JPH08119603A - Production of carbon monoxide and hydrogen simultaneously from gaseous mixture - Google Patents

Production of carbon monoxide and hydrogen simultaneously from gaseous mixture

Info

Publication number
JPH08119603A
JPH08119603A JP6278254A JP27825494A JPH08119603A JP H08119603 A JPH08119603 A JP H08119603A JP 6278254 A JP6278254 A JP 6278254A JP 27825494 A JP27825494 A JP 27825494A JP H08119603 A JPH08119603 A JP H08119603A
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorption
pressure
adsorption tower
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6278254A
Other languages
Japanese (ja)
Other versions
JP3219612B2 (en
Inventor
Katsushi Kosuge
克志 小菅
Yasushi Kawamura
靖 川村
Toshiya Higuchi
俊也 樋口
Yuzuru Kato
讓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27825494A priority Critical patent/JP3219612B2/en
Publication of JPH08119603A publication Critical patent/JPH08119603A/en
Application granted granted Critical
Publication of JP3219612B2 publication Critical patent/JP3219612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To produce high-purity carbon monoxide and hydrogen from a gaseous mixture without need for a large power at the time of forcing a gas necessary to purge an adsorption tower into the tower under pressure. CONSTITUTION: A gaseous mixture contg. carbon monoxide and hydrogen is introduced into an adsorption tower while maintaining a working pressure selected to control the partial pressure of carbon 2 monoxide to 1-5kg/cm<2> A in the adsorption stage. The gas in the adsorption tower is discharged under atmospheric pressure after the adsorption stage, and the pressure in the tower is lowered close to atmospheric pressure in the discharge stage. The adsorption tower is further evacuated by a vacuum pump to desorb the carbon monoxide adsorbed on an adsorbent in the desorption stage. The hydrogen obtained in the adsorption stage is forced into the adsorption tower under pressure after the desorption stage to increase the pressure in the tower above the pressure necessary to the succeeding adsorption stage in the pressure increasing stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧力変動吸着法(PS
A)によって、一酸化炭素、水素及び少量の二酸化炭
素、メタン、窒素を含有する混合ガスより一酸化炭素及
び水素を併産する方法に関する。
The present invention relates to a pressure fluctuation adsorption method (PS
According to A), it relates to a method for co-producing carbon monoxide and hydrogen from a mixed gas containing carbon monoxide, hydrogen and a small amount of carbon dioxide, methane and nitrogen.

【0002】[0002]

【従来の技術】水素、一酸化炭素等の目的とするガスを
一酸化炭素、水素及び少量の二酸化炭素、メタン、窒素
等を含有する混合ガス中から分離回収するためのガス分
離技術として、圧力変動吸着法によるガス分離方法が知
られている。これは特定のガスを吸着剤に選択的に高圧
下で吸着させて、吸着された該ガスを低圧下で脱着させ
るガス分離方法であって、大量のガスを処理するのに適
した生産性の高い方法であるが、吸着工程で得られる製
品水素、及び脱着工程で得られる製品一酸化炭素それぞ
れに対して、目的成分以外の未吸着ガスの混入、塔内残
留未吸着ガスの混入により、目的とする製品ガスの純度
を限度以上に高めることが困難である。このため、前者
については、吸着剤の選択性及び、操作条件が重要であ
り、後者については吸着塔の置換パージ工程が重要であ
る。このような製品ガスを高純度化するための技術とし
て、例えば特開昭63−62522号公報には、1次成
分/2次成分からなるガス混合物から、吸着工程で1次
成分、脱着工程で2次成分の2成分製品ガスを分離する
ために、20以上のガス選択性を持つ吸着剤を使用し
て、吸着−置換パージ−減圧−脱着−昇圧からなる工程
による分離方法が記載されている。
2. Description of the Related Art As a gas separation technique for separating and recovering a target gas such as hydrogen and carbon monoxide from a mixed gas containing carbon monoxide, hydrogen and a small amount of carbon dioxide, methane, nitrogen, etc. A gas separation method by a variable adsorption method is known. This is a gas separation method in which a specific gas is selectively adsorbed under a high pressure and the adsorbed gas is desorbed under a low pressure, and the productivity is suitable for treating a large amount of gas. Although it is a high method, the product hydrogen obtained in the adsorption process and the product carbon monoxide obtained in the desorption process are mixed with unadsorbed gas other than the target component and residual unadsorbed gas in the tower It is difficult to raise the purity of the product gas above the limit. Therefore, for the former, the selectivity of the adsorbent and the operating conditions are important, and for the latter, the displacement purging step of the adsorption tower is important. As a technique for highly purifying such a product gas, for example, in Japanese Patent Laid-Open No. 63-62522, a gas mixture consisting of a primary component / a secondary component is used to remove a primary component in an adsorption process and a desorption process in a desorption process. In order to separate the two-component product gas of the secondary component, an adsorbent having a gas selectivity of 20 or more is used, and a separation method by a process consisting of adsorption-displacement purge-decompression-desorption-pressurization is described. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記特
開昭63−62522号公報に記載された2成分ガスの
分離方法では、置換パージ工程が吸着工程における吸着
圧力とほぼ同じである高圧力下で行われるので、2次成
分ガスの吸着量増大による置換パージ量が増大し、置換
パージガスを圧縮する必要があるため、大きな動力が必
要となる。また2成分以上の混合ガスに適用すると、吸
着剤に1次成分/2次成分以外のものが蓄積されない限
り、必ず目的成分以外のガスがいずれかに混入して純度
が低下する欠点があった。本発明はこのような事情に鑑
みてなされたもので、吸着塔の置換パージに必要なガス
を吸着塔内に圧入するに際して大きな動力を要せず、し
かも高純度で、混合ガスより一酸化炭素及び水素を併産
する方法を提供することを目的とする。
However, in the method for separating a two-component gas described in JP-A-63-62522, the displacement purging step is performed under a high pressure which is almost the same as the adsorption pressure in the adsorption step. Since the replacement purge gas is increased, the replacement purge amount increases due to the increase in the adsorption amount of the secondary component gas, and the replacement purge gas needs to be compressed, which requires a large amount of power. Further, when applied to a mixed gas of two or more components, there is a drawback that a gas other than the target component is necessarily mixed with any of the gases unless the adsorbent accumulates other than the primary component / secondary component, and the purity is lowered. . The present invention has been made in view of the above circumstances, and does not require a large power for injecting the gas required for the displacement purge of the adsorption tower into the adsorption tower, and yet has a high purity and a carbon monoxide content higher than that of the mixed gas. And a method of co-producing hydrogen.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載の混合ガスより一酸化炭素及び水素を併産する方法
は、一酸化炭素及び水素を含む混合ガス中の一酸化炭素
を吸着剤に高圧下で吸着させて、難吸着成分である水素
を製品として排出し、吸着された該一酸化炭素を低圧下
で脱着させて、製品一酸化炭素として得る圧力スイング
吸着法における混合ガスより一酸化炭素及び水素を併産
する方法において、一酸化炭素を選択的に吸着する吸着
剤を充填した吸着塔に、前記混合ガスを一酸化炭素の分
圧が1〜5kg/cm2 Aとなる選ばれた操作圧力を維
持させながら導入して、該一酸化炭素を吸着剤に吸着さ
せて、該吸着塔から吐出する水素の回収を行う吸着工程
と、前記吸着工程の終了後前記吸着塔内のガスを大気圧
下に放出して、該吸着塔の内圧を大気圧近くまで降圧す
る放圧工程と、前記吸着塔を真空ポンプによりさらに大
気圧以下に減圧して、前記吸着剤に吸着された一酸化炭
素を脱着させる脱着工程と、前記脱着工程の終了後、前
記吸着工程で得た水素を前記吸着塔に圧入して、該吸着
塔の内圧を次の吸着工程に必要な吸着圧力近くまで昇圧
する昇圧工程とを有するように構成されている。
A method according to the above-mentioned object.
The method of co-producing carbon monoxide and hydrogen from the described mixed gas is a method of adsorbing carbon monoxide in a mixed gas containing carbon monoxide and hydrogen under high pressure on an adsorbent to produce hydrogen which is a difficult-to-adsorb component. In the method of co-producing carbon monoxide and hydrogen from a mixed gas in a pressure swing adsorption method in which the adsorbed carbon monoxide is desorbed under a low pressure to obtain the product carbon monoxide, the carbon monoxide is selected. The mixed gas is introduced into an adsorption tower filled with an adsorbent that adsorbs the carbon monoxide while maintaining a selected operation pressure at which the partial pressure of carbon monoxide is 1 to 5 kg / cm 2 A, and the carbon monoxide is introduced. Is adsorbed on the adsorbent to recover hydrogen discharged from the adsorption tower, and after the adsorption step, the gas in the adsorption tower is released under atmospheric pressure to reduce the internal pressure of the adsorption tower. Before the pressure release process to reduce the pressure to near atmospheric pressure, The desorption step of further decompressing the adsorption tower to below atmospheric pressure by a vacuum pump to desorb carbon monoxide adsorbed on the adsorbent, and the hydrogen obtained in the adsorption step after the desorption step is completed in the adsorption tower. And a pressure increasing step of increasing the internal pressure of the adsorption tower to near the adsorption pressure required for the next adsorption step.

