0020】つぎに本発明法を実施するための装置につ
いて、図8に示す系統図を例に説明する。この例は、4
基の吸着塔1A,1B,1C,1Dを使用し、吸着工
程、減圧工程、脱着工程、昇圧工程をサイクルとし、必
要に応じ洗浄工程およびまたは均圧工程を付加し、原料
ガスから不燃成分ガスを分離し、可燃成分リッチの製品
ガスを連続的に回収するものである。
Next, an apparatus for carrying out the method of the present invention will be described with reference to a system diagram shown in FIG. This example is 4
Using the base adsorption towers 1A, 1B, 1C, and 1D, the adsorption step, the depressurization step, the desorption step, and the pressure increase step are cycled, and if necessary, a washing step and / or a pressure equalization step are added. And continuously recovers a combustible component-rich product gas.

【0021】吸着工程では、吸着塔1A,1B,1C,
1Dからなる吸着系aの第1開口3側のバルブ5および
第2開口4側のバルブ6を開にして、原料供給系bから
原料ガスを供給し、製品回収系cを経て製品ガスを回収
する。この工程では、コンプレッサー15により、リサ
イクルガス供給系eを経て、後記減圧工程で導出されタ
ンク12に溜められているリサイクルガスを同時に供給
する。減圧工程では、バルブ5および6を閉、バルブ7
を開にし、リサイクルガス導出系dを経て、タンク12
に可燃成分リッチのガスをリサイクルガスとして溜め
る。
In the adsorption step, the adsorption towers 1A, 1B, 1C,
The valve 5 on the first opening 3 side and the valve 6 on the second opening 4 side of the 1D adsorption system a are opened to supply the raw material gas from the raw material supply system b, and the product gas is recovered through the product recovery system c. I do. In this step, the compressor 15 simultaneously supplies the recycled gas derived in the later-described pressure reduction step and stored in the tank 12 via the recycled gas supply system e. In the pressure reduction step, valves 5 and 6 are closed, and valve 7 is closed.
To the tank 12 through the recycle gas discharge system d.
A gas rich in combustible components is stored as recycled gas.

【0022】脱着工程では、バルブ7を閉、バルブ8を
開にし、真空ポンプ13により吸着ガス回収系fを経て
ガスホルダー14に不燃成分リッチのガスを溜める。昇
圧工程では、バルブ5,7,8を閉、バルブ6,11を
開にし、昇圧ガス供給系gを経て製品ガスの一部を吸着
塔1に供給して、塔1内の圧を吸着工程の所要圧に戻
す。これら各工程のサイクルは、バルブ操作を順にずら
すことで、吸着塔1A,1B,1C,1Dの各塔間で各
工程のサイクルを前述のように順にずらして実施し、連
続的に製品ガスを回収することができる。
In the desorption process, the valve 7 is closed and the valve 8 is opened, and the non-combustible component-rich gas is stored in the gas holder 14 by the vacuum pump 13 via the adsorbed gas recovery system f. In the pressure increasing step, the valves 5, 7, and 8 are closed, the valves 6 and 11 are opened, and a part of the product gas is supplied to the adsorption tower 1 through the pressure increasing gas supply system g, and the pressure in the tower 1 is reduced. To the required pressure. The cycle of each of these steps is carried out by sequentially shifting the valve operation so that the cycle of each step is sequentially shifted between the adsorption towers 1A, 1B, 1C, and 1D as described above. Can be recovered.

【0023】洗浄工程は、バルブ8を閉、バルブ9を開
にし、ガスホルダー14に溜められた不燃成分リッチの
ガスを洗浄ガスとし、コンプレッサー16により洗浄ガ
ス供給系hを経て減圧工程終了後の吸着塔1に導入す
る。このとき、バルブ6を閉、バルブ10を開とし、第
2開口4から導出される可燃成分リッチの製品ガスを、
リサイクルガス導出系iを経てタンク12に導入する。
In the cleaning step, the valve 8 is closed, the valve 9 is opened, and the non-combustible component-rich gas stored in the gas holder 14 is used as the cleaning gas. It is introduced into the adsorption tower 1. At this time, the valve 6 is closed, the valve 10 is opened, and the combustible component-rich product gas derived from the second opening 4 is
It is introduced into the tank 12 via the recycle gas derivation system i.

