JP2002355522A - Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen - Google Patents

Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen

Info

Publication number
JP2002355522A
JP2002355522A JP2001164607A JP2001164607A JP2002355522A JP 2002355522 A JP2002355522 A JP 2002355522A JP 2001164607 A JP2001164607 A JP 2001164607A JP 2001164607 A JP2001164607 A JP 2001164607A JP 2002355522 A JP2002355522 A JP 2002355522A
Authority
JP
Japan
Prior art keywords
pressure
gas
tower
offgas
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001164607A
Other languages
Japanese (ja)
Inventor
Hirotaka Furuta
博貴 古田
Toru Takahashi
徹 高橋
Kenichi Nakamura
健一 中村
Koji Aida
広司 会田
Ryohei Kusaka
亮平 日下
Yukihiro Kamakura
幸弘 鎌倉
Kumiko Moriguchi
久美子 森口
Hideki Miyajima
秀樹 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Chemicals Co Ltd, Mitsubishi Kakoki Kaisha Ltd, Tokyo Gas Co Ltd filed Critical Tokyo Gas Chemicals Co Ltd
Priority to JP2001164607A priority Critical patent/JP2002355522A/en
Publication of JP2002355522A publication Critical patent/JP2002355522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the fluctuation of the inner pressure of an offgas tank and to stabilize the combustion state of a burner when the offgas is supplied as a fuel of the combustion part of a reformer, in a four tower-type pressure- swing adsorption(PSA) equipment for purifying hydrogen. SOLUTION: The method of controlling the pressure of offgas from the offgas tanke is characterized in that, when offgas of the offgas tank provided in the four tower-type PSA equipment for purifying hydrogen is supplied to the burner of the reformer for hydrogen production, the pressure of the offgas from the offgas tank is controlled by increasing or lowering the opening degree of a valve for controlling the flow rate of the offgas with a predetermined small degree while setting the minimum pressure at which the pressure of the offgas becomes minimum as a standard, which valve is provided on the downstream side from the offgas tank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素精製用4塔式
PSA装置(水素精製用4塔式圧力スイング吸着装置)
に付設したオフガス貯蔵タンク(=オフガスタンク)の
オフガスを炭化水素ガスの水蒸気改質による水素製造用
改質器のバーナに供給するに際して、オフガスタンクか
らのオフガスを該バーナへ安定して供給するようにして
なる水素精製用4塔式PSA装置におけるオフガスタン
クからのオフガス圧力の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-column PSA apparatus for hydrogen purification (four-column pressure swing adsorption apparatus for hydrogen purification).
When supplying off-gas from an off-gas storage tank (= off-gas tank) attached to a burner of a reformer for hydrogen production by steam reforming of hydrocarbon gas, the off-gas from the off-gas tank is supplied to the burner stably. The present invention relates to a method for controlling off-gas pressure from an off-gas tank in a four-column PSA for hydrogen purification.

【0002】[0002]

【従来の技術】水素は各種用途に供される基礎原料であ
り、燃料電池用の燃料としても利用される。水素の工業
的製造方法の一つであるガス体燃料の変成法は通常炭化
水素ガスの水蒸気改質法や部分燃焼法により行われる。
水蒸気改質法では改質器が用いられ、天然ガスや都市ガ
ス等の炭化水素ガスがNi系、Ru系その他の触媒を用
いる接触反応により改質ガスへ変えられる。改質器は概
略燃焼部と改質部とからなり、燃焼部(バーナ)からの
熱(ΔH)が改質部に供給され、改質部で炭化水素ガス
が接触反応により改質ガスへ変えられる。
2. Description of the Related Art Hydrogen is a basic raw material for various uses and is also used as a fuel for fuel cells. A method of converting gaseous fuel, which is one of the industrial methods for producing hydrogen, is usually performed by a steam reforming method or a partial combustion method of hydrocarbon gas.
In the steam reforming method, a reformer is used, and a hydrocarbon gas such as natural gas or city gas is converted into a reformed gas by a catalytic reaction using a Ni-based, Ru-based, or other catalyst. The reformer generally includes a combustion section and a reforming section. Heat (ΔH) from the combustion section (burner) is supplied to the reforming section, and the reforming section converts hydrocarbon gas into reformed gas by a catalytic reaction. Can be

【0003】改質器で得られる改質ガスには主成分であ
る水素のほか、CO、CO2等の副生成分や余剰H2O、
また未改質の炭化水素が含まれている。このため改質ガ
スを燃料電池にそのまま使用したのでは電池性能を阻害
してしまう。例えばリン酸形燃料電池で用いる水素ガス
中のCOは1%(容量%、以下同じ)程度、固体高分子
形燃料電池では100ppm(容量ppm)程度が限度
であり、これらの値を越えると電池性能が著しく劣化す
る。また不飽和結合への水素添加用或いは酸水素炎用の
水素は通常ボンベに詰めたものが使用されており、その
純度は5N(99.999%)以上が要求されている。
したがって改質ガスは精製しそれら副生成分を除去して
おく必要がある。
[0003] The reformed gas obtained in the reformer contains hydrogen as a main component, as well as by-products such as CO and CO 2 , surplus H 2 O,
It also contains unreformed hydrocarbons. Therefore, if the reformed gas is used as it is in the fuel cell, the cell performance will be impaired. For example, CO in hydrogen gas used in a phosphoric acid fuel cell has a limit of about 1% (volume%, the same applies hereinafter), and a polymer electrolyte fuel cell has a limit of about 100 ppm (capacity ppm). Performance deteriorates significantly. In addition, hydrogen for adding hydrogen to unsaturated bonds or for oxyhydrogen flame is usually used in a cylinder, and its purity is required to be 5N (99.999%) or more.
Therefore, it is necessary to purify the reformed gas to remove those by-products.

【0004】ところで、水素の精製法の一つであるPS
A法(Pressure Swing AdsorptionMethod)では、改質
器で生成しCO変成器を経た改質ガス中の不純物を吸着
剤相に加圧下で吸着させて分離し、常圧付近まで減圧し
て吸着不純物を脱着させる。図1は、本発明において前
提とする水素精製用4塔式PSA装置における各吸着塔
A〜D、配管(ライン)、バルブ、オフガスタンク等の
配置関係を示す図である。図1に示すような4塔式PS
A装置においては吸着、均圧減圧、均圧保持、減圧、ブ
ローダウン、パージ、均圧昇圧、H2(水素)昇圧の各
工程が繰り返され、ブローダウン工程及びパージ工程で
はオフガスが発生する。
[0004] By the way, PS which is one of the hydrogen purification methods is used.
In the A method (Pressure Swing Adsorption Method), impurities in the reformed gas generated in the reformer and passed through the CO converter are adsorbed and separated into the adsorbent phase under pressure, and the pressure is reduced to around normal pressure to remove the adsorbed impurities. Desorb. FIG. 1 is a diagram showing the arrangement of each of the adsorption towers A to D, pipes (lines), valves, off-gas tanks, etc. in a four-column PSA apparatus for hydrogen purification which is premised in the present invention. 4 tower PS as shown in Fig. 1
In the apparatus A, the steps of adsorption, pressure equalization, pressure reduction, pressure reduction, blowdown, purge, pressure equalization, and H 2 (hydrogen) pressure increase are repeated, and offgas is generated in the blowdown step and the purge step.

【0005】図2は、図1に示す水素精製用4塔式圧力
スイング吸着装置における各吸着塔の工程フローおよび
運転シーケンスの概略を示す図である。図2には併せて
各工程の進行に伴う各吸着塔内における圧力変化を示し
ている。都市ガス等の原料ガス、すなわち炭化水素を改
質する水蒸気改質器(燃焼部+改質部)からCO変成器
を経て得られる改質ガスはA塔に供給され、ここでH2
O、CO2、CO、CH 4等の不純物の吸着が行われ、吸
着されない水素が精製水素(製品水素)となる。
FIG. 2 shows a four-column pressure for hydrogen purification shown in FIG.
Process flow of each adsorption tower in swing adsorption equipment and
It is a figure showing the outline of an operation sequence. FIG. 2 also shows
This shows the pressure change in each adsorption tower as each process progresses.
ing. Reforming raw gas such as city gas, that is, hydrocarbons
Steam reformer (combustion unit + reforming unit) to CO converter
Is supplied to the tower A, where HTwo
O, COTwo, CO, CH FourAnd other impurities are absorbed.
Uncharged hydrogen becomes purified hydrogen (product hydrogen).