【0005】請求項2記載の混合ガスより一酸化炭素及
び水素を併産する方法は、請求項1記載の混合ガスより
一酸化炭素及び水素を併産する方法において、前記放圧
工程と前記脱着工程との間に、前記脱着工程で回収する
一酸化炭素の一部を、前記吸着工程のガス流れと順方向
に前記吸着塔に送入することにより該吸着塔内の不純物
成分ガスを放出して該吸着塔内の洗浄を行う置換パージ
工程を有するように構成されている。
A method for co-producing carbon monoxide and hydrogen from a mixed gas according to claim 2 is the method for co-producing carbon monoxide and hydrogen from a mixed gas according to claim 1, wherein the depressurizing step and the desorption are performed. During this step, part of carbon monoxide recovered in the desorption step is fed into the adsorption tower in the forward direction of the gas flow in the adsorption step to release the impurity component gas in the adsorption tower. It is configured to have a displacement purging step for cleaning the inside of the adsorption tower.

【0006】[0006]

【作用】請求項1記載の混合ガスより一酸化炭素及び水
素を併産する方法においては、吸着工程の吸着圧力は、
吸着成分である一酸化炭素の分圧により、1〜5kg/
cm2 Aの範囲より選ばれ、本操作圧力を維持させなが
ら一酸化炭素及び水素を含有する混合ガスを原料ガスと
して吸着塔内に導入して、該一酸化炭素を吸着剤に吸着
させるので、一酸化炭素の吸着効率及び、製品水素純度
を高めることができる。ここで一酸化炭素分圧は(吸着
操作圧力)×(原料ガス中の一酸化炭素濃度)であり、
絶対圧力(kg/cm2 A)で表示される値である。吸
着一酸化炭素分圧を実際に変化させて、吸着工程での一
酸化炭素の回収率及び製品水素中に含まれる一酸化炭素
の濃度変化を求めた実験結果を図3は示しているが、吸
着一酸化炭素分圧を1kg/cm2 A以上とすることに
より、大幅に吸着工程における一酸化炭素の回収率を増
大させ、さらに、製品水素中に含まれる一酸化炭素の濃
度を低下させることができることが分かる。縦軸の一酸
化炭素の回収率及び一酸化炭素濃度は、吸着一酸化炭素
分圧を1kg/cm2 Aとした時に得られる吸着工程に
おける一酸化炭素の回収率、及び製品水素中の一酸化炭
素濃度の値をそれぞれ1.0として表示した。
In the method for co-producing carbon monoxide and hydrogen from the mixed gas according to claim 1, the adsorption pressure in the adsorption step is
Depending on the partial pressure of carbon monoxide, which is the adsorbing component, 1 to 5 kg /
Since a mixed gas containing carbon monoxide and hydrogen, which is selected from the range of cm 2 A and maintains this operating pressure, is introduced into the adsorption tower as a raw material gas to adsorb the carbon monoxide on the adsorbent, The adsorption efficiency of carbon monoxide and the product hydrogen purity can be improved. Here, the carbon monoxide partial pressure is (adsorption operation pressure) × (carbon monoxide concentration in the raw material gas),
It is a value displayed in absolute pressure (kg / cm 2 A). FIG. 3 shows the experimental results obtained by actually changing the adsorbed carbon monoxide partial pressure to obtain the carbon monoxide recovery rate in the adsorption step and the concentration change of carbon monoxide contained in the product hydrogen. By setting the adsorbed carbon monoxide partial pressure to 1 kg / cm 2 A or more, the recovery rate of carbon monoxide in the adsorption process is significantly increased, and further, the concentration of carbon monoxide contained in the product hydrogen is reduced. You can see that The carbon monoxide recovery rate and the carbon monoxide concentration on the vertical axis are the carbon monoxide recovery rate in the adsorption process and the carbon monoxide concentration in the product hydrogen obtained when the adsorbed carbon monoxide partial pressure was 1 kg / cm 2 A. The carbon concentration value was displayed as 1.0.