【0024】均圧工程は、均圧系jにより、吸着工程終
了後の吸着塔1と脱着工程終了後の吸着塔1とを連結す
る。これら各工程を付加する場合も、バルブ操作をずら
すことで、吸着塔1A,1B,1C,1Dの各塔間で各
工程のサイクルを、前述のように順にずらして実施し、
連続的に製品ガスを回収することができる。
In the pressure equalization step, the adsorption tower 1 after the completion of the adsorption step and the adsorption tower 1 after the completion of the desorption step are connected by the pressure equalization system j. Also in the case of adding each of these steps, the cycle of each step is sequentially shifted among the adsorption towers 1A, 1B, 1C, and 1D as described above by shifting the valve operation.
Product gas can be continuously collected.

【0025】本発明法により、CH4 リッチの炭化水素
ガスとH2 ガスの一方または双方からなる可燃成分に、
CO2 とN2 の一方または双方からなる不燃成分等が混
入したるコークス炉ガス改質ガス、LPG改質ガスなど
の混合ガスを原料ガスとし、不燃成分を分離して、可燃
成分リッチの製品ガスを連続的に回収し、高カロリーの
都市ガスとして供給することができる。その場合、吸着
塔1にはカーボンモレキュラーシーブスを吸着剤2とし
て内蔵させ、CO2 およびN2 の両ガスを同時に吸着さ
せることができる。
According to the method of the present invention, a combustible component comprising one or both of a CH 4 -rich hydrocarbon gas and H 2 gas is
A mixture of coke oven gas reformed gas and LPG reformed gas mixed with one or both of non-combustible components such as CO 2 and N 2 is used as a raw material gas. Gas can be continuously collected and supplied as high calorie city gas. In that case, carbon molecular sieves are incorporated in the adsorption tower 1 as the adsorbent 2 so that both CO 2 and N 2 gases can be adsorbed simultaneously.

【0026】工程で操作する塔内圧力の一例を挙げる
と、吸着工程では5〜7KG、減圧工程では0KG、脱
着工程では−1KG程度とすることで、CO2 およびN
2 を同時に分離し、処理量および回収率を高めた、効率
的な操業を安定して行うことができる。そして、ガスホ
ルダー14に回収された不燃成分リッチのガスには、回
収されなかった炭化水素とH2 の一方または双方が含ま
れているので、ボイラー燃料用などに使用することがで
きる。
As an example of the pressure in the column operated in the step, 5 to 7 KG in the adsorption step, 0 KG in the pressure reduction step, and about -1 KG in the desorption step, CO 2 and N 2
2 can be separated at the same time, and an efficient operation with an increased throughput and recovery rate can be performed stably. Since the non-combustible component-rich gas collected in the gas holder 14 contains one or both of the unrecovered hydrocarbon and H 2 , it can be used for boiler fuel or the like.

【0027】なお、本発明法において使用可能な吸着剤
2は、上記カーボンモレキュラーシーブスに限られるも
のではない。吸着剤の具備特性としては、例えば、吸着
剤表面の吸着サイト(吸着が行われる場所)が、炭化水
素ガスおよびH2 ガスが入らないように細孔入口が絞り
込まれ、CO2 ガスおよびN2 ガスが細孔に入って吸着
できるようなものであればよい。このような他の吸着剤
として、例えばゼオライトを使用することができる。
The adsorbent 2 usable in the method of the present invention is not limited to the above-mentioned carbon molecular sieves. As for the characteristics of the adsorbent, for example, the adsorption site (the place where adsorption is performed) on the surface of the adsorbent is narrowed at the pore inlet so that the hydrocarbon gas and H 2 gas do not enter, and the CO 2 gas and N 2 Any material can be used as long as the gas can enter the pores and be adsorbed. As such another adsorbent, for example, zeolite can be used.

【0028】[0028]