【0006】その間、B塔ではブローダウンからパージ
の工程が行われ、C塔では均圧減圧から均圧保持、これ
に続く減圧の工程が行われ、D塔では均圧昇圧からH2
(水素)昇圧の工程が行われる。改質ガスの供給は、A
塔において不純物が飽和して破過する前に、自動的にD
塔に切り換えられる。この時点で、A塔は均圧減圧から
減圧保持、これに続く減圧工程へ切り換えられ、またB
塔は均圧昇圧からH2昇圧の工程へ切り換えられ、C塔
はブローダウンからパージの工程へ切り換えられ、D塔
は吸着の工程へ切り換えられる。以降、これら工程を図
2に示すように順次自動的に切り換え、繰り返して連続
的に操作される。そしてブローダウン工程、パージ工程
で発生するオフガスはオフガスタンクへ送られる。
[0006] Meanwhile, in the B tower purge step is carried out from the blowdown pressure equalization holding the equalization depressurization is C tower, decompression steps subsequent thereto are performed, H 2 from the equalization repressurization in D column
A (hydrogen) pressurization step is performed. The supply of reformed gas is A
Before the impurities are saturated in the column and break through, D
Switched to a tower. At this point, the tower A is switched from the pressure equalization to the pressure reduction, the pressure is reduced and maintained, and then the pressure reduction step is performed.
Tower is switched from the equalization repressurization to H 2 boosting step, C column is switched from the blowdown to purge step, D tower are switched to the adsorption step. Thereafter, these steps are automatically and sequentially switched as shown in FIG. 2 and are repeatedly and continuously operated. Then, off-gas generated in the blow-down step and the purge step is sent to the off-gas tank.

【0007】[0007]

【発明が解決しようとする課題】上記オフガスタンク内
の圧力変動は、改質器やCO変成器、PSA装置等の水
素製造、精製装置系内の圧力と直結している。このため
改質器、CO変成器、PSA装置のすべての運転に悪影
響を及ぼすために圧力変化は極力抑える必要がある。ま
た、オフガスタンクに貯えられたオフガスは改質器燃焼
部のバーナ燃料として再利用される。このため、バーナ
での燃焼状態を良好に保つためには、安定したオフガス
流量(オフガスタンク出口からの)が必要である。
The pressure fluctuation in the off-gas tank is directly connected to the pressure in a system for producing and purifying hydrogen such as a reformer, a CO shift converter, and a PSA device. For this reason, it is necessary to suppress the pressure change as much as possible because it adversely affects all operations of the reformer, the CO shift converter, and the PSA device. Further, the off-gas stored in the off-gas tank is reused as burner fuel in the reformer combustion section. Therefore, a stable off-gas flow rate (from the off-gas tank outlet) is required to maintain a good combustion state in the burner.

【0008】ところで、このような水素精製用4塔式P
SA装置系(システム)についての従来におけるオフガ
ス制御方法としては、オフガスタンクの圧力が一定とな
るようにバルブ開度を御する方法とオフガス流量が一定
となるように制御する方法とがある。このうち、オフガ
スタンクの圧力が一定になるようにバルブ開度を制御す
る方法では、系内圧力の変動を抑え、装置全体の運転時
の安定性を向上させるというメリットがあるが、改質器
バーナ用燃料として供給されるオフガス流量の変動は大
きく、このためバーナの燃焼状態が悪化する。また、オ
フガス流量が一定となるように制御する方法では、オフ
ガス流量を一定に制御すると、バーナの燃焼状態は良好
となるが、装置系内圧力の変動が大きくなり、装置の性
能上悪影響を及ぼしてしまう。
Incidentally, such a four-column P for hydrogen purification
As a conventional off-gas control method for the SA device system, there are a method of controlling the valve opening so that the pressure of the off-gas tank is constant and a method of controlling the off-gas flow rate to be constant. Of these methods, the method of controlling the valve opening so that the pressure of the off-gas tank is constant has the advantage of suppressing fluctuations in the system pressure and improving the stability of the entire apparatus during operation. Fluctuations in the flow rate of the off-gas supplied as burner fuel are large, which deteriorates the combustion state of the burner. In the method of controlling the off-gas flow rate to be constant, if the off-gas flow rate is controlled to be constant, the combustion state of the burner becomes good, but the pressure in the apparatus system fluctuates greatly, which adversely affects the performance of the apparatus. Would.

【0009】このような問題を回避するためには、オフ
ガスタンク内の圧力変化を可及的に抑制する必要があ
り、このためにはタンク容量を大きくせざるを得ない。
本発明者等は、水素精製用4塔式PSA装置におけるこ
れらの問題点を解決すべく鋭意研究、実験を続けた結
果、各吸着塔の工程が切り換わるときの当該最小圧力を
基準として、オフガスタンクの出口側流量調整バルブの
開度を増減させることにより、オフガスの圧力変動幅を
小さくでき、これによりオフガスを改質器バーナへ安定
して供給し得ることを見い出した。
In order to avoid such a problem, it is necessary to suppress a change in pressure in the off-gas tank as much as possible. For this purpose, the capacity of the tank must be increased.
The present inventors have conducted intensive studies and experiments in order to solve these problems in the four-column PSA apparatus for hydrogen purification. As a result, based on the minimum pressure when the process of each adsorption tower is switched, the off-state is determined. It has been found that by increasing or decreasing the opening of the flow control valve on the outlet side of the gas tank, the pressure fluctuation width of the off-gas can be reduced, whereby the off-gas can be stably supplied to the reformer burner.

【0010】すなわち、本発明は、水素精製用4塔式P
SA装置に付設されたオフガスタンクのオフガスを改質
器燃焼部のバーナに供給するに際して、各吸着塔の工程
が切り換わるときの、すなわちオフガスタンクの圧力が
最小となるときの当該最小圧力を基準として、オフガス
タンク出口側のオフガス流量調整バルブの開度を増減さ
せることにより、オフガスタンクからのオフガスの圧力
変動を抑え、これによりオフガスを改質器燃焼部のバー
ナへ安定して供給するようにしてなるオフガスタンクか
らのオフガス圧力の制御方法を提供することを目的とす
る。
That is, the present invention provides a four-column P for hydrogen purification.
When supplying the off-gas of the off-gas tank attached to the SA device to the burner of the reformer combustion section, the minimum pressure when the process of each adsorption tower is switched, that is, when the pressure of the off-gas tank is minimized, is set as a reference. By increasing or decreasing the degree of opening of the off-gas flow control valve on the off-gas tank outlet side, pressure fluctuation of the off-gas from the off-gas tank is suppressed, so that the off-gas is supplied stably to the burner of the reformer combustion section. It is an object of the present invention to provide a method for controlling an off-gas pressure from an off-gas tank.

【0011】[0011]

【課題を解決するための手段】本発明は、水素精製用4
塔式PSA装置に付設されたオフガスタンクのオフガス
を水素製造用改質器のバーナに供給するに際して、オフ
ガスタンクの圧力が最小となるときの当該最小圧力を基
準として、オフガスタンク下流側のオフガス流量調整バ
ルブの開度を所定の微小刻みで増減させることによりオ
フガスタンクからのオフガス圧力を制御することを特徴
とする水素精製用4塔式PSA装置におけるオフガスタ
ンクからのオフガス圧力の制御方法を提供する。
SUMMARY OF THE INVENTION The present invention relates to a hydrogen purification device for hydrogen purification.
When supplying the off-gas of the off-gas tank attached to the tower-type PSA device to the burner of the reformer for hydrogen production, the off-gas flow rate on the downstream side of the off-gas tank, based on the minimum pressure when the pressure of the off-gas tank is minimized A method for controlling off-gas pressure from an off-gas tank in a four-column PSA for hydrogen purification, characterized in that the off-gas pressure from an off-gas tank is controlled by increasing and decreasing the opening of a regulating valve in predetermined minute increments. .