【0007】尚、吸着一酸化炭素分圧が5kg/cm2
Aを越えたところでも併産は十分に可能であるが、操作
圧力が高圧となり、設備の安全上、構造を高強度とせね
ばならず設備費のアップにつながる等、また、製品水素
濃度、製品一酸化炭素回収率も殆ど向上がみられなくな
ること等により吸着一酸化炭素の分圧は5kg/cm2
Aを上限とすることが望ましい。さらに、吸着工程の終
了後、前記吸着塔内のガスを大気圧下に放出して、該吸
着塔の内圧を大気圧近くまで降圧するので、吸着塔内に
残留する目的成分以外のガスを、動力を必要とすること
なく放出できる。また、脱着を行って一酸化炭素を回収
した後、前記吸着工程で得た水素を前記吸着塔に圧入し
て、該吸着塔の内圧を、次の吸着工程に必要な吸着圧力
まで昇圧するので、吸着塔内の水素濃度が高くなって、
続く吸着工程で回収される水素の純度を低下させること
なく、安定した品質を保つことができる。
The partial pressure of adsorbed carbon monoxide is 5 kg / cm 2.
Co-production is sufficiently possible even if the temperature exceeds A, but the operating pressure is high, and for the safety of the equipment, the structure must be of high strength, leading to an increase in equipment costs. The partial pressure of adsorbed carbon monoxide is 5 kg / cm 2 because the recovery rate of carbon monoxide is hardly improved.
It is desirable to set A as the upper limit. Furthermore, after the adsorption step, the gas in the adsorption tower is released under atmospheric pressure, and the internal pressure of the adsorption tower is reduced to near atmospheric pressure, so that gases other than the target component remaining in the adsorption tower, It can be released without the need for power. In addition, after desorption and recovery of carbon monoxide, the hydrogen obtained in the adsorption step is pressed into the adsorption tower to increase the internal pressure of the adsorption tower to the adsorption pressure required for the next adsorption step. , The hydrogen concentration in the adsorption tower becomes high,
Stable quality can be maintained without reducing the purity of hydrogen recovered in the subsequent adsorption step.

【0008】そして、請求項2記載の混合ガスより一酸
化炭素及び水素を併産する方法においては、放圧工程と
脱着工程との間に前記の脱着工程で回収した純度の高い
一酸化炭素を吸着工程のガス流れと順方向に吸着塔に送
入することにより、吸着塔内の不純物成分ガスを放出し
て吸着塔内の洗浄を行うので、続く脱着工程において回
収される一酸化炭素の純度を高めることができる。ここ
で吸着工程のガス流れと逆方向に一酸化炭素を送入した
場合には、吸着塔の上部に残留する不純なガス成分と混
合するため、脱着工程において回収される一酸化炭素の
純度が低下してしまう。
Further, in the method for co-producing carbon monoxide and hydrogen from the mixed gas according to the second aspect, the carbon monoxide having high purity recovered in the desorption step between the pressure release step and the desorption step is produced. By advancing into the adsorption tower in the forward direction of the gas flow in the adsorption step, the impurity component gas in the adsorption tower is released to clean the inside of the adsorption tower, so the purity of carbon monoxide recovered in the subsequent desorption step. Can be increased. Here, when carbon monoxide is fed in the opposite direction to the gas flow in the adsorption step, it is mixed with the impure gas component remaining in the upper part of the adsorption tower, so that the purity of carbon monoxide recovered in the desorption step is increased. Will fall.

【0009】[0009]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに図1は本発明の一実施例に係る混合ガスより
一酸化炭素及び水素を併産する方法を適用した装置にお
ける操作フロー及び吸着塔内ガスの分布状態を示した説
明図、図2は同装置の全体概略説明図、図3は吸着工程
における一酸化炭素の回収率及び製品水素中の一酸化炭
素濃度と、吸着一酸化炭素分圧との関係を示す図であ
る。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an explanatory diagram showing an operation flow and a distribution state of gas in an adsorption tower in an apparatus to which a method of co-producing carbon monoxide and hydrogen from a mixed gas according to an embodiment of the present invention is applied, and FIG. FIG. 3 is an overall schematic explanatory view of the same apparatus, and FIG. 3 is a diagram showing a relationship between a carbon monoxide recovery rate and a carbon monoxide concentration in product hydrogen and an adsorbed carbon monoxide partial pressure in an adsorption step.