【実施例】図8のような系統図の装置を使用して、CH
4 リッチの炭化水素ガス、H2 、CO2 、N2 を含有す
るコークス炉ガスを原料ガスとし、CO2 およびN2
分離除去して、炭化水素ガスおよびH2 を主成分とする
製品ガスを連続的に回収した。吸着塔1にはカーボンモ
レキュラーシーブスを吸着剤2として内蔵させた。吸着
塔1の第1開口3からの供給ガス量は5000Nm3 /h、
第2開口4からの導出ガス量は4050Nm3 /hである。
吸着塔1の内圧は、吸着工程では5〜7KG、減圧工程
では0KG、脱着工程では−1KGとした。原料ガスの
組成は、容量%でCH4 リッチなどの炭化水素ガスが7
8%、H24%、CO2 18%で、ほかに微量のN2
よび水分を含む。
[Embodiment] Using the apparatus of the system diagram as shown in FIG.
A coke oven gas containing 4 rich hydrocarbon gas, H 2 , CO 2 , and N 2 is used as a raw material gas, CO 2 and N 2 are separated and removed, and a product gas mainly containing hydrocarbon gas and H 2 Was continuously collected. Adsorption tower 1 contained carbon molecular sieves as adsorbent 2. The amount of gas supplied from the first opening 3 of the adsorption tower 1 is 5000 Nm 3 / h,
The amount of gas derived from the second opening 4 is 4050 Nm 3 / h.
The internal pressure of the adsorption tower 1 was 5 to 7 KG in the adsorption step, 0 KG in the pressure reduction step, and -1 KG in the desorption step. The composition of the raw material gas is 7% by volume of hydrocarbon gas such as CH 4 rich.
8%, 4% H 2 , 18% CO 2 , plus trace N 2 and moisture.

【0029】炭化水素ガス+H2 の回収率は、吸着−脱
着−昇圧の各工程をサイクルとする従来例では85〜9
0%、吸着−減圧−脱着−昇圧の各工程をサイクルと
し、減圧工程で導出したガスをリサイクルガスとして吸
着工程で導入した第1発明例では95〜97%に向上
し、さらに洗浄工程を付加した場合には、98〜99%
に向上した。また均圧工程を付加することにより、電力
原単位が向上した。設備の運転および停止は自動で行う
ことができ、起動に要する時間は約20分であった。吸
着剤のカーボンモレキュラーシーブスは、水分による劣
化はなく、長期の連続運転に耐えることができた。
The recovery rate of the hydrocarbon gas + H 2 is 85 to 9 in the conventional example in which each of the steps of adsorption, desorption, and pressure is cycled.
0%, the cycle of each of adsorption-decompression-desorption-pressure-up is improved. In the first invention example in which the gas derived in the depressurization step is introduced as a recycled gas in the adsorption step, it is improved to 95-97%, and a washing step is further added. 98-99%
Improved. In addition, by adding a pressure equalization step, the power consumption rate was improved. The operation and stop of the equipment could be performed automatically, and the time required for starting was about 20 minutes. The carbon molecular sieve as the adsorbent did not deteriorate due to moisture and could withstand long-term continuous operation.

【0030】[0030]

【発明の効果】本発明法により、複数成分の原料ガスか
ら特定成分の混入ガスを分離し、所望成分の製品ガスを
回収するPSA法において、炭化水素ガスとH2 ガスの
一方または双方からなる可燃成分と、CO2 とN2 の一
方または双方からなる不燃成分とで主に構成される原料
ガスから該不燃成分を分離し、該可燃成分リッチの製品
ガスを回収するに際し、複数の不燃成分をも同時に分離
し、かつ複数の可燃成分をも同時に回収することで処理
を効率化し、処理コストの上昇を抑えて処理量および回
収率を高め、かつ効率的な操業を安定して行うができ
る。したがって本発明法により、コークス炉ガス、改質
ガス、LPG改質ガスなどを原料として、高カロリーの
都市ガスを安定供給できる。
According to the present invention, a PSA method for separating a mixed gas of a specific component from a source gas of a plurality of components and recovering a product gas of a desired component comprises one or both of a hydrocarbon gas and an H 2 gas. When separating the non-combustible component from a raw material gas mainly composed of a combustible component and an incombustible component composed of one or both of CO 2 and N 2 and recovering the combustible component-rich product gas, a plurality of non-combustible components are used. At the same time, and simultaneously recovering multiple combustible components to increase the efficiency of processing, suppress the increase in processing costs, increase the throughput and recovery rate, and stably perform efficient operations. . Therefore, according to the method of the present invention, a high-calorie city gas can be stably supplied from a coke oven gas, a reformed gas, an LPG reformed gas, or the like as a raw material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のPSA法の例を示す工程図である。FIG. 1 is a process chart showing an example of a conventional PSA method.

【図2】本発明法において使用する吸着塔の例を示す断
面図である。
FIG. 2 is a sectional view showing an example of an adsorption tower used in the method of the present invention.