【0012】[0012]

【発明の実施の形態】本発明においては、オフガスタン
ク(=オフガス貯蔵タンク)を付設した水素精製用4塔
式PSA装置において、各吸着塔の工程が切り換わると
きのオフガスタンク内の圧力、すなわちオフガスタンク
の最小圧力を基準として、オフガスタンクの出口側すな
わち下流側のオフガス流量調整バルブの開度を所定の微
小刻みで増減させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in a four-column PSA system for hydrogen purification provided with an off-gas tank (= off-gas storage tank), the pressure in the off-gas tank when the process of each adsorption tower is switched, that is, Based on the minimum pressure of the off-gas tank, the opening of the off-gas flow control valve on the outlet side of the off-gas tank, that is, on the downstream side, is increased or decreased in predetermined minute steps.

【0013】図2で云えば、水素精製用4塔式PSA装
置操作時の各ステップにおけるオフガスタンク内の圧力
は、ステップ1〜12におけるパージ工程終了時、すな
わちステップ3、6、9、12の各ステップの工程終了
時に最小となる。本発明においては、オフガスタンク内
の当該最小圧力を基準としてタンク出口側の導管に配置
されたオフガス流量調整バルブの開度をその全開に対し
て所定の微小刻みで増減させる。これによりオフガスタ
ンクからのオフガスの圧力変動を抑え、オフガスを改質
器燃焼部のバーナへ安定して供給することができる。
Referring to FIG. 2, the pressure in the off-gas tank in each step when operating the four-column PSA apparatus for hydrogen purification is determined at the end of the purging step in steps 1 to 12, ie, in steps 3, 6, 9, and 12. It becomes the minimum at the end of each step. In the present invention, the opening degree of the off-gas flow control valve arranged in the conduit on the tank outlet side is increased or decreased in predetermined minute increments with respect to the full opening thereof based on the minimum pressure in the off-gas tank. Thereby, the pressure fluctuation of the off gas from the off gas tank can be suppressed, and the off gas can be stably supplied to the burner of the reformer combustion section.

【0014】図3は本発明におけるオフガス圧力の制御
態様を示す図であり、図4は、図3のうちオフガスタン
クを含む本発明の特徴部分を拡大して示した図である。
オフガスタンクの出口導管に圧力計(PICA)が配置
される。図3〜4中、FIは流量計である。本発明では
前記オフガスタンクの最小圧力を例えば0.2kg/c
2Gにしたいとき、設定値を0.2kg/cm2Gとす
る。そして圧力が最小になるステップ、図2で云えばブ
ローダウン工程の終了時、すなわち2、5、8、11の
ステップの工程終了時に上記設定値との比較を行い、P
ICAで計測される実圧力が該設定値よりも大きければ
オフガス流量調整バルブZの開度を、その全開に対して
(該バルブZの全開を100とした時に対する割合とし
て)例えば0.1%刻みで開ける方向に制御する。これ
とは逆に、PICAで計測される実圧力が該設定値より
も小さければオフガス流量調整バルブZの開度をバルブ
Zの全開度に対して例えば0.1%刻みで閉じる(絞
る)方向に制御する。
FIG. 3 is a diagram showing a control mode of the off-gas pressure in the present invention, and FIG. 4 is an enlarged view of a characteristic portion of the present invention including the off-gas tank in FIG.
A pressure gauge (PICA) is located in the outlet conduit of the off-gas tank. 3 and 4, FI denotes a flow meter. In the present invention, the minimum pressure of the off-gas tank is, for example, 0.2 kg / c
When it is desired to set to m 2 G, the set value is set to 0.2 kg / cm 2 G. Then, at the time when the pressure is minimized, that is, at the end of the blowdown process in FIG. 2, that is, at the end of the steps 2, 5, 8, and 11, the comparison with the above set values is performed.
If the actual pressure measured by the ICA is larger than the set value, the opening degree of the off-gas flow control valve Z is set to, for example, 0.1% with respect to the full opening thereof (as a ratio with respect to the case where the full opening of the valve Z is set to 100). Control the direction to open in steps. On the contrary, if the actual pressure measured by the PICA is smaller than the set value, the opening degree of the off-gas flow control valve Z is closed (throttled) at, for example, 0.1% intervals with respect to the full opening degree of the valve Z. To control.

【0015】この場合、バルブZの開度は全工程におい
て基本的には一定開度であるが、2、5、8、11のス
テップの工程終了時の実圧力すなわち圧力計(PIC
A)で計測されるオフガスタンク内の圧力値だけを瞬時
に設定圧力と比較して、小さく開けたり、小さく閉じた
りする。バルブアクションが起こるのは、ステップ2、
5、8、11の終了時の一瞬であり、しかもその制御は
例えば0.1%という微小で微妙なコントロールを行
う。これによってオフガスタンクから改質器燃焼部のバ
ーナまでの全体の圧力バランスを崩すことなく制御する
ことができる。以上の制御は別途設けたマイクロコンピ
ュータ等により行ってもよく、圧力計(PICA)にそ
のための制御機構を併置してもよい。
In this case, the opening of the valve Z is basically constant throughout the entire process, but the actual pressure at the end of the steps 2, 5, 8, and 11, ie, the pressure gauge (PIC)
Only the pressure value in the off-gas tank measured in A) is instantaneously compared with the set pressure and is opened or closed slightly. The valve action occurs in step 2,
This is a moment at the end of 5, 8, and 11, and the control is minute and delicate, for example, 0.1%. This makes it possible to control the entire pressure balance from the off-gas tank to the burner of the reformer combustion section without breaking the pressure balance. The above control may be performed by a microcomputer provided separately, or a pressure gauge (PICA) may be provided with a control mechanism therefor.

【0016】図5は水素精製用3塔式PSA装置と水素
精製用4塔式PSA装置の運転時の各塔におけるステッ
プおよびオフガスタンク(オフガス貯蔵タンク)内の圧
力の経時的変化についてその概略を示している。図5
(a)および(b)中の最下部に“圧力”として示す部
分がオフガスタンクからのオフガスの圧力変動(オフガ
スタンク内の圧力変動と同じ)の経過である。図5
(a)のとおり、3塔式ではオフガスタンク内の圧力が
高くなるのはパージ工程時とブローダウン工程時の2回
現れるが、図5(b)のとおり、4塔式ではオフガスタ
ンク内の圧力が高くなるのはブローダウン工程時の1回
のみ現れる。
FIG. 5 is a schematic diagram showing the steps and the pressure in the off-gas tank (off-gas storage tank) in each tower during operation of the three-column PSA system for hydrogen purification and the four-column PSA system for hydrogen purification. Is shown. FIG.
The part shown as "pressure" at the bottom in (a) and (b) is the progress of the pressure fluctuation of the off gas from the off gas tank (the same as the pressure fluctuation in the off gas tank). FIG.
As shown in FIG. 5A, the pressure in the off-gas tank increases twice in the purge step and the blow-down step in the three-tower system, but as shown in FIG. The increase in pressure appears only once during the blowdown process.