【0010】まず、図2に示した本発明の一実施例に係
る混合ガスより一酸化炭素及び水素を併産する方法を適
用した装置について説明する。吸着塔A、B、C、Dの
内部には一酸化炭素を吸着するための吸着剤が充填され
ている。吸着塔A、B、C、Dは内径が25mm、高さ
が3700mmとなって、一酸化炭素の吸着剤として
は、特公昭60−49022号(特許1326552
号)公報に示されるような活性炭にハロゲン化アルミニ
ウムを担持した吸着剤1.8リットル/塔が充填されて
いる。ここでハロゲン化アルミニウムの担体としては、
活性炭の他にグラファイト等が使用でき、シリカ、活性
アルミナに銅化合物を担持したもの及び、ゼオライトに
銅イオンでイオン交換したもの、無機化合物担体に塩化
銅又はハロゲン化アルミニウムを担持させたもの等も使
用可能である。
First, an apparatus to which the method for co-producing carbon monoxide and hydrogen from a mixed gas according to an embodiment of the present invention shown in FIG. 2 is applied will be described. An adsorbent for adsorbing carbon monoxide is filled inside the adsorption towers A, B, C, and D. The adsorption towers A, B, C, and D have an inner diameter of 25 mm and a height of 3700 mm, and as an adsorbent for carbon monoxide, JP-B-60-49022 (Patent 1326552).
The adsorbent containing aluminum halide supported on activated carbon as shown in Japanese Patent No. 4) is filled with 1.8 liters / tower. Here, as the carrier of aluminum halide,
Graphite can be used in addition to activated carbon, silica, activated alumina carrying a copper compound, zeolite being ion-exchanged with copper ions, inorganic compound carrier carrying copper chloride or aluminum halide, etc. It can be used.

【0011】そして、吸着塔A、B、C、Dの上下には
パイプ配管12、12aが取り付けられており、それぞ
れのパイプ配管12内を連通または閉止するための自動
開閉弁A1〜A7、B1〜B7、C1〜C7、D1〜D
7が設けられている。これら自動開閉弁の開閉操作によ
り、各吸着塔A、B、C、Dを混合ガス供給部15、製
品一酸化炭素供給部16、製品水素供給部17及びオフ
ガス供給部18へと必要に応じて適宜連通できるように
構成されている。また各吸着塔A、B、C、Dと製品一
酸化炭素供給部16に接続するパイプ配管12の経路に
は真空ポンプ10とバッファタンク13が配置されてお
り、各吸着塔A、B、C、Dの上部に連なるパイプ配管
12aには、吸着塔A、B、C、Dを置換パージする際
に使用される一酸化炭素を含有した置換パージオフガス
を原料へリサイクルするための圧縮機11と貯蔵用のバ
ッファタンク14とが設けられている。尚、図中では必
要な計装機器を省略して表示している。
Pipe pipes 12 and 12a are installed above and below the adsorption towers A, B, C and D, and automatic opening / closing valves A1 to A7 and B1 for communicating or closing the inside of the pipe pipes 12 are installed. ~ B7, C1 ~ C7, D1 ~ D
7 are provided. By opening / closing these automatic opening / closing valves, the adsorption towers A, B, C, D are moved to the mixed gas supply unit 15, the product carbon monoxide supply unit 16, the product hydrogen supply unit 17, and the off-gas supply unit 18 as required. It is configured to be able to communicate as appropriate. Further, a vacuum pump 10 and a buffer tank 13 are arranged in a path of a pipe pipe 12 connected to each adsorption tower A, B, C, D and a product carbon monoxide supply section 16, and each adsorption tower A, B, C is provided. , D is connected to the pipe pipe 12a and a compressor 11 for recycling the purge purge off gas containing carbon monoxide, which is used when purging the adsorption towers A, B, C and D, to the raw material. A buffer tank 14 for storage is provided. It should be noted that necessary instrumentation devices are omitted in the drawing.

【0012】次に、前記装置を用いて、混合ガス中から
一酸化炭素と水素とを回収する一連の工程の動作は、表
1のタイムサイクルに示す様に、それぞれの吸着塔A〜
Dは上下の自動開閉弁An〜Dn(対象工程の吸着塔に
設けられている弁の何れか1個のみを開く、n=1〜
7)により各工程をサイクリックに繰り返す。ここで
は、吸着塔Aの動作を中心として請求項2記載の方法に
ついて説明する。ここで原料となる混合ガス中の一酸化
炭素、水素、二酸化炭素、メタンの濃度はそれぞれ5
0.20%、45.93%、3.52%、0.35%で
ある。吸着塔Aにおいて目的ガスである一酸化炭素の吸
着工程を行っている時点では、吸着塔Aの下部配管は混
合ガス供給部15に、上部配管は製品水素供給部17に
それぞれ独立に連通する状態に自動開閉弁A1、A5を
開として混合ガスを吸着塔Aに導入する。
Next, the operation of a series of steps for recovering carbon monoxide and hydrogen from the mixed gas using the above-mentioned apparatus is as shown in the time cycle of Table 1, for each of the adsorption towers A ...
D is the upper and lower automatic opening / closing valves An to Dn (only one of the valves provided in the adsorption tower of the target process is opened, n = 1 to 1).
Each step is cyclically repeated according to 7). Here, the method according to claim 2 will be described focusing on the operation of the adsorption tower A. Here, the concentrations of carbon monoxide, hydrogen, carbon dioxide, and methane in the mixed gas used as the raw materials are each 5
It is 0.20%, 45.93%, 3.52%, 0.35%. A state in which the lower pipe of the adsorption tower A communicates with the mixed gas supply unit 15 and the upper pipe communicates with the product hydrogen supply unit 17 independently at the time when the adsorption process of the target gas, carbon monoxide, is performed in the adsorption tower A. Then, the automatic opening / closing valves A1 and A5 are opened and the mixed gas is introduced into the adsorption tower A.