【図3】本発明法の例を示す工程図である。FIG. 3 is a process chart showing an example of the method of the present invention.

【図4】本発明法の別の例を示す工程図である。FIG. 4 is a process chart showing another example of the method of the present invention.

【図5】本発明法の別の例を示す工程図である。FIG. 5 is a process chart showing another example of the method of the present invention.

【図6】本発明法の別の例を示す工程図である。FIG. 6 is a process chart showing another example of the method of the present invention.

【図7】本発明法の別の例を示す工程図である。FIG. 7 is a process chart showing another example of the method of the present invention.

【図8】本発明法を実施するための装置例を示す系統図
である。
FIG. 8 is a system diagram showing an example of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1…吸着塔 2…吸着剤 3…第1開口 4…第2開口 5,6,7,8,9,10,11…バルブ 12…タンク 13…真空ポンプ 14…ガスホルダー 15,16…コンプレッサー DESCRIPTION OF SYMBOLS 1 ... Adsorption tower 2 ... Adsorbent 3 ... 1st opening 4 ... 2nd opening 5,6,7,8,9,10,11 ... Valve 12 ... Tank 13 ... Vacuum pump 14 ... Gas holder 15,16 ... Compressor

フロントページの続き (72)発明者 小菅 克志 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 幸 良之 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 4D012 CA07 CB16 CD07 CF06 CG01 CJ01 CJ07 4H060 AA02 BB32 CC18 DD02 DD07 FF03 Continuation of the front page (72) Inventor Katsushi Kosuge 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Yoshiyuki Sachi 2-6-3 Otemachi, Chiyoda-ku, Tokyo New Japan 4D012 CA07 CB16 CD07 CF06 CG01 CJ01 CJ07 4H060 AA02 BB32 CC18 DD02 DD07 FF03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原料ガス中の特定成分ガスを吸着する吸
着剤を充填した吸着塔が3基以上からなり、原料ガスを
昇圧状態の前記吸着塔に供給し、該原料ガス中の特定成
分ガスを吸着させ、吸着塔を通過するガスを製品ガスと
して回収する吸着工程と、吸着塔内を大気圧付近まで減
圧する減圧工程と、減圧後の吸着塔内を負圧にさらに減
圧し、吸着した前記特定成分ガスを脱離再生させる脱着
工程と、前記回収した製品ガスの一部を吸着塔に戻し
て、塔内を元の圧力に戻す昇圧工程とからなり、前記各
工程からなるサイクルを各吸着塔間でずらして行うガス
の分離精製方法において、前記原料ガスを、炭化水素と
2 の一方または双方からなる可燃成分と、CO2 とN
2 の一方または双方からなる不燃成分とで主として構成
されるガスとし、前記吸着剤の細孔径を、該可燃成分の
分子径と該不燃成分の分子径の間の径とした吸着剤を用
いることを特徴とするガスの分離精製方法。
1. An adsorption tower filled with an adsorbent for adsorbing a specific component gas in a source gas, comprising at least three adsorption towers, supplying the source gas to the adsorption tower in a pressurized state, and supplying the specific component gas in the source gas. Is adsorbed and the gas passing through the adsorption tower is collected as a product gas, the pressure reduction step of reducing the pressure in the adsorption tower to near atmospheric pressure, and the pressure in the adsorption tower after the pressure reduction is further reduced to a negative pressure, and the adsorption is performed. a desorption step of desorbing reproducing the specific component gas, to return the portion of the product gas the collected adsorption tower consists of a booster step of returning in the column to the original pressure, the cycle consisting of the steps each In the method for separating and purifying a gas which is shifted between adsorption towers, the raw material gas may be a combustible component comprising one or both of hydrocarbon and H 2 , CO 2 and N 2.
(2) A gas mainly composed of one or both of the non-flammable components, and an adsorbent having a pore diameter of the adsorbent having a diameter between the molecular diameter of the combustible component and the molecular diameter of the non-flammable component. A method for separating and purifying gas.
【請求項2】 前記減圧工程で吸着塔から導出したガス
を、リサイクルガスとして、吸着工程の吸着塔内に原料
ガスとともに供給することを特徴とする請求項1記載の
ガスの分離精製方法。
2. The method for separating and purifying gas according to claim 1, wherein the gas derived from the adsorption tower in the pressure reduction step is supplied as a recycled gas into the adsorption tower in the adsorption step together with the raw material gas.
【請求項3】 前記脱着工程で吸着塔から導出したガス
を、洗浄ガスとして、減圧工程終了後の吸着塔内に導入
する洗浄工程を行った後に脱着工程を行うことを特徴と
する請求項1または2記載のガスの分離精製方法。
3. The desorption step is performed after a cleaning step of introducing a gas derived from the adsorption tower in the desorption step as a cleaning gas into the adsorption tower after the completion of the decompression step. Or the method for separating and purifying gas according to 2.
【請求項4】 前記吸着工程終了後の吸着塔と、前記脱
着工程終了後の吸着塔とを連結して、両吸着塔内の圧力
を均一化する均圧工程を行うことを特徴とする請求項
1,2または3記載のガスの分離精製方法。
4. The pressure equalizing step of connecting the adsorption tower after the completion of the adsorption step and the adsorption tower after the completion of the desorption step to equalize the pressure in both the adsorption towers. Item 4. A method for separating and purifying a gas according to Item 1, 2 or 3.
JP11127758A 1999-05-07 1999-05-07 Separation and purification of gas Withdrawn JP2000317245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127758A JP2000317245A (en) 1999-05-07 1999-05-07 Separation and purification of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127758A JP2000317245A (en) 1999-05-07 1999-05-07 Separation and purification of gas