【0017】このため、オフガス流量の変動について
は、3塔式よりも4塔式の方が、工程の自由度が高く、
抑制が可能であるが、しかし4塔式では製品水素流量の
安定性を高めるために昇圧工程の時間は長く設定するこ
とが好ましく、その結果としてパージ工程に排出される
オフガスは安定する。ところが、そうするとブローダウ
ン工程の時間は、必然的に短く設定することとなり、サ
イクル中でブローダウン工程時のオフガス排出量だけが
多くなり、シャープなオフガス排出量となってしまう。
このため、3塔式に比べて、4塔式では、改質器燃焼部
におけるバーナの燃焼状態をさらに悪化させるが、本発
明によればオフガス排出量が大きな変動なく抑えられ、
該バーナの燃焼状態を良好に維持することができる。
For this reason, regarding the variation of the off-gas flow rate, the four-column type has a higher degree of freedom in the process than the three-column type, and
Although suppression is possible, in the four-column system, it is preferable to set the time of the pressure increasing step to be long in order to enhance the stability of the product hydrogen flow rate. As a result, the off-gas discharged to the purge step is stabilized. However, in this case, the time of the blow-down step is necessarily set to be short, and only the off-gas discharge amount during the blow-down step increases in the cycle, resulting in a sharp off-gas discharge amount.
For this reason, compared with the three-column system, the four-column system further deteriorates the combustion state of the burner in the combustion section of the reformer. However, according to the present invention, the off-gas emission amount can be suppressed without a large fluctuation.
The combustion state of the burner can be favorably maintained.

【0018】[0018]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明が実施例に限定されないことはもち
ろんである。本実施例では図3〜4に示す装置を用い
た。以下において、比較例として従来(図1参照)のよ
うに調整バルブYとバルブZの開度を一定とした場合を
併せて記載している。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but it is needless to say that the present invention is not limited to the examples. In this embodiment, the apparatus shown in FIGS. Hereinafter, as a comparative example, a case where the opening degrees of the adjustment valve Y and the valve Z are fixed as in the related art (see FIG. 1) is also described.

【0019】吸着塔A、B、C、Dのそれぞれに混合床
として活性炭、ゼオライトを充填した。原料ガスとして
都市ガス(脱硫済み)を用い、これを改質器(水蒸気改
質器)で改質し、CO変成器を経た改質ガスを用いた。
図3中、Tはオフガスタンク、Fは改質器燃焼部のバー
ナへの燃料ガス導管、Kはバーナ燃焼用空気導管であ
る。なお、図3中改質器に続くCO変成器およびガスク
ーラーの記載は省略している。
Each of the adsorption towers A, B, C and D was filled with activated carbon and zeolite as a mixed bed. City gas (desulfurized) was used as a raw material gas, which was reformed in a reformer (steam reformer), and a reformed gas passed through a CO shift converter was used.
In FIG. 3, T is an off-gas tank, F is a fuel gas conduit to the burner of the reformer combustion section, and K is a burner combustion air conduit. In FIG. 3, the description of the CO shift converter and the gas cooler following the reformer is omitted.

【0020】改質ガスは、水素が主成分であるが、C
O、CH4、CO2、N2などが含まれているが、水素以
外のガスが吸着塔で吸着除去されるガスである。改質ガ
スの吸着塔への導入温度は20〜40℃程度である。C
O変成器を経た改質ガスの温度はそれより高温であるの
で、ガスクーラーによりそのような温度に冷却して吸着
塔に供給される。
The reformed gas is mainly composed of hydrogen.
Although it contains O, CH 4 , CO 2 , N 2, and the like, gases other than hydrogen are gases that are adsorbed and removed in the adsorption tower. The temperature at which the reformed gas is introduced into the adsorption tower is about 20 to 40 ° C. C
Since the temperature of the reformed gas passed through the O-transformer is higher than that, it is cooled to such a temperature by a gas cooler and supplied to the adsorption tower.

【0021】本発明で対象とする水素精製用4塔式圧力
スイング吸着装置の各ステップの操作時間については、
ステップ1は5〜60秒、好ましくは20〜30秒、ス
テップ2は5〜60秒、好ましくは10〜20秒、ステ
ップ3は110〜300秒、好ましくは120〜190
秒の範囲である。したがってステップ1〜3での吸着時
間は120〜420秒、好ましくは150〜240秒の
範囲で実施される。
The operation time of each step of the four-column pressure swing adsorption apparatus for hydrogen purification targeted in the present invention is as follows.
Step 1 is 5 to 60 seconds, preferably 20 to 30 seconds, Step 2 is 5 to 60 seconds, preferably 10 to 20 seconds, Step 3 is 110 to 300 seconds, preferably 120 to 190
Range of seconds. Therefore, the adsorption time in steps 1 to 3 is set in the range of 120 to 420 seconds, preferably 150 to 240 seconds.

【0022】本実施例においては、ステップ1は25
秒、ステップ2は15秒、ステップ3は160秒とし
た。したがってステップ1〜3での吸着時間は200秒
である。ステップ4〜6、6〜9および10〜12は、
それぞれ、ステップ1〜3と同様である。ステップ1〜
3、ステップ4〜6、ステップ7〜9、ステップ10〜
12がそれぞれサブサイクルであり、ステップ1〜12
で1サイクルとなる。
In this embodiment, step 1 is 25 steps.
Second, step 2 was 15 seconds, and step 3 was 160 seconds. Therefore, the adsorption time in steps 1 to 3 is 200 seconds. Steps 4-6, 6-9 and 10-12
These are the same as steps 1 to 3, respectively. Step 1
3, step 4-6, step 7-9, step 10
12 is a subcycle, and steps 1 to 12
Is one cycle.

【0023】運転圧力は吸着工程時(吸着工程終了時ま
で同じ)0.7MPaG、均圧減圧、減圧保持および減
圧終了時0.6MPaG、ブローダウン終了時0.02
MPaG、パージ終了時0.22MPaG、昇圧終了時
0.68MPaとした。吸着工程の吸着圧力は精製水素
ラインに配置された制御バルブにより制御したが、図示
は省略している。以下の操作において、弁Vはステップ
1〜12を通して開の状態である。なお、以下におい
て、ブローダウン(工程)は適宜ブロー(工程)と略記
している。
The operating pressure is 0.7 MPaG at the time of the adsorption step (the same until the end of the adsorption step), 0.6 MPaG at the time of equalizing pressure reduction, pressure reduction holding and pressure reduction end, and 0.02 at the end of blowdown.
MpaG, 0.22 MPaG at the end of purge, and 0.68 MPa at the end of pressure increase. The adsorption pressure in the adsorption step was controlled by a control valve arranged in the purified hydrogen line, but is not shown. In the following operation, the valve V is open through steps 1 to 12. In the following, blowdown (step) is abbreviated as blow (step) as appropriate.

【0024】〈ステップ1〉A塔=吸着、B塔=ブロ
ー、C塔=均圧減圧、D塔=均圧昇圧 弁A1、A2を開とし、改質ガスをA塔に供給して吸着
操作を実施した。その間、B塔ではブロー工程、C塔で
は均圧減圧工程、D塔では均圧昇圧工程を行った。他の
弁につていは、弁B5、C4、D3を開とし、バルブ
W、バルブX、バルブY、バルブZの開度を一定とし
た。これら以外の弁は閉状態である。
<Step 1> A tower = adsorption, B tower = blow, C tower = equalizing pressure reducing, D tower = equalizing pressure increasing valves A1 and A2 are opened, and reforming gas is supplied to tower A to perform an adsorption operation. Was carried out. In the meantime, the blowing step was performed in the tower B, the equalizing pressure reducing step was performed in the tower C, and the equalizing pressure increasing step was performed in the tower D. As for the other valves, the valves B5, C4, and D3 were opened, and the opening degrees of the valves W, X, Y, and Z were kept constant. Other valves are closed.

【0025】〈ステップ2〉A塔=吸着、B塔=ブロ
ー、C塔=減圧保持、D塔=H2昇圧 弁C4、バルブXを閉に切り換えた以外はステップ1と
同じくして、引続き改質ガスをA塔に供給して吸着操作
を実施した。その間、B塔ではブロー工程、C塔では減
圧保持工程、D塔では均圧昇圧工程を行った。これらス
テップ1〜2の操作中、タンクTのオフガスを改質器燃
焼部の燃料として供給したが、改質器燃焼部のバーナの
燃焼状態を悪化させてしまった。
<Step 2> A tower = adsorption, B tower = blow, C tower = reduced pressure hold, D tower = H 2 pressure increase valve Same as step 1 except that the valve C4 and the valve X were closed. The raw gas was supplied to the tower A to perform the adsorption operation. During that time, a blowing step was performed in the tower B, a pressure reduction step was performed in the tower C, and a pressure equalizing step was performed in the tower D. During the operations of Steps 1 and 2, the off-gas in the tank T was supplied as fuel in the combustion section of the reformer, but the combustion state of the burner in the combustion section of the reformer was deteriorated.