【0013】図1(a)に示すように、一酸化炭素の破
過前線が吸着塔上部に達する以前で、且つ水素以外の成
分の少なくとも1成分以上が破過しない状態で脱着工程
を終了させる。破過前線とは吸着塔内の特定成分ガスの
吸着破過の状態を示すもので、この破過前線が吸着塔の
上部に達すると吐出するガス中の特定成分の濃度が急速
に増大する。そして吸着塔内を移動する破過前線の通過
を、実験等により予測してある所定時間に達した時に、
もしくは吐出ガスのガス成分を測定して水素ガスの濃度
が所定レベルに達した時に、吸着塔上下に配置された自
動開閉弁A1、A5を全閉として、吸着工程を終了させ
る(図1(a))。本工程における吸着塔Aの内圧は大
気圧より+3.5kg/cm2 高い圧力であり、吸着一
酸化炭素分圧に換算すると約2.3kg/cm2 Aであ
る。
As shown in FIG. 1 (a), the desorption process is terminated before the breakthrough front of carbon monoxide reaches the upper part of the adsorption tower and at least one component other than hydrogen is not broken through. . The breakthrough front refers to the state of adsorption breakthrough of the specific component gas in the adsorption tower, and when the breakthrough front reaches the upper part of the adsorption tower, the concentration of the specific component in the discharged gas rapidly increases. Then, when the passage of the breakthrough front moving in the adsorption tower reaches a predetermined time predicted by experiments, etc.,
Alternatively, when the gas component of the discharge gas is measured and the concentration of hydrogen gas reaches a predetermined level, the automatic opening / closing valves A1 and A5 arranged above and below the adsorption tower are fully closed to end the adsorption step (FIG. 1 (a )). The internal pressure of the adsorption tower A in this step is a pressure higher than the atmospheric pressure by +3.5 kg / cm 2, which is approximately 2.3 kg / cm 2 A when converted to the adsorption carbon monoxide partial pressure.

【0014】しかる後、上部の自動開閉弁A7を開い
て、ほぼ大気圧に下がるまで吸着塔A内のガスをオフガ
スとして放出するが、必要に応じて自動開閉弁A7を閉
じ、A4を開いてバッファタンク14内に貯蔵すること
もできる。このような放圧工程により一酸化炭素及び水
素以外の成分を多く含む不純なガスが効率的に除かれる
(図1(b))。そして、所定時間もしくは、所定圧力
に吸着塔の内圧が達した時点で、自動開閉弁A7もしく
はA4を全閉として、放圧工程を終了させる。
Thereafter, the upper automatic opening / closing valve A7 is opened to release the gas in the adsorption tower A as off-gas until the atmospheric pressure is reduced to about atmospheric pressure. However, if necessary, the automatic opening / closing valve A7 is closed and A4 is opened. It can also be stored in the buffer tank 14. Impurity gas containing a large amount of components other than carbon monoxide and hydrogen is efficiently removed by such a pressure release step (FIG. 1 (b)). Then, at a predetermined time or when the internal pressure of the adsorption tower reaches a predetermined pressure, the automatic opening / closing valve A7 or A4 is fully closed, and the pressure release step is ended.

【0015】そして、前記吸着塔Aの下部から即ち、吸
着工程におけるガス流れと順方向にして、バッファタン
ク13に貯蔵されている高濃度の一酸化炭素を自動開閉
弁A3、A4を開として吸着塔Aに送入することにより
吸着塔A内の不純なガスを下部から上部に押し出して、
吸着塔A内の洗浄を行った(図1(c))。本置換パー
ジ工程では、送り込む高濃度の一酸化炭素量は、脱着工
程で得られるガスを必要とされる製品一酸化炭素純度に
応じて使用するが、本実施例では、脱着工程で得られた
ガスの約50%を吸着塔Aへ供給し、所定時間に達した
時点で自動開閉弁A3、A4を閉として本工程を終了さ
せる。
Then, from the lower part of the adsorption tower A, that is, in the forward direction of the gas flow in the adsorption step, the high concentration carbon monoxide stored in the buffer tank 13 is adsorbed by opening the automatic opening / closing valves A3 and A4. Impurity gas in the adsorption tower A is pushed out from the lower part to the upper part by feeding into the tower A,
The inside of the adsorption tower A was washed (Fig. 1 (c)). In this displacement purging step, the high concentration of carbon monoxide fed in uses the gas obtained in the desorption step according to the required product carbon monoxide purity, but in this example, it was obtained in the desorption step. About 50% of the gas is supplied to the adsorption tower A, and when the predetermined time is reached, the automatic opening / closing valves A3 and A4 are closed and this step is completed.

【0016】次いで、吸着塔Aの下部にある自動開閉弁
A2を開いて、真空ポンプ10により吸着塔A内を吸着
圧力が50Torrとなるまで減圧し、吸着剤に吸着さ
れている一酸化炭素を脱着させた(図1(d))。この
間、前記一酸化炭素はバッファタンク13を介して製品
一酸化炭素供給部16及び置換パージ工程に使用される
ガスとして供給される。そして、所定の時間に達した時
点で自動開閉弁A2を閉じて脱着工程を終了した。
Next, the automatic on-off valve A2 at the bottom of the adsorption tower A is opened, and the pressure inside the adsorption tower A is reduced by the vacuum pump 10 until the adsorption pressure becomes 50 Torr, and the carbon monoxide adsorbed by the adsorbent is removed. It was desorbed (Fig. 1 (d)). During this period, the carbon monoxide is supplied through the buffer tank 13 as a gas used in the product carbon monoxide supply unit 16 and the substitution purge process. Then, when the predetermined time was reached, the automatic opening / closing valve A2 was closed to complete the desorption process.

【0017】昇圧工程においては、以上のようにして脱
着工程を終了した前記吸着塔Aの上部から、あるいは必
要に応じて下部から、前記吸着工程で得た高純度の水素
を自動開閉弁A6を開いて送入し(図1(e))、吸着
塔Aの内圧を約3.5kg/cm2 G(大気圧との差
圧)となるまで昇圧させ所定の時間又は、所定の吸着塔
内圧力に達した時点で、自動開閉弁A6を閉として本工
程を終了し、次の脱着工程へと吸着塔Aは移行する。
In the pressurizing step, the high-purity hydrogen obtained in the adsorbing step is supplied to the automatic opening / closing valve A6 from the upper part of the adsorption tower A, which has completed the desorption step as described above, or from the lower part if necessary. It is opened and fed (Fig. 1 (e)), and the internal pressure of the adsorption tower A is raised to about 3.5 kg / cm 2 G (the pressure difference from the atmospheric pressure) for a predetermined time or in a predetermined adsorption tower. When the pressure is reached, the automatic opening / closing valve A6 is closed to end this process, and the adsorption tower A moves to the next desorption process.