Publications (1)

Publication Number Publication Date
JP2000317245A true JP2000317245A (en) 2000-11-21

Family

ID=14967969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127758A Withdrawn JP2000317245A (en) 1999-05-07 1999-05-07 Separation and purification of gas

Country Status (1)

Country Link
JP (1) JP2000317245A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355522A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355519A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP2002355520A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
WO2015008837A1 (en) * 2013-07-19 2015-01-22 大阪瓦斯株式会社 Method for hydrogen production by pressure swing adsorption

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355522A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355519A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP2002355520A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP4531291B2 (en) * 2001-05-31 2010-08-25 東京瓦斯株式会社 Stable operation method of 4 tower type pressure swing adsorption equipment for hydrogen purification
WO2015008837A1 (en) * 2013-07-19 2015-01-22 大阪瓦斯株式会社 Method for hydrogen production by pressure swing adsorption
JP2015038015A (en) * 2013-07-19 2015-02-26 大阪瓦斯株式会社 Pressure swing adsorption type hydrogen production method
KR20160047472A (en) * 2013-07-19 2016-05-02 오사까 가스 가부시키가이샤 Method for hydrogen production by pressure swing adsorption
US9675927B2 (en) 2013-07-19 2017-06-13 Osaka Gas Co., Ltd. Method for hydrogen production by pressure swing adsorption
KR101961233B1 (en) 2013-07-19 2019-03-22 오사까 가스 가부시키가이샤 Method for hydrogen production by pressure swing adsorption

Similar Documents

Publication Publication Date Title
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
US5294247A (en) Adsorption process to recover hydrogen from low pressure feeds
JP2634138B2 (en) Separation method of gas components by vacuum swing adsorption method
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
KR100300939B1 (en) Improved vacuum pressure swing adsorption process
US6500235B2 (en) Pressure swing adsorption process for high recovery of high purity gas
EP0451677A2 (en) Vacuum swing adsorption process for production of 95+% N2 from ambient air
JP3464766B2 (en) PSA method using simultaneous evacuation of top and bottom of adsorbent bed
JPS6137968B2 (en)
KR20100122093A (en) Method and apparatus for separating blast furnace gas
CA2160846A1 (en) Natural gas enrichment process
AU649567B2 (en) Recovery of flammable materials from gas streams
US6113672A (en) Multiple equalization pressure swing adsorption process
JP2009226257A (en) Process for separation of blast furnace gas, and system of separating blast furnace gas
JP5721834B2 (en) Method for recovering ethylene from fluid catalytic cracking exhaust gas
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
EP0722764A2 (en) Recovery of hydrocarbons from gas streams
JP2000317245A (en) Separation and purification of gas
JP2001335305A (en) Co gas/h2 gas recovery equipment and method for recovering co gas/h2 gas
KR100849987B1 (en) Enrichment of ethylene from fcc off-gas
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPS5998715A (en) Recovery of pressure in pressure swing adsorbing method
JPH07275631A (en) Substitution-reduction method for impurity in product in pressure swing adsorption method
JP2579180B2 (en) Stepless pressure equalizing PSA method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801