【0026】そこで、各吸着塔の工程が切り換わるとき
のタンクTからの出口側導管中の圧力、すなわちタンク
下流側の圧力を圧力計PICAにより計測したところ約
0.02MPaGであった。この最小圧力を基準設定圧
力として、圧力計PICAで計測される圧力値だけを瞬
時に設定圧力と比較して、実圧力が該設定圧力よりも大
きければオフガス流量調整バルブZの開度を、該バルブ
の全開を100とした時に対して、0.1%刻みで開け
る方向に制御し、実圧力が該設定値よりも小さければオ
フガス流量調整バルブZの開度を、該バルブの全開を1
00とした時に対して、0.1%刻みで閉じる方向に制
御した。これにより改質器燃焼部のバーナへ供給するオ
フガスの圧力変動が抑えられ、該バーナの燃焼状態に変
化はなかった。
Therefore, the pressure in the outlet side conduit from the tank T, ie, the pressure on the downstream side of the tank, when the process of each adsorption tower was switched, was measured to be about 0.02 MPaG by the pressure gauge PICA. With this minimum pressure as a reference set pressure, only the pressure value measured by the pressure gauge PICA is instantaneously compared with the set pressure. If the actual pressure is larger than the set pressure, the opening degree of the off-gas flow control valve Z is set to When the actual pressure is smaller than the set value, the opening degree of the off gas flow control valve Z is set to 1 and the full opening of the valve is set to 1 when the actual pressure is smaller than the set value.
With respect to the time of 00, the closing direction was controlled in steps of 0.1%. As a result, the pressure fluctuation of the off-gas supplied to the burner of the reformer combustion section was suppressed, and there was no change in the combustion state of the burner.

【0027】〈ステップ3〉A塔=吸着、B塔=パー
ジ、C塔=減圧、D塔=H2昇圧 弁B4、C4を開とした以外はステップ2と同じくし
て、引続き改質ガスをA塔に供給して吸着操作を実施し
た。その間、B塔ではパージ工程、C塔では減圧工程、
D塔ではH2昇圧工程を行った。
<Step 3> A tower = adsorption, B tower = purge, C tower = decompression, D tower = H 2 pressure increase Same as step 2 except that valves B4 and C4 were opened, The mixture was supplied to the tower A to perform an adsorption operation. Meanwhile, the purging step in the tower B, the depressurizing step in the tower C,
In the tower D, an H 2 pressure increasing step was performed.

【0028】〈ステップ4〉A塔=均圧減圧、B塔=均
圧昇圧、C塔=ブロー、D塔=吸着 弁D1、D2を開とし、改質ガスをD塔に供給して吸着
操作を実施した。その間、A塔では均圧減圧工程、B塔
では均圧昇圧工程、C塔ではブロー工程を行った。他の
弁については、弁A4、B3、C5を開とし、バルブ
W、バルブX、バルブY、バルブZの開度を一定とし
た。これら以外の弁は閉状態である。
<Step 4> Tower A = Equalization pressure reduction, B tower = Equalization pressure increase, C tower = Blow, D tower = Adsorption valves D1 and D2 are opened, and reformed gas is supplied to D tower for adsorption operation. Was carried out. During that time, the equalizing pressure reducing step was performed in the tower A, the equalizing pressure increasing step was performed in the tower B, and the blowing step was performed in the tower C. With respect to the other valves, the valves A4, B3, and C5 were opened, and the opening degrees of the valves W, X, Y, and Z were kept constant. Other valves are closed.

【0029】〈ステップ5〉A塔=減圧保持、B塔=H
2昇圧、C塔=ブロー、D塔=吸着 弁A4、バルブXを閉に切り換えた以外はステップ4と
同じくして、引続き改質ガスをD塔に供給して吸着操作
を実施した。その間、A塔では減圧保持工程、B塔では
2昇圧工程を行い、C塔ではブロー工程を行った。こ
れらステップ4〜5の操作中、タンクTのオフガスを改
質器燃焼部の燃料として供給したが、改質器燃焼部のバ
ーナの燃焼状態を悪化してしまった。
<Step 5> Tower A = retained pressure, Tower B = H
(2) Pressurization, C tower = blow, D tower = adsorption In the same manner as in step 4 except that the valve A4 and the valve X were closed, the reforming gas was continuously supplied to the D tower to perform the adsorption operation. In the meantime, the tower A performed the reduced pressure holding step, the tower B performed the H 2 pressure increasing step, and the tower C performed the blowing step. During the operations of Steps 4 and 5, the off-gas in the tank T was supplied as fuel for the reformer combustion section, but the combustion state of the burner in the reformer combustion section deteriorated.

【0030】そこで、各吸着塔の工程が切り換わるとき
のタンクTからの出口側導管中の圧力、すなわちタンク
下流側の圧力を圧力計PICAにより計測したところ約
0.02MPaGであった。この最小圧力を基準設定圧
力として、PICAで計測される圧力値だけを瞬時に設
定圧力と比較して、実圧力が該設定圧力よりも大きけれ
ばオフガス流量調整バルブZの開度を、該バルブの全開
を100とした時に対して、0.1%刻みで開ける方向
に制御し、実圧力が該設定値よりも小さければオフガス
流量調整バルブZの開度を、該バルブの全開を100と
した時に対して、0.1%刻みで閉じる方向に制御し
た。これにより改質器燃焼部のバーナへ供給するオフガ
スの圧力変動が抑えられ、該バーナの燃焼状態に変化は
なかった。
Then, the pressure in the outlet side conduit from the tank T when the process of each adsorption tower was switched, that is, the pressure on the downstream side of the tank was measured by a pressure gauge PICA to be about 0.02 MPaG. With this minimum pressure as a reference set pressure, only the pressure value measured by PICA is instantaneously compared with the set pressure, and if the actual pressure is larger than the set pressure, the opening degree of the off-gas flow control valve Z is set to When the actual pressure is smaller than the set value, the opening degree of the off-gas flow control valve Z is set to 100, and when the valve is fully opened, the opening degree of the valve is set to 100. On the other hand, the closing direction was controlled in steps of 0.1%. As a result, the pressure fluctuation of the off-gas supplied to the burner of the reformer combustion section was suppressed, and there was no change in the combustion state of the burner.

【0031】〈ステップ6〉A塔=減圧、B塔=H2
圧、C塔=パージ、D塔=吸着 A4、C4を開とした以外はステップ5と同じくして、
引続き改質ガスをD塔に供給して吸着操作を実施した。
その間、A塔では減圧工程、B塔ではH2昇圧工程、C
塔ではパージ工程を行った。
<Step 6> A tower = decompression, B tower = H 2 pressure increase, C tower = purge, D tower = adsorption Same as step 5 except that A4 and C4 were opened.
Subsequently, the reforming gas was supplied to the tower D to perform an adsorption operation.
In the meantime, the pressure reduction step is performed in the tower A, the H 2 pressure increase step is performed in the tower B,
A purge step was performed in the tower.

【0032】〈ステップ7〉A塔=ブロー、B塔=吸
着、C塔=均圧昇圧、D塔=均圧減圧 弁B1、B2を開とし、改質ガスをB塔に供給して吸着
操作を実施した。その間、A塔ではブロー工程、C塔で
は均圧昇圧工程、D塔では均圧減圧工程を行った。他の
弁については、A5、C3、D4を開とし、バルブW、
バルブX、バルブY、バルブZの開度を一定とした。こ
れら以外の弁は閉状態である。
<Step 7> A tower = blow, B tower = adsorption, C tower = equalizing pressure increase, D tower = equalizing pressure reducing valves B1 and B2 are opened, and reforming gas is supplied to B tower to perform adsorption operation. Was carried out. During that time, the blowing step was performed in the tower A, the equalizing pressure increasing step in the tower C, and the equalizing pressure reducing step in the tower D. With respect to the other valves, A5, C3, and D4 are opened, and valves W,
The opening degrees of the valve X, the valve Y, and the valve Z were made constant. Other valves are closed.