【0018】以上の操作を吸着塔A〜Dについて、表
1、表2に示すタイムサイクルに従ってサイクリックに
逐次行う。表1、表2において自動開閉弁A1〜D7の
空白で表示したものは閉止状態にあることを示し、A〜
D塔はそれぞれ吸着塔A〜Dを表示している。尚、請求
項1の方法では、上記置換パージ工程を行うための操作
工程を省略した工程により、同様の操作を行えば良く、
その一例として、3基の吸着塔でのタイムサイクルを表
3に示した。
The above operations are cyclically and sequentially performed for the adsorption towers A to D according to the time cycles shown in Tables 1 and 2. In Tables 1 and 2, the automatic open / close valves A1 to D7 indicated by blanks indicate that they are in the closed state.
Tower D displays adsorption towers A to D, respectively. According to the method of claim 1, the same operation may be performed by a step omitting the operation step for performing the displacement purging step,
As an example, Table 3 shows the time cycle in three adsorption towers.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】以上のようにして混合ガスの分離を行った
結果、製品水素中に含まれる水素、一酸化炭素、二酸化
炭素、メタンの各成分は、96.16%、3.33%、
0.01%、0.50%であり、製品一酸化炭素中に含
まれる水素、一酸化炭素、二酸化炭素、メタンの各成分
は、0.32%、99.64%、0.03%、0.01
%であり、混合ガス、製品水素、製品一酸化炭素のガス
量はそれぞれ314.75、107.09、141.5
1Nl/Hrであった。尚、本実施例の吸着、脱着時間
はそれぞれ300秒とした。
As a result of separating the mixed gas as described above, the respective components of hydrogen, carbon monoxide, carbon dioxide and methane contained in the product hydrogen are 96.16%, 3.33%,
It is 0.01% and 0.50%, and the components of hydrogen, carbon monoxide, carbon dioxide and methane contained in the product carbon monoxide are 0.32%, 99.64%, 0.03%, 0.01
%, And the gas amounts of mixed gas, product hydrogen, and product carbon monoxide are 314.75, 107.09, and 141.5, respectively.
It was 1 Nl / Hr. The adsorption and desorption times in this example were each 300 seconds.

【0023】比較例として、製品一酸化炭素による吸着
塔Aの置換パージを、3.5kg/cm2 Gの高圧の圧
力下で行い、かつ置換パージに使用したガス量を本実施
例の2.7倍使用した他は、前記実施例と同様の条件で
前記混合ガスの分離を行った結果、製品水素中に含まれ
る水素、一酸化炭素、二酸化炭素、メタンの各成分は、
94.09%、5.42%、0.01%、0.48%で
あり、製品一酸化炭素中に含まれる水素、一酸化炭素、
二酸化炭素、メタンの各成分は、4.28%、88.9
3%、6.56%、0.23%であった。比較例におい
ては、実施例に較べて水素及び一酸化炭素の純度が低
く、しかも、置換パージ工程において一酸化炭素の圧入
のための動力を必要とするために、電力が実施例に較べ
て約50%上昇した。
As a comparative example, displacement purging of the adsorption tower A with product carbon monoxide was carried out under a high pressure of 3.5 kg / cm 2 G, and the amount of gas used for the displacement purging was determined as in 2. As a result of separating the mixed gas under the same conditions as in the above-mentioned example except that it was used 7 times, each component of hydrogen, carbon monoxide, carbon dioxide, and methane contained in the product hydrogen was
94.09%, 5.42%, 0.01%, 0.48%, and hydrogen and carbon monoxide contained in the product carbon monoxide,
Each component of carbon dioxide and methane is 4.28%, 88.9
It was 3%, 6.56%, and 0.23%. In the comparative example, the purities of hydrogen and carbon monoxide are lower than those of the examples, and moreover, the power for the injection of carbon monoxide is required in the displacement purging step. It rose by 50%.

【0024】以上、本発明の実施例を説明したが、本発
明はこれらの実施例に限定されるものではなく、要旨を
逸脱しない条件での変更等は全て本発明の適用範囲であ
る。例えば上記実施例においては、吸着塔の基数が4基
である装置について述べたが、基数に限定されることな
く本発明の適用が可能であるし、置換パージオフガスを
原料にリサイクルさせずにオフガスとして排出し、圧縮
機11及びバッファタンク14の省略、あるいはバッフ
ァタンク13と自動開閉弁A3〜D3の間にブロワーも
しくはファンを設置する等の変更も可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and all modifications and the like without departing from the scope of the invention are within the scope of the present invention. For example, in the above-mentioned embodiment, an apparatus in which the number of adsorption towers is 4 has been described, but the present invention can be applied without being limited to the number of adsorption towers, and the replacement purge off-gas can be used as an off gas without being recycled to the raw material. It is also possible to omit the compressor 11 and the buffer tank 14 or to install a blower or a fan between the buffer tank 13 and the automatic opening / closing valves A3 to D3.

【0025】[0025]