【0033】〈ステップ8〉A塔=ブロー、B塔=吸
着、C塔=H2昇圧、D塔=減圧保持 弁D4、バルブXを閉に切り換えた以外はステップ7と
同じくして、引続き改質ガスをB塔に供給して吸着操作
を実施した。その間、A塔ではブロー工程、C塔ではH
2昇圧工程、D塔では減圧保持工程を行った。これらス
テップ7〜8の操作中、タンクTのオフガスを改質器燃
焼部の燃料として供給したが、改質器燃焼部のバーナの
燃焼状態を悪化してしまった。
<Step 8> A tower = blowing, B tower = adsorption, C tower = H 2 pressurization, D tower = reduced pressure holding Same as step 7, except that valve D4 and valve X were closed. The raw gas was supplied to the tower B to perform the adsorption operation. In the meantime, the blowing process is performed in the tower A, and the blowing process is performed in the tower C.
(2) The pressure raising step, and the reduced pressure holding step were performed in the tower D. During the operations of Steps 7 and 8, the off-gas in the tank T was supplied as fuel for the reformer combustion section, but the combustion state of the burner in the reformer combustion section deteriorated.

【0034】そこで、各吸着塔の工程が切り換わるとき
のタンクTからの出口側導管中の圧力、すなわちタンク
下流側の圧力を圧力計PICAにより計測したところ約
0.02MPaGであった。この最小圧力を基準設定圧
力として、PICAで計測される圧力値だけを瞬時に設
定圧力と比較して、実圧力が該設定圧力よりも大きけれ
ばオフガス流量調整バルブZの開度を、該バルブの全開
を100とした時に対して、0.1%刻みで開ける方向
に制御し、実圧力が該設定値よりも小さければオフガス
流量調整バルブZの開度を、該バルブの全開を100と
した時に対して、0.1%刻みで閉じる方向に制御し
た。これにより改質器燃焼部のバーナへ供給するオフガ
スの圧力変動が抑えられ、該バーナの燃焼状態に変化は
なかった。
Therefore, the pressure in the outlet side conduit from the tank T when the process of each adsorption tower was switched, that is, the pressure on the downstream side of the tank was measured by a pressure gauge PICA to be about 0.02 MPaG. With this minimum pressure as a reference set pressure, only the pressure value measured by PICA is instantaneously compared with the set pressure, and if the actual pressure is larger than the set pressure, the opening degree of the off-gas flow control valve Z is set to When the actual pressure is smaller than the set value, the opening degree of the off-gas flow control valve Z is set to 100, and when the valve is fully opened, the opening degree of the valve is set to 100. On the other hand, the closing direction was controlled in steps of 0.1%. As a result, the pressure fluctuation of the off-gas supplied to the burner of the reformer combustion section was suppressed, and there was no change in the combustion state of the burner.

【0035】〈ステップ9〉A塔=パージ、B塔=吸
着、C塔=H2昇圧、D塔=減圧 A4、D4を開とした以外はステップ8と同じくして、
引続き改質ガスをB塔に供給して吸着操作を実施した。
その間、A塔ではパージ工程、C塔ではH2昇圧工程、
D塔では減圧工程を行った。
<Step 9> Tower A = purge, Tower B = adsorption, Tower C = H 2 pressure increase, Tower D = pressure reduction Same as Step 8 except that A4 and D4 were opened.
Subsequently, the reforming gas was supplied to the tower B to perform an adsorption operation.
Meanwhile, the tower A has a purge step, the tower C has a H 2 pressure increasing step,
In the tower D, a pressure reduction step was performed.

【0036】〈ステップ10〉A塔=均圧昇圧、B塔=
均圧減圧、C塔=吸着、D塔=ブロー 弁C1、C2を開とし、引続き改質ガスをC塔に供給し
て吸着操作を実施した。その間、A塔では均圧昇圧工
程、B塔では均圧減圧工程、D塔ではブロー工程を行っ
た。他の弁については、A3、B4、D5を開とし、バ
ルブW、バルブX、バルブY、バルブZの開度を一定と
した。これら以外の弁は閉状態である。
<Step 10> Tower A = equalizing pressure increase, Tower B =
Equalization pressure reduction, C tower = adsorption, D tower = blow valves C1 and C2 were opened, and then the reforming gas was supplied to the C tower to perform the adsorption operation. In the meantime, the equalizing pressure increasing step was performed in the tower A, the equalizing pressure reducing step was performed in the tower B, and the blowing step was performed in the tower D. With respect to the other valves, A3, B4, and D5 were opened, and the opening degrees of the valve W, the valve X, the valve Y, and the valve Z were kept constant. Other valves are closed.

【0037】〈ステップ11〉A塔=H2昇圧、B塔=
減圧保持、C塔=吸着、D塔=ブロー 弁B4、バルブXを閉に切り換えた以外はステップ10
と同じくして、引続き改質ガスをC塔に供給して吸着操
作を実施した。その間、A塔ではH2昇圧工程、B塔で
は減圧保持工程、D塔ではブロー工程を行った。これら
ステップ10〜11の操作中、タンクTのオフガスを改
質器燃焼部の燃料として供給したが、改質器燃焼部のバ
ーナの燃焼状態を悪化してしまった。
<Step 11> Tower A = H 2 boost, Tower B =
Step 10 except that the pressure reduction was maintained, the tower C was adsorbed, and the tower D was blow valve B4 and valve X were closed.
In the same manner as described above, the reforming gas was continuously supplied to the column C to perform the adsorption operation. In the meantime, the tower A performed the H 2 pressure increasing step, the tower B performed the reduced pressure holding step, and the tower D performed the blowing step. During the operations of Steps 10 to 11, the off-gas in the tank T was supplied as fuel in the reformer combustion section, but the combustion state of the burner in the reformer combustion section deteriorated.

【0038】そこで、各吸着塔の工程が切り換わるとき
のタンクTからの出口側導管中の圧力、すなわちタンク
下流側の圧力を圧力計PICAにより計測したところ約
0.02MPaGであった。この最小圧力を基準設定圧
力として、PICAで計測される圧力値だけを瞬時に設
定圧力と比較して、実圧力が該設定圧力よりも大きけれ
ばオフガス流量調整バルブZの開度を、該バルブの全開
を100とした時に対して、0.1%刻みで開ける方向
に制御し、実圧力が該設定値よりも小さければオフガス
流量調整バルブZの開度を、該バルブの全開を100と
した時に対して、0.1%刻みで閉じる方向に制御し
た。これにより改質器燃焼部のバーナへ供給するオフガ
スの圧力変動が抑えられ、該バーナの燃焼状態に変化は
なかった。
Then, the pressure in the outlet side conduit from the tank T when the process of each adsorption tower was switched, that is, the pressure on the downstream side of the tank was measured by a pressure gauge PICA to be about 0.02 MPaG. With this minimum pressure as a reference set pressure, only the pressure value measured by PICA is instantaneously compared with the set pressure, and if the actual pressure is larger than the set pressure, the opening degree of the off-gas flow control valve Z is set to When the actual pressure is smaller than the set value, the opening degree of the off-gas flow control valve Z is set to 100, and when the valve is fully opened, the opening degree of the valve is set to 100. On the other hand, the closing direction was controlled in steps of 0.1%. As a result, the pressure fluctuation of the off-gas supplied to the burner of the reformer combustion section was suppressed, and there was no change in the combustion state of the burner.