【発明の効果】請求項1記載の混合ガスより一酸化炭素
及び水素を併産する方法においては、一酸化炭素を選択
的に吸着する吸着剤を充填した吸着塔に、一酸化炭素及
び水素を含有する混合ガスを一酸化炭素の分圧が1〜5
kg/cm2 Aとなる選ばれた操作圧力を維持させなが
ら導入して、該一酸化炭素を吸着剤に吸着させて、該吸
着塔から吐出する水素の回収を行う吸着工程と、前記吸
着工程の終了後前記吸着塔内のガスを大気圧下に放出し
て、該吸着塔の内圧を大気圧近くまで降圧する放圧工程
と、前記吸着塔を真空ポンプによりさらに大気圧以下に
減圧して、前記吸着剤に吸着された一酸化炭素を脱着さ
せる脱着工程と、前記脱着工程の終了後、前記吸着工程
で得た水素を前記吸着塔に圧入して、該吸着塔の内圧を
次の吸着工程に必要な吸着圧力近くまで昇圧する昇圧工
程とを有するように構成されているので、吸着塔内の水
素濃度が高くなって、続く吸着工程で回収される水素の
純度を低下させることなく安定した品質を保つことがで
きる。
According to the method for co-producing carbon monoxide and hydrogen from a mixed gas according to claim 1, carbon monoxide and hydrogen are placed in an adsorption tower filled with an adsorbent which selectively adsorbs carbon monoxide. The mixed gas containing the carbon monoxide has a partial pressure of 1 to 5
an adsorption step of introducing while maintaining a selected operating pressure of kg / cm 2 A to adsorb the carbon monoxide on an adsorbent and recovering hydrogen discharged from the adsorption tower; and the adsorption step. After the end of the step, the gas in the adsorption tower is released under atmospheric pressure, and a pressure releasing step of reducing the internal pressure of the adsorption tower to near atmospheric pressure, and further reducing the adsorption tower to below atmospheric pressure by a vacuum pump. A desorption step of desorbing carbon monoxide adsorbed on the adsorbent, and after completion of the desorption step, hydrogen obtained in the adsorption step is pressure-injected into the adsorption tower, and the internal pressure of the adsorption tower is changed to the next adsorption. Since it is configured to have a pressure raising step that raises the pressure to near the adsorption pressure required for the step, the hydrogen concentration in the adsorption tower becomes high, and the purity of hydrogen recovered in the subsequent adsorption step is stable without deteriorating. You can keep the quality that you did.

【0026】そして、請求項2記載の混合ガスより一酸
化炭素及び水素を併産する方法においては、放圧工程と
脱着工程との間に、前工程で回収した純度の高い一酸化
炭素を吸着工程のガス流れと順方向に吸着塔に送入する
ことにより、吸着塔内に残留する不純物成分ガスを放出
させて吸着塔内の洗浄を行うので、続く脱着工程におい
て回収される一酸化炭素の純度をさらに高めることがで
きる。
In the method for co-producing carbon monoxide and hydrogen from the mixed gas according to the second aspect, the carbon monoxide of high purity recovered in the previous step is adsorbed between the pressure release step and the desorption step. By feeding into the adsorption tower in the forward direction along with the gas flow of the process, the impurity component gas remaining in the adsorption tower is released to clean the inside of the adsorption tower, so that carbon monoxide recovered in the subsequent desorption step The purity can be further increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る混合ガスより一酸化炭
素及び水素を併産する方法を適用した装置における操作
フロー図及び吸着塔内ガスの分布状態を示した説明図で
ある。
FIG. 1 is an operation flow diagram and an explanatory diagram showing a distribution state of gas in an adsorption tower in an apparatus to which a method for co-producing carbon monoxide and hydrogen from a mixed gas according to an embodiment of the present invention is applied.

【図2】同装置の全体概略説明図である。FIG. 2 is an overall schematic explanatory diagram of the device.

【図3】吸着工程における一酸化炭素の回収率及び製品
水素中の一酸化炭素濃度と、吸着一酸化炭素分圧との関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a recovery rate of carbon monoxide and a carbon monoxide concentration in product hydrogen and an adsorbed carbon monoxide partial pressure in an adsorption step.

【符号の説明】[Explanation of symbols]