【0039】〈ステップ12〉A塔=H2昇圧、B塔=
減圧、C塔=吸着、D塔=パージ B4、D4を開とした以外はステップ11と同じくし
て、引続き改質ガスをC塔に供給して吸着操作を実施し
た。その間、A塔ではH2昇圧工程、B塔では減圧工
程、D塔ではパージ工程を行った。
<Step 12> Tower A = H 2 boost, Tower B =
Depressurization, C tower = adsorption, D tower = purge Except that B4 and D4 were opened, the adsorption operation was performed by continuously supplying the reformed gas to the C tower in the same manner as in step 11. In the meantime, the H 2 pressure increasing step was performed in the tower A, the pressure reducing step was performed in the tower B, and the purging step was performed in the tower D.

【0040】以上ステップ1〜12のサイクルを繰り返
し実施し、本発明により、各吸着塔の工程が切り換わる
ときのオフガスタンクTからの出口側導管中の圧力を計
測し、その最小圧力を基準設定圧力として、オフガス流
量調整バルブZの開度を制御することにより、改質器燃
焼部におけるバーナの燃焼状態を良好に保ち、円滑に操
作を続けることができた。
By repeating the cycle of steps 1 to 12, the present invention measures the pressure in the outlet-side conduit from the off-gas tank T when the process of each adsorption tower is switched, and sets the minimum pressure as a reference. By controlling the opening degree of the off-gas flow control valve Z as the pressure, the burner combustion state in the reformer combustion section was kept good, and the operation could be continued smoothly.

【0041】[0041]

【発明の効果】本発明によれば、水素精製用4塔式PS
A装置におけるオフガスタンクからのオフガスの圧力変
動を抑えることができ、これにより該オフガスを改質器
燃焼部におけるバーナの燃料として供給するに際して、
該バーナの燃焼状態を安定化させることができる。この
効果はオフガスタンク下流側のオフガス流量調整バルブ
の開度を微小刻みで増減させるだけで得られるため、装
置構成上も非常に有利である。
According to the present invention, a four-column PS for hydrogen purification is used.
The pressure fluctuation of the off gas from the off gas tank in the A apparatus can be suppressed, so that when the off gas is supplied as burner fuel in the reformer combustion section,
The combustion state of the burner can be stabilized. Since this effect can be obtained only by increasing or decreasing the opening degree of the off-gas flow control valve on the downstream side of the off-gas tank in small increments, it is very advantageous in terms of the device configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素精製用4塔式PSA装置における各吸着塔
A〜D、配管、バルブ、オフガスタンク等の配置関係を
示す図
FIG. 1 is a diagram showing a positional relationship among adsorption towers A to D, piping, valves, off-gas tanks, and the like in a four-column PSA apparatus for hydrogen purification.

【図2】図1に示す水素精製用4塔式PSA装置におけ
る各吸着塔の工程フロー及び運転シーケンスの概略を示
す図
FIG. 2 is a diagram schematically showing a process flow and an operation sequence of each adsorption tower in the four-column PSA apparatus for hydrogen purification shown in FIG.

【図3】本発明におけるオフガス圧力の制御態様を示す
FIG. 3 is a diagram showing a control mode of off-gas pressure in the present invention.

【図4】図3のうちオフガスタンクを含む本発明の特徴
部分を拡大して示す図
4 is an enlarged view showing a characteristic portion of the present invention including an off-gas tank in FIG.

【図5】3塔式圧力スイング吸着装置と4塔式圧力スイ
ング吸着装置における各工程およびオフガスタンク内の
圧力の経時的変化の概略を示す図
FIG. 5 is a diagram schematically showing a time-dependent change in each step and a pressure in an off-gas tank in a three-column pressure swing adsorption device and a four-column pressure swing adsorption device.

【符号の説明】[Explanation of symbols]

A〜D 吸着塔 T オフガスタンク F 改質器燃焼部のバーナへの燃料ガス導管 K バーナ燃焼用空気導管 PICA 圧力計 FI 流量計 A to D adsorption tower T off gas tank F fuel gas conduit to burner in reformer combustion section K burner combustion air conduit PICA pressure gauge FI flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古田 博貴 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 高橋 徹 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 中村 健一 東京都新宿区西新宿3ー7ー1 新宿パー クタワー10階 東京ガスケミカル株式会社 内 (72)発明者 会田 広司 東京都新宿区西新宿3ー7ー1 新宿パー クタワー10階 東京ガスケミカル株式会社 内 (72)発明者 日下 亮平 神奈川県横浜市青葉区奈良町1670ー25 (72)発明者 鎌倉 幸弘 東京都八王子市小宮町1064ー15 (72)発明者 森口 久美子 神奈川県川崎市宮前区有馬一丁目8ー13ー 501 (72)発明者 宮島 秀樹 神奈川県横浜市鶴見区東寺尾5ー2ー10 Fターム(参考) 4D012 CA07 CB16 CD07 CE01 CE02 CF02 CF03 CH03 CH05 4G040 FA02 FB02 FB03 FB04 FB05 FC03 FE01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Furuta 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Tohru Takahashi 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Inside (72) Inventor Kenichi Nakamura 3-7-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Shinjuku Park Tower 10th floor Tokyo Gas Chemical Co., Ltd. Inside (72) Inventor Koji Aida 3-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Shinjuku Park Tower 10th Floor Tokyo Gas Chemical Co., Ltd. Person Kumiko Moriguchi 1-13-501, Arima 1-chome, Miyamae-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Hideki Miyajima 5-2-10 F-Terao, Tsurumi-ku, Yokohama City, Kanagawa Prefecture None (reference) 4D012 CA07 CB16 CD07 CE01 CE02 CF02 CF03 CH03 CH05 4G040 FA02 FB02 FB03 FB04 FB05 FC03 FE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素精製用4塔式PSA装置に付設された
オフガスタンクのオフガスを水素製造用改質器のバーナ
に供給するに際して、オフガスタンクの圧力が最小とな
るときの当該最小圧力を基準として、オフガスタンク下
流側のオフガス流量調整バルブの開度を所定の微小刻み
で増減させることによりオフガスタンクからのオフガス
圧力を制御することを特徴とする水素精製用4塔式PS
A装置におけるオフガスタンクからのオフガス圧力の制
御方法。
When supplying the off-gas of an off-gas tank attached to a four-column PSA apparatus for hydrogen purification to a burner of a reformer for hydrogen production, the minimum pressure when the pressure of the off-gas tank becomes minimum is used as a reference. A four-column PS for hydrogen purification, wherein the off-gas pressure from the off-gas tank is controlled by increasing or decreasing the degree of opening of an off-gas flow control valve on the downstream side of the off-gas tank in predetermined small increments.
A method for controlling an off-gas pressure from an off-gas tank in the A apparatus.
【請求項2】上記最小圧力を基準とするオフガス流量調
整バルブの開度の増減を、オフガスタンクの圧力の上昇
時にはその開度を所定の微小刻みで増加させ、オフガス
タンクの圧力の下降時にはその開度を所定の微小刻みで
減少させることにより行うことを特徴とする請求項1に
記載の水素精製用4塔式PSA装置におけるオフガスタ
ンクからのオフガス圧力の制御方法。
2. An increase / decrease of the opening of the off-gas flow control valve based on the minimum pressure, the opening is increased in predetermined small steps when the pressure of the off-gas tank is increased, and the opening is increased when the pressure of the off-gas tank is decreased. 2. The method for controlling the pressure of off-gas from an off-gas tank in a four-column PSA system for hydrogen purification according to claim 1, wherein the opening is reduced in small increments.
【請求項3】上記最小圧力を基準とするオフガス流量調
整バルブの開度の所定の微小刻みの増減が、該オフガス
流量調整バルブの全開に対して約0.1%刻みの増減で
あることを特徴とする請求項1または2に記載の水素精
製用4塔式PSA装置におけるオフガスタンクからのオ
フガス圧力の制御方法。
3. The method according to claim 1, wherein the increase / decrease of the opening degree of the off-gas flow control valve with respect to the minimum pressure in predetermined small increments is about 0.1% with respect to the full opening of the off-gas flow control valve. The method for controlling the pressure of off-gas from an off-gas tank in a four-column PSA apparatus for hydrogen purification according to claim 1 or 2.
JP2001164607A 2001-05-31 2001-05-31 Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen Pending JP2002355522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164607A JP2002355522A (en) 2001-05-31 2001-05-31 Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164607A JP2002355522A (en) 2001-05-31 2001-05-31 Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen

Publications (1)

Publication Number Publication Date
JP2002355522A true JP2002355522A (en) 2002-12-10

Family

ID=19007408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164607A Pending JP2002355522A (en) 2001-05-31 2001-05-31 Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen

Country Status (1)

Country Link
JP (1) JP2002355522A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076030A1 (en) * 2003-02-25 2004-09-10 Sumitomo Seika Chemicals Co., Ltd. Off-gas feed method and object gas purification system
JP2006282460A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Apparatus for producing hydrogen
EP2022755A1 (en) * 2006-05-11 2009-02-11 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and method of controlling flow rate of offgas in the system
WO2015008837A1 (en) * 2013-07-19 2015-01-22 大阪瓦斯株式会社 Method for hydrogen production by pressure swing adsorption
WO2018202329A1 (en) * 2017-05-04 2018-11-08 Linde Aktiengesellschaft Improved use of the residual gas from a pressure swing adsorption plant
JP2019172552A (en) * 2018-03-29 2019-10-10 大阪瓦斯株式会社 Hydrogen production equipment
JP2020093963A (en) * 2018-12-14 2020-06-18 東京瓦斯株式会社 Hydrogen production apparatus
JP2020093945A (en) * 2018-12-10 2020-06-18 東京瓦斯株式会社 Hydrogen production apparatus, operation method of hydrogen production apparatus, and operation program of hydrogen production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605418U (en) * 1983-06-20 1985-01-16 新日本製鐵株式会社 pressure swing adsorption device
JPH08119603A (en) * 1994-10-17 1996-05-14 Nippon Steel Corp Production of carbon monoxide and hydrogen simultaneously from gaseous mixture
JP2000317245A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Separation and purification of gas
JP2001010806A (en) * 1999-06-21 2001-01-16 Tokyo Gas Co Ltd Control of off-gas pressure from off-gas tank in three- column type psa unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605418U (en) * 1983-06-20 1985-01-16 新日本製鐵株式会社 pressure swing adsorption device
JPH08119603A (en) * 1994-10-17 1996-05-14 Nippon Steel Corp Production of carbon monoxide and hydrogen simultaneously from gaseous mixture
JP2000317245A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Separation and purification of gas
JP2001010806A (en) * 1999-06-21 2001-01-16 Tokyo Gas Co Ltd Control of off-gas pressure from off-gas tank in three- column type psa unit

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161444A (en) * 2003-02-25 2011-08-25 Sumitomo Seika Chem Co Ltd Off-gas supply method
JPWO2004076030A1 (en) * 2003-02-25 2006-06-01 住友精化株式会社 Off-gas supply method and target gas purification system
KR100689255B1 (en) * 2003-02-25 2007-03-02 스미토모 세이카 가부시키가이샤 Off-gas feed method and object gas purification system
AU2004216325B2 (en) * 2003-02-25 2007-05-17 Sumitomo Seika Chemicals Co., Ltd. Off-gas feed method and object gas purification system
CN100336577C (en) * 2003-02-25 2007-09-12 住友精化株式会社 Off-gas feed method and object gas purification system
US7438746B2 (en) 2003-02-25 2008-10-21 Sumitomo Seika Chemicals, Co., Ltd. Off-gas feed method and target gas purification system
WO2004076030A1 (en) * 2003-02-25 2004-09-10 Sumitomo Seika Chemicals Co., Ltd. Off-gas feed method and object gas purification system
JP4782563B2 (en) * 2003-02-25 2011-09-28 住友精化株式会社 Off-gas supply method and target gas purification system
JP2006282460A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Apparatus for producing hydrogen
US8480770B2 (en) 2006-05-11 2013-07-09 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and method of controlling flow rate of offgas in the system
EP2022755A4 (en) * 2006-05-11 2011-03-30 Sumitomo Seika Chemicals Hydrogen production system and method of controlling flow rate of offgas in the system
US8298305B2 (en) 2006-05-11 2012-10-30 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and method of controlling flow rate of offgas in the system
EP2022755A1 (en) * 2006-05-11 2009-02-11 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and method of controlling flow rate of offgas in the system
KR101961233B1 (en) 2013-07-19 2019-03-22 오사까 가스 가부시키가이샤 Method for hydrogen production by pressure swing adsorption
JP2015038015A (en) * 2013-07-19 2015-02-26 大阪瓦斯株式会社 Pressure swing adsorption type hydrogen production method
KR20160047472A (en) 2013-07-19 2016-05-02 오사까 가스 가부시키가이샤 Method for hydrogen production by pressure swing adsorption
US9675927B2 (en) 2013-07-19 2017-06-13 Osaka Gas Co., Ltd. Method for hydrogen production by pressure swing adsorption
WO2015008837A1 (en) * 2013-07-19 2015-01-22 大阪瓦斯株式会社 Method for hydrogen production by pressure swing adsorption
WO2018202329A1 (en) * 2017-05-04 2018-11-08 Linde Aktiengesellschaft Improved use of the residual gas from a pressure swing adsorption plant
CN110621614A (en) * 2017-05-04 2019-12-27 林德股份公司 Improved use of residual gas from pressure swing adsorption units
JP2019172552A (en) * 2018-03-29 2019-10-10 大阪瓦斯株式会社 Hydrogen production equipment
JP7068888B2 (en) 2018-03-29 2022-05-17 大阪瓦斯株式会社 Hydrogen production equipment
JP2020093945A (en) * 2018-12-10 2020-06-18 東京瓦斯株式会社 Hydrogen production apparatus, operation method of hydrogen production apparatus, and operation program of hydrogen production apparatus
JP7129321B2 (en) 2018-12-10 2022-09-01 東京瓦斯株式会社 Hydrogen production device, hydrogen production device operation method, and hydrogen production device operation program
JP2020093963A (en) * 2018-12-14 2020-06-18 東京瓦斯株式会社 Hydrogen production apparatus
JP7082939B2 (en) 2018-12-14 2022-06-09 東京瓦斯株式会社 Hydrogen production equipment

Similar Documents

Publication Publication Date Title
US7255727B2 (en) Method for treating at least one feed gas mixture by pressure swing adsorption
US9156690B2 (en) Hydrogen generation process using partial oxidation/steam reforming
KR101353476B1 (en) Hydrogen production system and method of controlling flow rate of offgas in the system
JP3856987B2 (en) Method for controlling off-gas pressure from off-gas tank in three-column PSA system for hydrogen purification
JP2002355522A (en) Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
CA2829539C (en) Hydrogen generation processes and apparatus and control system
JP2017226562A (en) Hydrogen gas manufacturing method and hydrogen gas manufacturing device
JP6530122B1 (en) Hydrogen production equipment
JP4316386B2 (en) Method and apparatus for producing hydrogen from hydrogen rich feed gas
JP2007209868A (en) Stable operation method of pressure swing adsorption device
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP3819174B2 (en) Off-gas flow rate control method in pressure swing adsorption device
JP2005517622A5 (en)
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP4187569B2 (en) Hydrogen production equipment
JP4180534B2 (en) Fuel gas production apparatus and operation method thereof
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP6505306B1 (en) Hydrogen production equipment
JP7129321B2 (en) Hydrogen production device, hydrogen production device operation method, and hydrogen production device operation program
US20050178062A1 (en) Fuel gas manufacturing apparatus
JP2002355520A (en) Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2004299995A (en) Hydrogen production plant, and hydrogen production method
JP4850432B2 (en) Operation method of hydrogen production apparatus and hydrogen production apparatus
JP2020100534A (en) Hydrogen production apparatus
JPS621769B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601