10 真空ポンプ 11 圧縮機 12 パイプ配管 12a パイプ配管 13 バッファタンク 14 バッファタンク 15 混合ガス供給部 16 製品一酸化炭素供給部 17 製品水素供給部 18 オフガス供給部 A 吸着塔 A1 自動開閉弁 A2 自動開閉弁 A3 自動開閉弁 A4 自動開閉弁 A5 自動開閉弁 A6 自動開閉弁 A7 自動開閉弁 B 吸着塔 B1 自動開閉弁 B2 自動開閉弁 B3 自動開閉弁 B4 自動開閉弁 B5 自動開閉弁 B6 自動開閉弁 B7 自動開閉弁 C 吸着塔 C1 自動開閉弁 C2 自動開閉弁 C3 自動開閉弁 C4 自動開閉弁 C5 自動開閉弁 C6 自動開閉弁 C7 自動開閉弁 D 吸着塔 D1 自動開閉弁 D2 自動開閉弁 D3 自動開閉弁 D4 自動開閉弁 D5 自動開閉弁 D6 自動開閉弁 D7 自動開閉弁 10 vacuum pump 11 compressor 12 pipe piping 12a pipe piping 13 buffer tank 14 buffer tank 15 mixed gas supply section 16 product carbon monoxide supply section 17 product hydrogen supply section 18 off-gas supply section A adsorption tower A1 automatic open / close valve A2 automatic open / close valve A3 automatic opening / closing valve A4 automatic opening / closing valve A5 automatic opening / closing valve A6 automatic opening / closing valve A7 automatic opening / closing valve B adsorption tower B1 automatic opening / closing valve B2 automatic opening / closing valve B3 automatic opening / closing valve B4 automatic opening / closing valve B5 automatic opening / closing valve B6 automatic opening / closing valve B7 automatic opening / closing Valve C Adsorption tower C1 Automatic opening / closing valve C2 Automatic opening / closing valve C3 Automatic opening / closing valve C4 Automatic opening / closing valve C5 Automatic opening / closing valve C6 Automatic opening / closing valve C7 Automatic opening / closing valve D Adsorption tower D1 Automatic opening / closing valve D2 Automatic opening / closing valve D3 Automatic opening / closing valve D4 Automatic opening / closing Valve D5 automatic opening / closing valve D6 automatic opening / closing valve D7 automatic opening / closing valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 讓 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社機械・プラント事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Kato 46-59 Nakahara, Tobata-ku, Kitakyushu, Fukuoka Prefecture 46-59 Nippon Steel Corporation Machinery & Plant Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一酸化炭素及び水素を含む混合ガス中の
一酸化炭素を吸着剤に高圧下で吸着させて、難吸着成分
である水素を製品として排出し、吸着された該一酸化炭
素を低圧下で脱着させて、製品一酸化炭素として得る圧
力スイング吸着法における混合ガスより一酸化炭素及び
水素を併産する方法において、 一酸化炭素を選択的に吸着する吸着剤を充填した吸着塔
に前記混合ガスを一酸化炭素の分圧が1〜5kg/cm
2 Aとなる選ばれた操作圧力を維持させながら導入し
て、該一酸化炭素を吸着剤に吸着させて、該吸着塔から
吐出する水素の回収を行う吸着工程と、 前記吸着工程の終了後前記吸着塔内のガスを大気圧下に
放出して、該吸着塔の内圧を大気圧近くまで降圧する放
圧工程と、 前記吸着塔を真空ポンプによりさらに大気圧以下に減圧
して、前記吸着剤に吸着された一酸化炭素を脱着させる
脱着工程と、 前記脱着工程の終了後、前記吸着工程で得た水素を前記
吸着塔に圧入して、該吸着塔の内圧を次の吸着工程に必
要な吸着圧力近くまで昇圧する昇圧工程とを有すること
を特徴とする混合ガスより一酸化炭素及び水素を併産す
る方法。
1. Carbon monoxide in a mixed gas containing carbon monoxide and hydrogen is adsorbed on an adsorbent under high pressure, and hydrogen, which is a difficult-to-adsorb component, is discharged as a product, and the adsorbed carbon monoxide is removed. In the method of co-producing carbon monoxide and hydrogen from a mixed gas in the pressure swing adsorption method, which is desorbed under low pressure to obtain the product carbon monoxide, in an adsorption tower packed with an adsorbent that selectively adsorbs carbon monoxide. The mixed gas has a partial pressure of carbon monoxide of 1 to 5 kg / cm.
Was introduced while maintaining the chosen operating pressure becomes 2 A, the carbon monoxide adsorbed on the adsorbent, the adsorption step for the recovery of hydrogen to be discharged from the adsorption tower after completion of the adsorption step A pressure release step of releasing the gas in the adsorption tower under atmospheric pressure to reduce the internal pressure of the adsorption tower to near atmospheric pressure, and further reducing the pressure of the adsorption tower below atmospheric pressure by a vacuum pump, A desorption step of desorbing carbon monoxide adsorbed on the agent, and after the desorption step is completed, the hydrogen obtained in the adsorption step is pressed into the adsorption tower, and the internal pressure of the adsorption tower is required for the next adsorption step. And a step of increasing the pressure up to near the adsorption pressure, the method for co-producing carbon monoxide and hydrogen from a mixed gas.
【請求項2】 前記放圧工程と前記脱着工程との間に、
前記脱着工程で回収する一酸化炭素の一部を、前記吸着
工程のガス流れと順方向に前記吸着塔に送入することに
より該吸着塔内の不純物成分ガスを放出して該吸着塔内
の洗浄を行う置換パージ工程を有してなる請求項1記載
の混合ガスより一酸化炭素及び水素を併産する方法。
2. Between the pressure release step and the desorption step,
Part of the carbon monoxide recovered in the desorption step is fed into the adsorption tower in the forward direction of the gas flow in the adsorption step to release the impurity component gas in the adsorption tower to release the gas in the adsorption tower. The method for co-producing carbon monoxide and hydrogen from a mixed gas according to claim 1, which comprises a displacement purging step of performing cleaning.
JP27825494A 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas Expired - Fee Related JP3219612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27825494A JP3219612B2 (en) 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27825494A JP3219612B2 (en) 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas

Publications (2)

Publication Number Publication Date
JPH08119603A true JPH08119603A (en) 1996-05-14
JP3219612B2 JP3219612B2 (en) 2001-10-15

Family

ID=17594779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27825494A Expired - Fee Related JP3219612B2 (en) 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas

Country Status (1)

Country Link
JP (1) JP3219612B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355522A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP2011005493A (en) * 2010-08-20 2011-01-13 Sumitomo Seika Chem Co Ltd Method for separating carbon monoxide and apparatus for separating carbon monoxide
JP5427412B2 (en) * 2006-11-24 2014-02-26 岩谷産業株式会社 Ozone gas concentration method and apparatus
JP2017226561A (en) * 2016-06-20 2017-12-28 株式会社神戸製鋼所 Hydrogen gas manufacturing method and hydrogen gas manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355522A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP5427412B2 (en) * 2006-11-24 2014-02-26 岩谷産業株式会社 Ozone gas concentration method and apparatus
JP2011005493A (en) * 2010-08-20 2011-01-13 Sumitomo Seika Chem Co Ltd Method for separating carbon monoxide and apparatus for separating carbon monoxide
JP2017226561A (en) * 2016-06-20 2017-12-28 株式会社神戸製鋼所 Hydrogen gas manufacturing method and hydrogen gas manufacturing device

Also Published As

Publication number Publication date
JP3219612B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US4539020A (en) Methods for obtaining high-purity carbon monoxide
US4775394A (en) Process for separation of high purity gas from mixed gas
US4781735A (en) Enrichment in oxygen gas
KR880000513B1 (en) Process for removing a nitrogen gas from mixture comprising n2 and co
EP0008882B1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
JP4898194B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus
FI81966B (en) Improved adsorption method with pressure oscillation
US4280824A (en) Process for providing a feed gas for a chemical reaction and for the separation of a gaseous reaction product
CA1238868A (en) Method for obtaining high-purity carbon monoxide
KR19980081620A (en) Pressure swing adsorption method and device
EP0826629B1 (en) Recovery of noble gases
JP2005504626A (en) PSA process for co-production of nitrogen and oxygen
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
GB2154465A (en) Gas separation method and apparatus
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JPH08119603A (en) Production of carbon monoxide and hydrogen simultaneously from gaseous mixture
JP2018184348A (en) Method for producing high-purity acetylene gas
JPS6137970B2 (en)
JP4070399B2 (en) Helium gas purification method
JPH09110406A (en) Production of neon and helium
WO2020105242A1 (en) Gas separation device and gas separation method
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPH04227018A (en) Manufacture of inert gas of high purity
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JP7487165B2 (en) Pressure swing adsorption gas separation method and pressure swing adsorption gas separation device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees