JP4481112B2 - Pressure fluctuation adsorption type gas separation method and apparatus - Google Patents
Pressure fluctuation adsorption type gas separation method and apparatus Download PDFInfo
- Publication number
- JP4481112B2 JP4481112B2 JP2004247396A JP2004247396A JP4481112B2 JP 4481112 B2 JP4481112 B2 JP 4481112B2 JP 2004247396 A JP2004247396 A JP 2004247396A JP 2004247396 A JP2004247396 A JP 2004247396A JP 4481112 B2 JP4481112 B2 JP 4481112B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- component
- adsorption
- adsorbent
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001179 sorption measurement Methods 0.000 title claims description 216
- 238000000926 separation method Methods 0.000 title claims description 98
- 239000007789 gas Substances 0.000 claims description 361
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 150
- 238000000034 method Methods 0.000 claims description 144
- 238000003860 storage Methods 0.000 claims description 123
- 239000003463 adsorbent Substances 0.000 claims description 95
- 229910052724 xenon Inorganic materials 0.000 claims description 75
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical group [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 75
- 229910052757 nitrogen Inorganic materials 0.000 claims description 74
- 239000002994 raw material Substances 0.000 claims description 55
- 238000010926 purge Methods 0.000 claims description 37
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 229910052743 krypton Inorganic materials 0.000 claims description 24
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 229910021536 Zeolite Inorganic materials 0.000 claims description 19
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 19
- 239000010457 zeolite Substances 0.000 claims description 19
- 229910052786 argon Inorganic materials 0.000 claims description 18
- 239000001307 helium Substances 0.000 claims description 15
- 229910052734 helium Inorganic materials 0.000 claims description 15
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 15
- 230000001747 exhibiting effect Effects 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 238000003795 desorption Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000011084 recovery Methods 0.000 description 25
- 239000000047 product Substances 0.000 description 21
- 230000008929 regeneration Effects 0.000 description 21
- 238000011069 regeneration method Methods 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 10
- 230000006837 decompression Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 6
- 238000011946 reduction process Methods 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910002089 NOx Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
本発明は、クリプトン、キセノンなど高付加価値ガスを含む混合ガスから、高濃度、高回収率で高付加価値ガスを分離回収する方法であって、例えば、プラズマスパッタリング装置、プラズマ酸化装置、プラズマ窒化装置やプラズマCVD装置、リアクティブイオンエッチング装置等の半導体製造設備や液晶ディスプレイ等の表示装置を製造する製造設備(以下、単に製造設備と言う)から排出される排ガス中の高付加価値ガスを分離、回収して、前記製造設備に供給するための圧力変動吸着式ガス分離方法及び装置に関する。 The present invention is a method for separating and recovering a high value-added gas with a high concentration and a high recovery rate from a mixed gas containing a high value-added gas such as krypton or xenon, for example, a plasma sputtering apparatus, a plasma oxidation apparatus, a plasma nitridation, etc. Separation of high value-added gas in exhaust gas discharged from manufacturing equipment (hereinafter simply referred to as manufacturing equipment) that manufactures semiconductor manufacturing equipment such as equipment, plasma CVD equipment, and reactive ion etching equipment, and display equipment such as liquid crystal displays The present invention relates to a pressure fluctuation adsorption type gas separation method and apparatus for collecting and supplying to the manufacturing facility.
半導体集積回路、液晶パネル、太陽電池パネル、磁気ディスク等の半導体製品を製造する工程では、希ガス雰囲気中で高周波放電により発生させたプラズマによって各種処理が行われる。このような処理において、従来はアルゴンが用いられてきたが、近年はより高度な処理を行うためにクリプトンやキセノンが注目されてきている。しかし、クリプトンやキセノンは、空気中の存在比及び分離工程の複雑さから極めて高価なガスであり、雰囲気ガスとして使用した後、外部に放出することは、コストが著しく増大する問題があった。このようなガスを使用するプロセスを経済的に成り立たせるためには、使用済みの希ガスを99%以上で回収し、循環使用することが極めて重要となる。更に、回収した希ガスを再利用するためには、少なくとも99.9%以上の濃度が求められる。 In a process of manufacturing a semiconductor product such as a semiconductor integrated circuit, a liquid crystal panel, a solar battery panel, or a magnetic disk, various processes are performed by plasma generated by high frequency discharge in a rare gas atmosphere. Conventionally, argon has been used in such treatment, but in recent years, krypton and xenon have attracted attention in order to perform more advanced treatment. However, krypton and xenon are extremely expensive gases due to the abundance ratio in the air and the complexity of the separation process, and there is a problem that the cost is significantly increased when the krypton and xenon are used as the atmospheric gas and then released to the outside. In order to make a process using such a gas economically feasible, it is extremely important to collect used rare gas at 99% or more and circulate it. Furthermore, in order to reuse the collected rare gas, a concentration of at least 99.9% is required.
これらの製造設備からの排ガスは、主として雰囲気ガスと該製造設備の真空排気時に導入されるパージガスからなる。さらに、上記ガスに加えて、半導体の製造方法に応じて添加されるガス、例えば、酸化膜形成であれば酸素、窒化膜形成であれば窒素および水素、あるいはアンモニア、プラズマCVDであれば金属水素化物系ガス、リアクティブイオンエッチングであればハロゲン化炭化水素系ガス、ヘリウム、窒素などが含まれる。さらに、プラズマ処理による反応副生成物として、水分、二酸化炭素、水素、NOx、炭化水素などが含まれる。 The exhaust gas from these production facilities mainly consists of an atmospheric gas and a purge gas introduced when the production facility is evacuated. Further, in addition to the above gas, a gas added according to a semiconductor manufacturing method, for example, oxygen for forming an oxide film, nitrogen and hydrogen for forming a nitride film, or metal hydrogen for ammonia or plasma CVD. In the case of fluoride gas and reactive ion etching, halogenated hydrocarbon gas, helium, nitrogen and the like are included. Furthermore, water, carbon dioxide, hydrogen, NOx, hydrocarbons and the like are included as reaction byproducts of the plasma treatment.
混合ガスから目的成分を回収する方法として、圧力変動吸着式ガス分離(PSA)法がある。圧力変動吸着式ガス分離法を利用した典型的なものとして、酸素PSA、窒素PSAがある。これら典型的なPSAは、易吸着成分を吸着除去し、難吸着成分を製品として回収する。酸素PSAは、ゼオライトを吸着剤として用い、易吸着成分である窒素を除去し、難吸着成分である酸素を回収する。窒素PSAでは、CMS(カーボンモレキュラーシーブ)などを吸着剤として用い、易吸着成分である酸素を除去し、難吸着成分である窒素を回収する。これら典型的なPSAでは、目的成分(難吸着成分)を高濃度にすることができるが、脱着工程において、吸着剤空隙、あるいは共吸着成分として吸着剤に残存する難吸着成分が、易吸着成分とともに排気されるため、目的成分(難吸着成分)を高回収率で回収することができない。目的成分を高濃度、高回収率で回収するためには、目的成分を濃縮するのみでなく、排ガス中に含まれる目的成分もできる限り少なくする必要がある。すなわち、二成分からなる混合ガスならば、各成分を高濃度、高回収率で回収できるガス分離方法が求められる。 As a method for recovering a target component from a mixed gas, there is a pressure fluctuation adsorption type gas separation (PSA) method. Typical examples using the pressure fluctuation adsorption gas separation method include oxygen PSA and nitrogen PSA. These typical PSA adsorbs and removes easily adsorbed components and collects hardly adsorbed components as a product. Oxygen PSA uses zeolite as an adsorbent, removes nitrogen as an easily adsorbed component, and recovers oxygen as an hardly adsorbed component. In nitrogen PSA, CMS (carbon molecular sieve) or the like is used as an adsorbent, oxygen that is an easily adsorbed component is removed, and nitrogen that is an hardly adsorbed component is recovered. In these typical PSA, the target component (hard adsorption component) can be made high in concentration, but in the desorption process, the hard adsorption component remaining in the adsorbent as an adsorbent void or a co-adsorption component is easily adsorbed component. In addition, since the exhaust gas is exhausted, the target component (hardly adsorbed component) cannot be recovered at a high recovery rate. In order to recover the target component at a high concentration and high recovery rate, it is necessary not only to concentrate the target component but also to reduce the target component contained in the exhaust gas as much as possible. That is, in the case of a mixed gas composed of two components, a gas separation method capable of recovering each component with a high concentration and a high recovery rate is required.
混合ガスから複数の成分を採取する方法として、例えば並流パージガスを用いたPSA法が、Wernerらによる米国特許第4,599,094号明細書に開示されている。
このWernerらのPSA法にあっては、原料ガス中の易吸着成分と難吸着成分を同時に製品として回収するものであり、例えば原料ガスが空気であれば、易吸着成分の窒素と難吸着成分の酸素の両方を製品として回収できる。即ち、先ず高圧で空気を吸着筒下部に供給し、易吸着成分である窒素を吸着し、難吸着成分である酸素を吸着筒上部より導出する。空気の供給は、空気の吸着帯が吸着筒上部に達する前に停止し、次いで高濃度窒素ガスを並流パージガスとして吸着筒下部より供給する。並流パージガスの供給は、高濃度窒素ガスの吸着帯が空気の吸着帯前後に達するまで続けられる。この間、吸着筒上部より酸素の導出は引き続き行われる。この並流パージガスの供給により、吸着筒内は易吸着成分である窒素で吸着飽和となる。吸着筒上部より導出した酸素は、一部が製品として回収され、残りのガスは向流パージガスとして使用される。次いで、吸着剤に吸着した窒素を、向流減圧するとともに向流パージガスとして酸素を吸着筒内に導入して脱着させ、窒素貯留タンクに回収する。窒素製品タンクに回収された窒素の一部を製品として回収し、残りのガスは並流パージガスとして使用される。そして、該米国特許では、製品窒素を濃度99.8%以上、酸素濃度90〜93.6%で回収できることが示されている。
As a method for collecting a plurality of components from a mixed gas, for example, a PSA method using a cocurrent purge gas is disclosed in US Pat. No. 4,599,094 by Werner et al.
In the Werner et al. PSA method, the easily adsorbed component and the hardly adsorbed component in the raw material gas are simultaneously recovered as a product. For example, if the raw material gas is air, the easy adsorbing component nitrogen and the hardly adsorbed component are collected. Both oxygen can be recovered as a product. That is, first, air is supplied to the lower part of the adsorption cylinder at a high pressure, nitrogen that is an easily adsorbed component is adsorbed, and oxygen that is a hardly adsorbed component is derived from the upper part of the adsorbing cylinder. The supply of air is stopped before the air adsorption zone reaches the upper part of the adsorption cylinder, and then high-concentration nitrogen gas is supplied from the lower part of the adsorption cylinder as a cocurrent purge gas. The supply of the cocurrent purge gas is continued until the high-concentration nitrogen gas adsorption zone reaches around the air adsorption zone. During this time, oxygen is continuously derived from the top of the adsorption cylinder. By supplying this co-current purge gas, the inside of the adsorption cylinder is saturated with adsorption, which is an easily adsorbed component. Part of the oxygen derived from the upper part of the adsorption cylinder is recovered as a product, and the remaining gas is used as a countercurrent purge gas. Next, the nitrogen adsorbed on the adsorbent is depressurized countercurrently, and oxygen is introduced into the adsorption cylinder as a countercurrent purge gas, desorbed, and collected in a nitrogen storage tank. A part of the nitrogen recovered in the nitrogen product tank is recovered as a product, and the remaining gas is used as a cocurrent purge gas. The US patent shows that product nitrogen can be recovered at a concentration of 99.8% or more and an oxygen concentration of 90 to 93.6%.
また、前記Wernerらの米国特許第4,599,094号明細書に開示されているPSA法を改良した方法として、Lagreeらによる米国特許第4,810,265号明細書や、Neuらによる米国特許第6,527,830号明細書には、工程中の均圧方法や操作条件などを改良した圧力変動吸着式ガス分離方法が開示されている。
これらの方法では、易吸着成分である窒素濃度、回収率を高められるが、難吸着成分である酸素は易吸着成分の窒素ほど高濃度で回収することができない。
Further, as an improved method of the PSA method disclosed in US Pat. No. 4,599,094 of Werner et al., US Pat. No. 4,810,265 by Lagree et al., US Pat. Japanese Patent No. 6,527,830 discloses a pressure fluctuation adsorption type gas separation method in which the pressure equalization method in the process and the operating conditions are improved.
In these methods, the concentration of nitrogen, which is an easily adsorbed component, and the recovery rate can be increased, but oxygen, which is a difficultly adsorbed component, cannot be recovered at a concentration as high as that of the easily adsorbed component.
このようなことから、混合ガスから、易吸着成分と難吸着成分の複数成分を、それぞれ高濃度で回収する方法として、Duplex PSAを用いるPSA法がLeavittらの米国特許第5,085,674号明細書やZhongらの米国特許第6,500,235号明細書で提案されている。
このDuplex PSA法は、原料ガスを吸着筒中間に供給し、吸着筒の上部で典型的なPSA法(難吸着成分を濃縮するPSA法)を行い、また吸着筒の下部でWilsonの米国特許第4,359,328号明細書にある逆PSA法(易吸着成分を濃縮するPSA法)を行うようにとするところに特長がある。
For this reason, the PSA method using Duplex PSA is a method for recovering a plurality of easily adsorbed components and hard adsorbed components at a high concentration from a mixed gas. US Pat. No. 5,085,674 by Leavitt et al. And in US Pat. No. 6,500,235 to Zhong et al.
This Duplex PSA method supplies a raw material gas to the middle of the adsorption cylinder, performs a typical PSA method (PSA process for condensing difficult adsorption components) at the upper part of the adsorption cylinder, and Wilson's US Patent No. The present invention is characterized in that the reverse PSA method (PSA method for concentrating easily adsorbed components) described in US Pat. No. 4,359,328 is performed.
かかるDuplex PSA法では、高圧の吸着筒上部より得られた難吸着成分を減圧して低圧の吸着筒に導入し、低圧の吸着筒下部より得られた易吸着成分を加圧して高圧の吸着筒に導入する。すなわち、高圧と低圧の吸着筒の間でガスを循環させる。これにより、吸着筒上部には難吸着成分、吸着筒下部には易吸着成分を濃縮することができる。
また原料ガスは、吸着筒の中間部に導入され、製品ガスは、吸着筒上部の還流ガスの一部を難吸着成分の製品として回収し、吸着筒下部の還流ガスの一部を易吸着成分の製品として回収する。このDuplex PSA法によって、易吸着成分、難吸着成分を共に高濃度、高回収率で回収することができる。
しかし原料ガス中に水素、ヘリウムが含まれる場合、水素、ヘリウムは吸着剤にほとんど吸着されない最強の難吸着成分であるため、Duplex PSA法では易吸着成分の製品中に水素、ヘリウムが混入してしまう不都合がある。
In the Duplex PSA method, the difficult adsorption component obtained from the upper part of the high-pressure adsorption cylinder is decompressed and introduced into the low-pressure adsorption cylinder, and the easy adsorption component obtained from the lower part of the low-pressure adsorption cylinder is pressurized to pressurize the high-pressure adsorption cylinder. To introduce. That is, gas is circulated between the high-pressure and low-pressure adsorption cylinders. Thereby, it is possible to concentrate the hard-adsorbing component in the upper part of the adsorption cylinder and the easy-adsorbing component in the lower part of the adsorption cylinder.
The source gas is introduced into the middle part of the adsorption cylinder, and the product gas collects a part of the reflux gas at the top of the adsorption cylinder as a product of difficult adsorption components and a part of the reflux gas at the bottom of the adsorption cylinder as easy adsorption components. Collect as a product. By this Duplex PSA method, both the easily adsorbed component and the hardly adsorbed component can be recovered at a high concentration and a high recovery rate.
However, when hydrogen and helium are contained in the raw material gas, hydrogen and helium are the strongest hardly adsorbing components that are hardly adsorbed by the adsorbent. Therefore, in the Duplex PSA method, hydrogen and helium are mixed in the easily adsorbing component products. There is an inconvenience.
更に、上記したPSAガス分離方法の他に、目的成分を高濃度、高回収率で回収する方法として、平衡分離型PSA法と速度分離型PSA法を組み合わせたPSA法が、川井らの特開2002−126435号公報に開示された方法が提案されている。
この圧力変動吸着ガス分離方法は、典型的なPSA法(難吸着成分を濃縮)を二つ組み合わせることによって、2つの成分を製品として回収することができる。例えば、クリプトンと窒素の混合ガスを原料ガスとした場合、クリプトンを易吸着成分、窒素を難吸着成分とする平衡分離型PSAによって、難吸着成分である窒素を回収する。また、クリプトンを難吸着成分、窒素を易吸着成分とする速度分離型PSAによって、難吸着成分であるクリプトンを回収する。
Furthermore, in addition to the PSA gas separation method described above, as a method for recovering the target component at a high concentration and a high recovery rate, a PSA method combining an equilibrium separation type PSA method and a velocity separation type PSA method is disclosed in Kawai et al. A method disclosed in Japanese Patent Laid-Open No. 2002-126435 has been proposed.
In this pressure fluctuation adsorption gas separation method, two components can be recovered as a product by combining two typical PSA methods (concentrating hardly adsorbed components). For example, when a mixed gas of krypton and nitrogen is used as a raw material gas, nitrogen which is a hardly adsorbable component is recovered by an equilibrium separation type PSA using krypton as an easily adsorbed component and nitrogen as a hardly adsorbed component. In addition, krypton, which is a hard-to-adsorb component, is recovered by a speed separation type PSA using krypton as a hard-to-adsorb component and nitrogen as a readily-adsorbing component.
このように特性の異なる吸着剤を使用し、易吸着成分と難吸着成分をクロスさせることで、窒素、クリプトンを同時に高濃度で採取することができる。さらに、各PSA装置からの排ガスは、全てバッファータンクに回収し、原料ガスと混合されて再び各PSA装置に供給されるため、川井らの方法では、クリプトンと窒素の混合ガスを、クリプトン濃度99.9〜99.99%、窒素濃度97〜99.9%で回収できることが示されている。
しかし、難吸着成分である水素、ヘリウムが原料ガスに含まれた場合には、難吸着成分を回収するPSA法を用いてクリプトンを回収するため、クリプトン側に水素、ヘリウムが混入することを防ぐことができない。
However, when hydrogen and helium, which are hard-to-adsorb components, are contained in the raw material gas, krypton is recovered by using the PSA method that recovers the hard-to-adsorb components, thus preventing the entry of hydrogen and helium to the krypton side. I can't.
排ガスから目的成分を回収し、再利用するためには、回収した混合ガス中に含まれる微量の不純物、反応副生成物、パージガスなど不要な成分を取り除く必要がある。しかし、前記したように、排ガス中に含まれる不要成分は複数の場合が多いことから、高付加価値成分を高濃度、高回収率で回収することは容易ではない。
しかし、排ガス中に含まれるヘリウム、水素、酸素、窒素、アルゴンなど他の成分より、クリプトン、キセノンを易吸着性とする平衡分離型の吸着剤を容易に選択することができる。また、水素、ヘリウムなど分子径が小さい成分が含まれない場合には、クリプトン、キセノンが、酸素、窒素、アルゴンなどよりも分子径が大きいことから、細孔径が0.4nm前後の吸着剤、例えば、Na−A型ゼオライト、CMSなどを用いることで、クリプトン、キセノンに対して難吸着性であり、窒素、酸素、アルゴンに対して易吸着性である速度分離型の吸着剤を選択することができる。
In order to recover and reuse the target component from the exhaust gas, it is necessary to remove unnecessary components such as a small amount of impurities, reaction by-products, and purge gas contained in the recovered mixed gas. However, as described above, since there are many cases where there are a plurality of unnecessary components contained in the exhaust gas, it is not easy to recover a high value-added component at a high concentration and a high recovery rate.
However, it is possible to easily select an equilibrium separation type adsorbent that easily absorbs krypton and xenon from other components such as helium, hydrogen, oxygen, nitrogen, and argon contained in the exhaust gas. In addition, when a component having a small molecular diameter such as hydrogen or helium is not included, krypton and xenon have a molecular diameter larger than oxygen, nitrogen, argon, etc. For example, by using Na-A-type zeolite, CMS, etc., a rate separation type adsorbent that is difficult to adsorb to krypton and xenon and easy to adsorb to nitrogen, oxygen, and argon is selected. Can do.
従って、最も簡便な方法としては、クリプトン、キセノンなどの目的成分を易吸着成分として濃縮し、その他の成分は難吸着成分としてまとめて排気する、あるいは目的成分を難吸着成分として濃縮し、その他の成分は易吸着成分としてまとめて排気するガス分離方法が望ましい。さらに、目的成分を高濃度、高回収率で回収するためには、目的成分が易吸着成分であれば、難吸着成分中に含まれる易吸着成分を微量とし、目的成分が難吸着成分であれば、易吸着成分中に含まれる難吸着成分を微量とするガス分離方法、すなわち、易吸着成分と難吸着成分を同時に高濃度に濃縮可能なガス分離方法が必要である。 Therefore, the simplest method is to concentrate target components such as krypton and xenon as easily adsorbed components and exhaust other components together as difficultly adsorbed components, or concentrate the target components as difficultly adsorbed components, It is desirable to use a gas separation method in which the components are exhausted together as easily adsorbed components. In addition, in order to recover the target component at a high concentration and high recovery rate, if the target component is an easily adsorbed component, the amount of the easily adsorbed component contained in the hardly adsorbed component is very small, and the target component is a hardly adsorbed component. For example, there is a need for a gas separation method in which the amount of hardly adsorbed component contained in the easily adsorbed component is small, that is, a gas separation method capable of concentrating the easily adsorbed component and the hardly adsorbed component at a high concentration simultaneously.
しかし、上記したWernerらの米国特許第4,599,094号明細書で提案されているPSA法では、易吸着成分を比較的高濃度にすることができるが、難吸着成分の濃縮に対しては不十分である。また、Duplex PSA方法では、難吸着成分を濃縮することは容易であるが、易吸着成分を99.9%以上に濃縮することは困難である。従って、従来技術には、易吸着成分あるいは難吸着成分を高濃度かつ高回収率で回収する、すなわち本特許の目的に合致するガス分離方法が存在しなかった。 However, in the PSA method proposed in US Pat. No. 4,599,094 of Werner et al. Described above, the easily adsorbed component can be made to have a relatively high concentration. Is insufficient. Further, in the Duplex PSA method, it is easy to concentrate the hardly adsorbed component, but it is difficult to concentrate the easily adsorbed component to 99.9% or more. Therefore, in the prior art, there has been no gas separation method that recovers an easily adsorbed component or a hardly adsorbed component with a high concentration and a high recovery rate, that is, matches the purpose of this patent.
このようなことから、本発明では、半導体製造装置等の雰囲気ガスとして使用されるクリプトン、キセノンなど高付加価値ガスを含む混合ガスから、高付加価値ガスを高濃度、高回収率で回収することを可能とする圧力変動吸着式ガス分離方法及び装置を提供することを目的としている。 Therefore, in the present invention, high value-added gas is recovered at a high concentration and high recovery rate from a mixed gas containing high value-added gas such as krypton and xenon, which is used as an atmospheric gas in a semiconductor manufacturing apparatus or the like. It is an object of the present invention to provide a pressure fluctuation adsorption type gas separation method and apparatus that enable the above.
上記課題を解決するため、
請求項1に係わる発明は、吸着剤および
この吸着剤に対して易吸着性である易吸着成分と、前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスを用い、
前記吸着剤を充填した下部筒、上部筒と、少なくとも前記原料ガスを貯留する原料ガス貯留槽と、前記易吸着成分を貯留する易吸着成分貯留槽を備えた分離装置を使用し、前記原料ガスから前記易吸着成分と前記難吸着成分とを回収する圧力変動吸着式ガス分離方法であって、
(a)原料ガス貯留槽のガスを加圧して下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、下部筒からの前記易吸着成分が減少したガスを上部筒に導入し、前記ガス中に含まれる易吸着成分を上部筒の吸着剤を用いて吸着して、上部筒から流出してくる前記難吸着成分を回収する工程と、
(b)易吸着成分貯留槽のガスを加圧して前記下部筒に導入して、下部筒の吸着剤に共吸着された難吸着成分と前記吸着剤の空隙に残存する難吸着成分を上部筒に導出し、下部筒から流入してきたガス中に含まれる易吸着成分を上部筒の吸着剤に吸着して、上部筒から流出してくる難吸着成分を回収する工程と、
(c)下部筒を減圧して、下部筒の吸着剤に吸着した易吸着成分を脱着させ、脱着してきた易吸着成分を易吸着成分貯留槽に回収する工程と、
(d)上部筒を減圧して、上部筒の吸着剤に吸着したガスを脱着させ、脱着してきたガスを下部筒に導入し、下部筒から流出してきたガスを原料ガス貯留槽に回収する工程と、
(e)上記工程(a)、(b)において回収した難吸着成分を向流パージガスとして上部筒に導入し、上部筒の吸着剤に吸着した易吸着成分を置換脱着し、上部筒から流出してくるガスを下部筒に導入し、下部筒に導入したガスによって下部筒の吸着剤に吸着した易吸着成分を置換脱着し、下部筒から流出してくるガスを原料ガス貯留槽に回収する工程を有し、
(f)上記工程(a)−(e)をあらかじめ定められたシーケンスに基づいて、順次繰り返し行うことによって前記原料ガス中の易吸着成分および難吸着成分を同時に回収することを特徴とする圧力変動吸着式ガス分離方法としたものである。
To solve the above problem,
The invention according to
Using a source gas containing an easily adsorbing component that is easily adsorbing to this adsorbent and a difficultly adsorbing component that is hardly adsorbing to the adsorbent,
Using a separation apparatus comprising a lower cylinder, an upper cylinder filled with the adsorbent, a source gas storage tank for storing at least the source gas, and an easily adsorbed component storage tank for storing the easily adsorbed component; A pressure fluctuation adsorption gas separation method for recovering the easily adsorbed component and the hardly adsorbed component from
(A) The gas in the raw material gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbed component in the gas is adsorbed on the adsorbent, and the gas from which the easily adsorbed component is reduced from the lower cylinder is Introducing into the cylinder, adsorbing the easily adsorbed component contained in the gas using the adsorbent of the upper cylinder, and collecting the hardly adsorbed component flowing out from the upper cylinder;
(B) Pressurizing the gas in the easy adsorption component storage tank and introducing it into the lower cylinder, and the difficult adsorption component co-adsorbed on the adsorbent in the lower cylinder and the difficult adsorption component remaining in the gap between the adsorbents in the upper cylinder a step of deriving, by adsorbing readily adsorbable component contained in the gas flowing in from the bottom tube to the adsorbent of the upper tube, to recover the less readily adsorbable component flowing out from the upper tube in,
(C) Depressurizing the lower cylinder , desorbing the easily adsorbed component adsorbed on the adsorbent of the lower cylinder , and collecting the easily adsorbed component that has been desorbed in the easily adsorbed component storage tank;
And (d) an upper cylinder under vacuum, to desorb the adsorbed gas to the adsorbent of the upper cylinder, the gas that has been desorbed into the lower tube, to recover the gas which has flowed out from the lower cylinder to the material gas storage tank process When,
(E) The hardly adsorbed component recovered in the above steps (a) and (b) is introduced into the upper cylinder as a countercurrent purge gas, and the easily adsorbed component adsorbed on the adsorbent in the upper cylinder is replaced and desorbed and flows out from the upper cylinder. Introducing the gas coming into the lower cylinder, replacing and desorbing easily adsorbed components adsorbed on the adsorbent in the lower cylinder with the gas introduced into the lower cylinder, and recovering the gas flowing out from the lower cylinder to the source gas storage tank Have
(F) Pressure fluctuation characterized by simultaneously recovering the easily adsorbed component and the hardly adsorbed component in the raw material gas by sequentially repeating the steps (a) to (e) based on a predetermined sequence. This is an adsorption gas separation method.
請求項2に係わる発明として、前記(b)の工程は、少なくとも2つ以上の下部筒と上部筒を用い、
(g)(a)の工程を終了した上部筒と、(e)の工程を終了した他の上部筒の間を連通させ、(a)の工程を終了した上部筒のガスを、(e)の工程を終了した上部筒へ導入し、かつ(a)の工程を終了した下部筒のガスを、(a)の工程を終了した上部筒へ導入するとともに、易吸着成分貯留槽のガスを前記下部筒に導入する工程、を含み、
前記(e)の工程は、少なくとも2つ以上の下部筒と上部筒を用い、
(h)(e)の工程を終了した上部筒と、(b)の工程を終了した他の上部筒の間を連通させ、(b)の工程を終了した上部筒のガスを、(e)の工程を終了した上部筒へ導入し、(e)の工程を終了した上部筒のガスを、(e)の工程を終了した下部筒へ導入する工程、
を含むことを特徴とする請求項1記載の圧力変動吸着式ガス分離方法としたものである。
As an invention according to
(G) The upper cylinder that has completed the process of (a) is communicated with the other upper cylinder that has completed the process of (e), and the gas in the upper cylinder that has completed the process of (a) is (e) Introducing the gas in the lower cylinder after completing the step (a) into the upper cylinder after completing the step (a), and introducing the gas in the easily adsorbable component storage tank into the upper cylinder after completing the step (a) Including the step of introducing into the lower cylinder,
The step (e) uses at least two lower cylinders and an upper cylinder,
(H) The upper cylinder that has completed the step (e) is communicated with the other upper cylinder that has completed the step (b), and the gas in the upper cylinder that has completed the step (b) Introducing the gas in the upper cylinder after completing the step (e) into the lower cylinder after completing the step (e),
The pressure fluctuation adsorption gas separation method according to
請求項3に係わる発明として、前記(b)の工程は、少なくとも2つ以上の下部筒と上部筒を用い、
(i) (b)の工程を終了した上部筒と、(e)の工程を終了した他の上部筒の間を連通させ、(b)の工程を終了した上部筒のガスを、(e)の工程の終了した上部筒へ導入し、かつ(b)の工程を終了した下部筒のガスを、(b)の工程を終了した上部筒へ導入するとともに、易吸着成分貯留槽のガスを前記下部筒に導入する工程、を含み、
前記(e)の工程は、少なくとも2つ以上の下部筒と上部筒を用い、
(j) (e)の工程を終了した上部筒と、(b)の工程を終了した他の上部筒の間を連通させ、(b)の工程を終了した上部筒のガスを、(e)の工程の終了した上部筒へ導入し、(e)の工程を終了した上部筒のガスを、(e)の工程を終了した下部筒へ導入する工程、を含むことを特徴とする請求項1に記載の圧力変動吸着式ガス分離方法としたものである。
As an invention according to
(I) The upper cylinder that has completed the step (b) is communicated with the other upper cylinder that has completed the step (e), and the gas in the upper cylinder that has completed the step (b) is (e) Introducing the gas in the lower cylinder, which has been completed in step (b), into the upper cylinder in which the process in (b) has been completed, Including the step of introducing into the lower cylinder,
The step (e) uses at least two lower cylinders and an upper cylinder,
(J) The upper cylinder that has completed the step (e) is communicated with the other upper cylinder that has completed the step (b), and the gas in the upper cylinder that has completed the step (b) The method further comprises a step of introducing the gas in the upper cylinder after the step (e) into the lower cylinder after the step (e). The pressure fluctuation adsorption-type gas separation method described in 1).
請求項4に係わる発明として、上記吸着剤が平衡吸着量差に基づいて易吸着成分と難吸着成分に分離する吸着剤であることを特徴とする請求項1から請求項3のいずれかに記載の圧力変動吸着式ガス分離方法としたものである。
請求項5に係わる発明として、前記平衡吸着量差に基づいて易吸着成分と難吸着成分に分離する吸着剤が、活性炭、Na−X型ゼオライト、Ca−X型ゼオライト、Ca−A型ゼオライト、Li−X型ゼオライトの群より選択される何れかであることを特徴とする請求項4に記載の圧力変動吸着式ガス分離方法としたものである。
請求項6に係わる発明として、易吸着成分がキセノンあるいはクリプトンであって、難吸着成分が、酸素、窒素、アルゴン、水素、ヘリウムの何れかを含むガスであることを特徴とする請求項4または請求項5に記載の圧力変動吸着式ガス分離方法としたものである。
The invention according to claim 4 is characterized in that the adsorbent is an adsorbent that separates into an easily adsorbed component and a hardly adsorbed component based on a difference in equilibrium adsorption amount. This is a pressure fluctuation adsorption type gas separation method.
As an invention according to claim 5, an adsorbent that separates into an easily adsorbed component and a hardly adsorbed component based on the difference in equilibrium adsorption amount is activated carbon, Na-X zeolite, Ca-X zeolite, Ca-A zeolite, 5. The pressure fluctuation adsorption gas separation method according to claim 4, wherein the gas separation method is selected from the group of Li-X zeolite.
The invention according to claim 6 is characterized in that the easily adsorbed component is xenon or krypton, and the hardly adsorbed component is a gas containing any of oxygen, nitrogen, argon, hydrogen, and helium. The pressure fluctuation adsorption type gas separation method according to claim 5 is used.
また、請求項7に係わる発明として、上記吸着剤が吸着速度差に基づいて易吸着成分と難吸着成分に分離する吸着剤であることを特徴とする請求項1から請求項3のいずれかに記載の圧力変動吸着式ガス分離方法としたものである。
請求項8に係わる発明として、吸着速度差に基づいて易吸着成分と難吸着成分に分離する吸着剤吸着剤の細孔径が、0.4nm程度であることを特徴とする請求項7に記載の圧力変動吸着式ガス分離方法としたものである。
請求項9に係わる発明として、難吸着成分がキセノンあるいはクリプトンであって、易吸着成分が、酸素、窒素、アルゴンの何れかを含むガスであることを特徴とする請求項7または請求項8に記載の圧力変動吸着式ガス分離方法としたものである。
The invention according to claim 7 is characterized in that the adsorbent is an adsorbent that separates into an easily adsorbed component and a hardly adsorbed component based on a difference in adsorption speed. This is the pressure fluctuation adsorption type gas separation method described.
The invention according to
The invention according to claim 9 is characterized in that the hardly adsorbing component is xenon or krypton, and the easily adsorbing component is a gas containing any of oxygen, nitrogen, and argon. This is the pressure fluctuation adsorption type gas separation method described.
請求項10に係わる発明として、少なくとも2種類の主要成分を含有する混合ガスでなる原料ガスから圧力変動吸着式ガス分離方法を用いて主要成分を分離する装置であって、
前記原料ガスの少なくとも1種類の主要成分に対して易吸着性を有し、前記原料ガスの少なくとも1種類の主要成分に対して難吸着性を有する少なくとも1種類の吸着剤が充填された下部筒及び上部筒と、前記原料ガスを導入する原料ガス貯留槽と、前記吸着剤に対し易吸着性を示す主要成分を貯留する易吸着成分貯留槽と、前記吸着剤に対し難吸着性を示す主要成分を貯留する難吸着成分貯留槽と、前記原料ガス貯留槽又は前記易吸着成分貯留槽から排出されるガスを圧縮する圧縮機と、前記吸着剤に対し易吸着性を示す主要成分を前記下部筒及び上部塔に吸着させる際に、前記原料ガス貯留槽又は前記易吸着成分貯留槽から前記圧縮機を介して前記下部筒へと原料ガス又は前記易吸着性を示す主要成分を供給する管路と、前記下部筒と前記上部筒とを接続する管路と、前記上部筒と前記難吸着成分貯留槽とを接続する管路と、前記下部筒を減圧して、当該下部筒に充填した吸着剤に吸着した前記易吸着性を示す主要成分を脱着させる工程で、脱着させた高純度の前記易吸着性を示す主要成分を前記下部筒から前記易吸着成分貯留槽に返送する管路と、前記上部筒を減圧して、当該上部筒に充填した吸着剤に吸着したガスを脱着させる工程で、脱着させたガスを前記下部筒に導入し、当該下部筒から流出してきた易吸着成分を含むガスを前記原料ガス貯留槽に回収する管路と、を備えることを特徴とする圧力変動吸着式ガス分離装置としたものである。
The invention according to
A lower cylinder filled with at least one kind of adsorbent which has an easy adsorptivity to at least one main component of the raw material gas and has a hard adsorbability to at least one main component of the raw material gas. And an upper cylinder, a raw material gas storage tank for introducing the raw material gas, an easy adsorption component storage tank for storing a main component that exhibits easy adsorption to the adsorbent, and a main that exhibits poor adsorption to the adsorbent. A hard-to-adsorb component storage tank for storing components, a compressor for compressing a gas discharged from the raw material gas storage tank or the easy-adsorption component storage tank , and a main component that exhibits an easy-adsorption property to the adsorbent in the lower part A pipe for supplying source gas or main components exhibiting easy adsorption from the source gas storage tank or the easily adsorbed component storage tank to the lower cylinder via the compressor when adsorbing to the cylinder and the upper tower And the lower cylinder and the front The pipe that connects the upper cylinder, the pipe that connects the upper cylinder and the hard-to-adsorb component storage tank, and the easy adsorption that is depressurized and adsorbed to the adsorbent filled in the lower cylinder In the step of desorbing the main component exhibiting the property, the desorbed high-purity main component exhibiting the easy adsorption property is returned from the lower tube to the easy adsorption component storage tank, and the upper tube is decompressed. In the step of desorbing the gas adsorbed by the adsorbent filled in the upper cylinder, the desorbed gas is introduced into the lower cylinder, and the gas containing the easily adsorbed component flowing out from the lower cylinder is supplied to the source gas storage tank. The pressure fluctuation adsorption type gas separation device is provided with a recovery pipe .
請求項11に係わる発明として、上記原料ガス貯留槽あるいは易吸着成分貯留槽は、外部から易吸着成分を補充する機構を有してなることを特徴とする請求項10に記載の圧力変動吸着式ガス分離装置としたものである。
請求項12に係わる発明として、上記原料ガス貯留槽あるいは難吸着成分貯留槽は、外部から難吸着成分を補充する機構を有してなることを特徴とする請求項10に記載の圧力変動吸着式ガス分離装置としたものである。
The invention according to
The invention according to claim 12 is characterized in that the raw material gas storage tank or the hardly adsorbed component storage tank has a mechanism for replenishing the hardly adsorbed component from the outside. This is a gas separation device.
請求項13に係わる発明として、上記吸着剤が平衡吸着量差に基づいて易吸着成分と難吸着成分に分離する吸着剤であることを特徴とする請求項10に記載の圧力変動吸着式ガス分離装置としたものである。
請求項14に係わる発明として、平衡吸着量差に基づいて易吸着成分と難吸着成分に分離する吸着剤が、活性炭、Na−X型ゼオライト、Ca−X型ゼオライト、Ca−A型ゼオライト、Li−X型ゼオライトの群より選択される何れかであることを特徴とする請求項13に記載の圧力変動吸着式ガス分離装置としたものである。
The pressure fluctuation adsorption gas separation according to
As an invention according to claim 14, an adsorbent that is separated into an easily adsorbed component and a hardly adsorbed component based on a difference in equilibrium adsorption amount is activated carbon, Na-X zeolite, Ca-X zeolite, Ca-A zeolite, Li The pressure fluctuation adsorption gas separation device according to claim 13, which is any one selected from the group of -X zeolite.
請求項15に係わる発明として、上記吸着剤が吸着速度差に基づいて易吸着成分と難吸着成分に分離する吸着剤であることを特徴とする請求項10に記載の圧力変動吸着式ガス分離装置としたものである。
請求項16に係わる発明として、吸着速度差に基づいて易吸着成分と難吸着成分に分離する吸着剤の細孔径が0.4nm程度であることを特徴とする請求項15に記載の圧力変動吸着式ガス分離装置としたものである。
The invention according to claim 15 is the pressure fluctuation adsorption gas separation device according to
16. The pressure fluctuation adsorption according to claim 15, wherein the pore size of the adsorbent that is separated into the easily adsorbed component and the hardly adsorbed component based on the difference in adsorption rate is about 0.4 nm. This is a gas separation device.
本発明の圧力変動吸着式ガス分離方法および装置では、半導体製造装置などから排出される混合ガスから、高価な目的成分を高濃度、高回収率で効率良く回収することができる。従って、半導体製造装置などで使用される雰囲気ガスとして再利用が可能となって、コストを大幅に低減することができる。 In the pressure fluctuation adsorption gas separation method and apparatus of the present invention, an expensive target component can be efficiently recovered from a mixed gas discharged from a semiconductor manufacturing apparatus or the like with a high concentration and a high recovery rate. Therefore, it can be reused as an atmospheric gas used in a semiconductor manufacturing apparatus or the like, and the cost can be greatly reduced.
本発明の圧力変動吸着式ガス分離方法を図面を参照して説明する。図1は、本発明の圧力変動吸着式ガス分離方法を実施するための圧力変動吸着式ガス分離装置を示す概略構成図である。
この圧力変動吸着式ガス分離装置は、ある吸着剤に対して易吸着性を示す易吸着成分と、この吸着剤に対して難吸着性を示す難吸着成分を少なくとも含む原料ガスを貯留する原料ガス貯留槽1と、易吸着成分を貯留する易吸着成分貯留槽2と、難吸着成分を貯留する難吸着成分貯留槽3と、原料ガス貯留槽1あるいは易吸着成分貯留槽2のガスを圧縮する圧縮機4と、易吸着成分貯留槽2のガスを圧縮する圧縮機5と、下部筒10B、11B、上部筒10U、11Uの4つの吸着筒を備えている。
The pressure fluctuation adsorption type gas separation method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a pressure fluctuation adsorption gas separation apparatus for carrying out the pressure fluctuation adsorption gas separation method of the present invention.
This pressure fluctuation adsorption-type gas separation device is a raw material gas that stores an easy-adsorption component that exhibits an easy-adsorption property with respect to a certain adsorbent, and a raw material gas that includes at least a difficult-adsorption component that exhibits an easy-adsorption property with respect to this adsorbent. The gas of the
符号L1は、原料ガスを原料ガス貯留槽1に導入する経路である。
符号L2は、原料ガス貯留槽1のガスを圧縮機4へ導出する経路である。
符号L3は、易吸着成分貯留槽2のガスを圧縮機4へ導出する経路である。
符号L4、L5は、圧縮機4からのガスを下部筒10B、11Bに導入する経路である。 符号L6は、上部筒10U、11Uからのガスを難吸着成分貯留槽3に導入、あるいは難吸着成分貯留槽3のガスを上部筒10U、11Uへ導出する経路である。
符号L7は、難吸着成分貯留槽3からの難吸着成分を装置系外に供給する経路である。
符号L8は、難吸着成分貯留槽3からの難吸着成分を向流パージガスとして上部筒10U、11Uに導入する経路である。
Reference numeral L <b> 1 is a path for introducing the source gas into the source
Reference numeral L <b> 2 is a path for leading the gas in the raw material
Reference numeral L <b> 3 is a path for deriving the gas in the easily adsorbed
Reference numerals L4 and L5 are paths for introducing the gas from the compressor 4 into the
Reference symbol L7 is a path for supplying the hard-to-adsorb component from the hard-to-adsorb
Reference L8 is a path for introducing the hardly adsorbed component from the hardly adsorbed
符号L9、L10は下部筒10B、11Bからのガスを、原料ガス貯留槽1あるいは易吸着成分貯留槽2に返送する経路である。
符号L11は、下部筒10B、11Bからのガスを、原料ガス貯留槽1に返送する経路である。
符号L12は、下部筒10B、11Bからのガスを、易吸着成分貯留槽2に返送する経路である。
符号L13は、易吸着成分貯留槽2からの易吸着成分を装置系外に供給する経路である。
符号L14は、上部筒10Uと11Uの間で均圧を行う均圧ラインである。
Reference numerals L9 and L10 are paths for returning the gas from the
Reference numeral L <b> 11 is a path for returning the gas from the
Reference numeral L <b> 12 is a path for returning the gas from the
Symbol L13 is a path for supplying the easily adsorbed component from the easily adsorbed
Reference numeral L14 is a pressure equalization line that performs pressure equalization between the upper cylinders 10U and 11U.
そして、下部筒10B、11B、及び上部筒10U、11Uには、原料ガス中の目的成分に対して易吸着性あるいは難吸着性を有し、目的成分以外の成分に対して難吸着成分あるいは易吸着性を有する吸着剤が用いられる。
The
次に、上記圧力変動吸着式ガス分離装置を用いて、本発明の圧力変動吸着式ガス分離方法の実施形態の一例を説明する。この実施形態の圧力変動吸着式ガス分離方法では、原料ガスとして、主要成分であるキセノンと、その他の主要成分として窒素が含まれている混合ガスを用いた例について説明する。
また、下部筒10B、11B、及び上部筒10U、11Uに充填される吸着剤としては、平衡分離型吸着剤である活性炭を使用する場合を示す。活性炭は、平衡吸着量としてキセノンの吸着量が多く(易吸着性)、窒素の吸着量が少ない(難吸着性)という性質を持つ。したがって、この例ではキセノンが易吸着成分となり、窒素が難吸着成分となる。
Next, an example of an embodiment of the pressure fluctuation adsorption gas separation method of the present invention will be described using the pressure fluctuation adsorption gas separation apparatus. In the pressure fluctuation adsorption gas separation method of this embodiment, an example in which a mixed gas containing xenon as a main component and nitrogen as another main component will be described as a raw material gas.
Moreover, the case where activated carbon which is an equilibrium separation type adsorbent is used as the adsorbent filled in the
図2は、この圧力変動吸着式ガス分離方法の半サイクルの工程を示したものであり、以下に示すように、<吸着工程>−<リンス工程>の2工程で構成される。各工程におけるバルブの開閉状態は表1に表示するように操作される。 FIG. 2 shows a half-cycle process of this pressure fluctuation adsorption type gas separation method, and it is composed of two processes of <adsorption process>-<rinsing process> as shown below. The valve open / close state in each process is operated as shown in Table 1.
(1)<吸着工程>
原料ガス貯留槽1からの混合ガスを圧縮機4で圧縮し、経路L2、L4を介して、下部筒10Bに供給する。同時に、難吸着成分貯留槽3に貯められた窒素を、経路L6を介して上部筒10Uに導入する(バルブV7を閉止し、原料ガス貯留槽1からの混合ガスのみの供給によって加圧することもできる)。
下部筒10Bと上部筒10Uとの間は、バルブV5を開放することで流通されているため、下部筒10Bと上部筒10Uは、ほぼ同様に圧力上昇する。なお、原料ガス貯留槽1の混合ガスは、経路L1から導入された原料ガスと後述する上部筒減圧工程、パージ再生工程で下部筒10Bもしくは11Bから排出されたガスとの混合ガスである。
(1) <Adsorption process>
The mixed gas from the raw material
Since the
下部筒10Bに供給された混合ガスは、下部筒10B上部に進むにつれて、キセノンが優先的に吸着され、気相中に窒素が濃縮される。濃縮された窒素は、下部筒10Bから上部筒10Uに導入され、上部筒10Uにおいて、窒素中に含まれる微量のキセノンがさらに吸着される。上部筒10Uの圧力が難吸着成分貯留槽3の圧力より高くなった後、上部筒10Uにおいてさらに濃縮された窒素は、経路L6を介して、難吸着成分貯留槽3へ導出される。難吸着成分貯留槽3の窒素は、原料ガス中に含まれる窒素の流量に応じた流量が、経路L7から装置系外に排出され、残りのガスはパージ再生工程における向流パージガスとして使用される。
As the mixed gas supplied to the
(2)<リンス工程>
バルブV1を閉止、バルブV2を開放することで、下部筒10Bに導入するガスを易吸着成分貯留槽2のキセノンに変更する。易吸着成分貯留槽2からのキセノンを下部筒10Bに導入することによって、下部筒10Bの吸着剤充填層に共吸着された窒素と、吸着剤空隙に存在する窒素を上部筒10Uへ押し出し、下部筒10B内をキセノンで吸着飽和とする。この間、上部筒10Uから難吸着成分貯留槽3への窒素の導出は継続して行われる。難吸着成分貯留槽3の窒素は、(1)の<吸着工程>と同様に、一部を装置系外に排出し、残りのガスは向流パージガスに使用される。
(2) <Rinse process>
By closing the valve V1 and opening the valve V2, the gas introduced into the
図3は、この圧力変動吸着式ガス分離方法の他方の半サイクルの工程を示したものであり、以下に示すように、<下部筒減圧工程>−<上部筒減圧工程>−<パージ再生工程>の3工程で構成される。なお、下部筒10Bと上部筒10Uが図2に示した先の2工程を行っている間、下部筒11Bと上部筒11Uでは図3に示した3工程が行われる。そして、この図3の各工程におけるバルブの開閉状態は、表2に表示する態様で操作される。
FIG. 3 shows the process of the other half cycle of this pressure fluctuation adsorption gas separation method. As shown below, <lower cylinder decompression process>-<upper cylinder decompression process>-<purge regeneration process > 3 steps. Note that while the
(3)<下部筒減圧工程>
バルブV6、V10を閉止し、バルブV11,V13を開放する。これにより、前記(1)〜(2)の工程間に下部筒11Bに吸着されたキセノンは、下部筒11Bと易吸着成分貯留槽2の差圧によって、経路L10、L12を介して、易吸着成分貯留槽2へ回収される。易吸着成分貯留槽2に回収されたキセノンは、原料ガス中に含まれるキセノンに応じた流量が、圧縮機5によって加圧され、経路L13から製品として採取される。残りのキセノンは並流パージガスとして(2)の<リンス工程>で使用される。この間、上部筒11Uは、バルブV6、V8が閉止されていることにより休止状態となる。
(3) <Lower cylinder decompression process>
The valves V6 and V10 are closed, and the valves V11 and V13 are opened. As a result, the xenon adsorbed to the
(4)<上部筒減圧工程>
バルブV11を閉止し、バルブV6、V10を開放する。すると、(3)の<下部筒減圧工程>において休止していた上部筒11Uと減圧を行った下部筒11Bの間に圧力差が生じることから、上部筒11U内のガスは下部筒11Bに流入する。下部筒11Bに導入されたガスは、下部筒11B内をパージしながら、経路L10、L11を介して、原料ガス貯留槽1に回収される。原料ガス貯留槽1に回収されたガスは、経路L1から導入される原料ガスと再混合されて、(1)の<吸着工程>時に再び下部筒に供給される。
(4) <Upper cylinder decompression process>
The valve V11 is closed and the valves V6 and V10 are opened. Then, since a pressure difference is generated between the upper cylinder 11U that has been stopped in the <lower cylinder depressurization step> in (3) and the
(5)<パージ再生工程>
バルブV15を開放する。難吸着成分貯留槽3に貯留した窒素は、向流パージガスとして、経路L8を介して、上部筒11Uに導入される。上部筒11Uに導入された窒素は、吸着筒下部に進むにつれて、吸着していたキセノンを置換脱着させる。脱着された比較的キセノンを多く含んだガスは、下部筒11B、経路L10、L11を介して、原料ガス貯留槽1に回収される。原料ガス貯留槽1に回収されたガスは、(4)<上部筒減圧工程>と同様に、経路L1から導入される原料ガスと混合されて、(1)<吸着工程>時に再び下部筒に供給される。
ここで、向流パージガスに使用される窒素は、(1)<吸着工程>、あるいは(2)<リンス工程>において上部筒10Uから導出された窒素を、難吸着成分貯留槽3を介さず、直接(5)<パージ再生工程>を行っている上部筒に導入しても良い。
(5) <Purge regeneration process>
Open the valve V15. Nitrogen stored in the difficult-to-adsorb
Here, the nitrogen used for the countercurrent purge gas is the nitrogen derived from the upper cylinder 10U in (1) <adsorption process> or (2) <rinsing process> without passing through the difficult adsorption
以上説明した5つの工程を下部筒10Bと上部筒10U、下部筒11Bと上部筒11Uで順次繰り返し行うことで、窒素の濃縮と、キセノンの濃縮を連続的に行うことができる。また、下部筒10Bと上部筒10Uで(1)<吸着工程>〜(2)<リンス工程>の工程を行っている間、下部筒11Bと上部筒11Uでは(3)<下部筒減圧工程>〜(5)<パージ再生工程>の工程が行われる。また、一方、下部筒10Bと上部筒10Uで(3)<下部筒減圧工程>〜(5)<パージ再生工程>の工程を行っている間、下部筒11Bと上部筒11Uでは(1)<吸着工程>〜(2)<リンス工程>の工程が行われる。
なお、経路L1からの原料ガスの導入、経路L7からの窒素の排出、経路L13からのキセノンの導出は、工程に依らず連続的に行われる。ただし、本圧力変動吸着式ガス分離方法を適用する半導体製品、もしくは表示装置の製造設備では、キセノンを使用する必要がない状況、すなわち原料ガスとなる該製造設備からの排ガスが流入してこない状況が頻繁に起こり得る。このような場合、本圧力変動吸着式ガス分離装置では、経路L7から導出される窒素、および経路L13から導出されるキセノンを、原料ガス貯留槽1に返送することで(図示せず)、常に製品ガスを供給できる状態を維持しながら供給停止状態とすることができる。
By sequentially repeating the five steps described above in the
The introduction of the source gas from the path L1, the discharge of nitrogen from the path L7, and the derivation of xenon from the path L13 are continuously performed regardless of the process. However, in the manufacturing equipment of semiconductor products or display devices to which this pressure fluctuation adsorption type gas separation method is applied, there is no need to use xenon, that is, the exhaust gas from the manufacturing equipment that becomes the raw material gas does not flow in. Can happen frequently. In such a case, in this pressure fluctuation adsorption gas separation device, nitrogen derived from the path L7 and xenon derived from the path L13 are always returned to the source gas storage tank 1 (not shown). While maintaining the state where product gas can be supplied, the supply can be stopped.
更に、以下に説明するように、均圧減圧工程をリンス工程の後に、均圧加圧工程をパージ再生工程の後に行うことによって、加圧動力を省力化することができる。 Furthermore, as will be described below, pressurizing power can be saved by performing the pressure equalizing and reducing process after the rinsing process and the pressure equalizing and pressing process after the purge regeneration process.
(6)<均圧減圧工程>
バルブV7を閉止、バルブV9を開放する。上部筒10Uのガスは、上部筒10Uと11Uの圧力差によって、経路L14を介して上部筒11Uに導入される(均圧減圧操作)。これにより、上部筒10Uの圧力が低下するため、下部筒10B内のガスは、上部筒10Uへ導出される。この操作によって、下部筒10Bの吸着筒上部にわずかに残存する窒素は、減圧によって脱着してくるキセノンによって押し流され、上部筒10Uへ導入される。この間、易吸着成分貯留槽2からのキセノン供給は継続される。
(6) <equal pressure reduction process>
Valve V7 is closed and valve V9 is opened. The gas in the upper cylinder 10U is introduced into the upper cylinder 11U via the path L14 due to the pressure difference between the upper cylinders 10U and 11U (pressure equalization operation). As a result, the pressure in the upper cylinder 10U is lowered, so that the gas in the
(7)<均圧加圧工程>
バルブV13、V15を閉止し、バルブV9を開放する。これによって、上部筒10U内のガスは、上部筒11Uに導入される(均圧加圧操作)。上部筒11Uに導入されるガスは窒素濃度が高いため、上部筒11U内のキセノンを上部筒下部および下部筒11Bへ押し下げることができる。
(7) <equal pressure pressing process>
The valves V13 and V15 are closed and the valve V9 is opened. As a result, the gas in the upper cylinder 10U is introduced into the upper cylinder 11U (pressure equalizing operation). Since the gas introduced into the upper cylinder 11U has a high nitrogen concentration, the xenon in the upper cylinder 11U can be pushed down to the lower
図4は、(1)<吸着工程>〜(2)<リンス工程>に、(6)<均圧減圧工程>を加えた、圧力変動吸着式ガス分離方法の半サイクルの工程を示したものである。
図5は、(3)<下部筒減圧工程>〜(5)<パージ再生工程>に、(7)<均圧加圧工程>を加えた、他方の半サイクルの工程を示したものである。
なお、下部筒10Bと上部筒10Uが図4に示した先の3工程を行っている間、下部筒11Bと上部筒11Uでは図5に示した4工程が行われる。そして、この図4もしくは図5の各工程におけるバルブの開閉状態は、表3もしくは表4に表示する態様で操作される。
FIG. 4 shows a half cycle step of the pressure fluctuation adsorption type gas separation method in which (6) <pressure equalization pressure reduction step> is added to (1) <adsorption step> to (2) <rinse step>. It is.
FIG. 5 shows the other half cycle process in which (7) <equal pressure pressurization process> is added to (3) <lower cylinder decompression process> to (5) <purge regeneration process>. .
In addition, while the
以上説明した7つの工程を下部筒10Bと上部筒10U、下部筒11Bと上部筒11Uで順次繰り返し行うことで、窒素の濃縮と、キセノンの濃縮を連続的に行うことができる。また、下部筒10Bと上部筒10Uで<吸着工程>〜<均圧減圧工程>を行っている間、下部筒11Bと上部筒11Uでは<下部筒減圧工程>〜<均圧加圧工程>が行われる。また、一方、下部筒10Bと上部筒10Uで<下部筒減圧工程>〜<均圧加圧工程>を行っている間、下部筒11Bと上部筒11Uでは<吸着工程>〜<均圧減圧工程>が行われる。
By sequentially repeating the seven steps described above in the
また、以上の7つの工程のうち、<リンス工程>を省略し、6つの工程とすることもできる。 Also, among the above seven steps, the <rinse step> can be omitted to make six steps.
本発明の圧力変動吸着式ガス分離装置は、前記製造設備に供給したキセノン等を回収し、循環利用することができる。そして、本圧力変動吸着式ガス分離装置と前記製造設備で形成される循環サイクルから、排ガスとして系外に排出される窒素にキセノンが同伴されることで、キセノンが徐々に減少することになる。従って、長期安定運転を行うためには、窒素に同伴されるキセノンに応じた量を補充する必要がある。そのため、本圧力変動吸着式ガス分離装置では、高濃度キセノン充填ボンベなどの外部から、原料ガス貯留槽1あるいは易吸着成分貯留槽2にキセノンを補充すること(図示せず)によって、キセノンの循環サイクルを常に安定化して運転させることができる。また、原料ガス貯留槽1に、難吸着成分としての窒素を補充することもできる。
The pressure fluctuation adsorption gas separation apparatus of the present invention can recover xenon and the like supplied to the production facility and circulate them. Then, xenon is gradually reduced as xenon is accompanied by nitrogen discharged out of the system as exhaust gas from the circulation cycle formed by the pressure fluctuation adsorption gas separation device and the manufacturing facility. Therefore, in order to perform long-term stable operation, it is necessary to replenish an amount corresponding to xenon accompanying nitrogen. Therefore, in this pressure fluctuation adsorption type gas separation apparatus, xenon is circulated by replenishing the source
本発明の圧力変動吸着式ガス分離装置の運転では、例えば加圧下で易吸着成分を吸着させ、常圧下で易吸着成分を脱着させる常圧再生PSA法をもって運転する。しかしながら、常圧下で易吸着成分の吸着を行い、真空ポンプなどにより大気圧力以下で易吸着成分を脱着させる真空圧力変動吸着法(VPSA法)でも、本ガス分離方法を適用することができる。 In the operation of the pressure fluctuation adsorption gas separation apparatus of the present invention, for example, the operation is performed by the normal pressure regeneration PSA method in which the easily adsorbed component is adsorbed under pressure and the easily adsorbed component is desorbed under normal pressure. However, this gas separation method can also be applied to a vacuum pressure fluctuation adsorption method (VPSA method) in which an easily adsorbed component is adsorbed under normal pressure and the easily adsorbed component is desorbed at a pressure below atmospheric pressure by a vacuum pump or the like.
そして、本圧力変動吸着式ガス分離方法の目的は、目的成分を高濃度、高回収率で連続的に回収できる圧力変動吸着式ガス分離分離方法及びその装置を提供することにある。以下、この目的に対する本ガス分離方法の有効性についてさらに詳細に説明する。
易吸着成分を除去し難吸着成分を製品として回収する典型的なPSA法、難吸着成分を除去し易吸着成分を製品として回収する逆PSA法、これらを組み合わせたPSA法であるDuplex PSA法等、何れの方法にしても、易吸着成分を吸着させ難吸着成分を脱着させる工程(以下、易吸着成分を吸着させる工程を「吸着工程」と称す)を加圧下で行い、難吸着成分を吸着させ易吸着成分を脱着させる工程(以下、易吸着成分を脱着させる工程を「再生工程」と称す)を減圧下で行うことに違いはない。
An object of the present pressure fluctuation adsorption type gas separation method is to provide a pressure fluctuation adsorption type gas separation separation method and apparatus capable of continuously collecting a target component at a high concentration and a high recovery rate. Hereinafter, the effectiveness of the present gas separation method for this purpose will be described in more detail.
Typical PSA method that removes easily adsorbed components and recovers difficultly adsorbed components as a product, reverse PSA method that removes difficultly adsorbed components and recovers easily adsorbed components as a product, Duplex PSA method that is a combination of these PSA methods, etc. In any method, the process of adsorbing the easily adsorbed component and desorbing the hardly adsorbed component (hereinafter, the process of adsorbing the easily adsorbed component is referred to as the “adsorption process”) is performed under pressure to adsorb the hardly adsorbed component. There is no difference in performing the step of desorbing the easily adsorbed component (hereinafter, the step of desorbing the easily adsorbed component is referred to as “regeneration step”) under reduced pressure.
吸着工程は加圧下で行われることにより、吸着筒内のガス流速が再生工程より相対的に遅く、再生工程は減圧下で行われることにより、吸着筒内のガス流速が吸着工程より相対的に速くなる。このガス流速の違いによって、各工程において吸着筒内に形成される吸着帯の長さが変化する。ガス流速が遅い吸着工程では、吸着帯の長さを比較的短くすることがでできるが、ガス流速が速い再生工程では吸着帯の長さが比較的長くなる。この理由によって、易吸着成分と難吸着成分の両方を同時に採取するDuplex PSA法では、高濃度の難吸着成分を採取することは比較的容易であるが、高濃度の易吸着成分を採取することは非常に困難であった。 By performing the adsorption process under pressure, the gas flow rate in the adsorption cylinder is relatively slower than the regeneration process, and by performing the regeneration process under reduced pressure, the gas flow rate in the adsorption cylinder is relatively greater than that of the adsorption process. Get faster. Due to the difference in gas flow rate, the length of the adsorption band formed in the adsorption cylinder in each process changes. In the adsorption process where the gas flow rate is slow, the length of the adsorption zone can be made relatively short. However, in the regeneration process where the gas flow rate is fast, the length of the adsorption zone becomes relatively long. For this reason, in the Duplex PSA method in which both easy-adsorbing components and hard-adsorbing components are sampled simultaneously, it is relatively easy to collect a high-concentration hard-adsorbing component, but it is necessary to collect a high-concentration easily-adsorbing component. Was very difficult.
従って、Duplex PSA法を用いて難吸着成分と同じくらい高濃度で易吸着成分を採取するためには、吸着工程と再生工程でガス流速の差を小さくする、すなわち、吸着工程と再生工程の圧力差をできるだけ小さくする以外に手段がなかった。しかしながら、この手段は吸着筒のサイズアップに繋がることから、易吸着成分の濃縮を難吸着成分の濃縮よりも低くすることで経済的に成り立たせる必要がある。すなわち、易吸着成分を難吸着成分と同じ高濃度で採取することができなかった。さらに、水素、ヘリウムが含まれる場合には、水素、ヘリウムが吸着剤に吸着されないことから、その他の成分よりも吸着剤充填層を速く移動するため、難吸着成分である水素、ヘリウムを含まず易吸着成分を回収する事は困難であった。 Therefore, in order to collect an easily adsorbed component at a concentration as high as that of the hardly adsorbed component using the Duplex PSA method, the difference in gas flow rate between the adsorption process and the regeneration process is reduced, that is, the pressure of the adsorption process and the regeneration process. There was no means other than making the difference as small as possible. However, since this means leads to an increase in the size of the adsorption cylinder, it is necessary to make it economically feasible by making the concentration of the easily adsorbed component lower than the concentration of the hardly adsorbed component. That is, the easily adsorbed component could not be collected at the same high concentration as the hardly adsorbed component. Furthermore, when hydrogen and helium are included, hydrogen and helium are not adsorbed by the adsorbent, and therefore move faster in the adsorbent packed layer than other components. It was difficult to recover easily adsorbed components.
並流パージプロセスは、再生工程で脱着してくる易吸着成分を易吸着成分貯留槽に貯留し、吸着工程が終了した吸着筒を易吸着成分貯留槽に貯留した易吸着成分でリンスすることで易吸着成分を高濃度にする方法である。並流パージプロセスにおいて、易吸着成分を極めて高濃度で採取するためには、易吸着成分を易吸着成分の易吸着成分貯留槽に回収する前に、吸着筒内の難吸着成分を吸着筒外部へ流出させる、すなわち吸着帯を全て吸着筒外部へ流出させる必要がある。
しかし、吸着帯を吸着筒外部へ流出させる操作は、難吸着成分の濃度を低下させる、あるいは難吸着成分、易吸着成分を共に多く含んだ混合ガスを排気することに繋がり、いずれにしても易吸着成分の回収率の低下が避けられない。
他方、逆に易吸着成分の回収率を高くすることは、吸着帯を吸着筒外部へ流出させないことで容易に実現できるが、この場合、易吸着成分のガス濃度低下が避けられない。従って、並流パージプロセスでも、易吸着成分と難吸着成分を同時に高濃度で回収することは難しかった。
In the co-current purge process, the easily adsorbed component that is desorbed in the regeneration process is stored in the easily adsorbed component storage tank, and the adsorption cylinder that has completed the adsorption process is rinsed with the easily adsorbed component stored in the easily adsorbed component storage tank. This is a method of increasing the concentration of easily adsorbed components. In order to collect the easily adsorbed component at an extremely high concentration in the co-current purge process, before collecting the easily adsorbed component in the easily adsorbed component storage tank of the easily adsorbed component, In other words, it is necessary to allow the entire adsorption zone to flow out of the adsorption cylinder.
However, the operation of causing the adsorption zone to flow out of the adsorption cylinder leads to lowering the concentration of difficult-to-adsorb components or exhausting a mixed gas containing a large amount of both difficult-and-adsorbable components. A decrease in the recovery rate of adsorbed components is inevitable.
On the other hand, increasing the recovery rate of the easily adsorbed component can be easily realized by not letting the adsorption zone flow out of the adsorption cylinder, but in this case, the gas concentration of the easily adsorbed component is inevitably lowered. Therefore, it has been difficult to simultaneously collect the easily adsorbed component and the hardly adsorbed component at a high concentration even in the cocurrent purge process.
本圧力変動吸着式ガス分離方法では、まず<吸着工程>において、原料ガス貯留槽1のガスを圧縮機4により加圧し、下部筒に供給する。加圧下で行うことにより、供給ガス中に含まれる易吸着成分は下部筒の吸着剤に吸着される。すなわち、原料ガス貯留槽1に導入された原料ガス中の易吸着成分と、<上部筒減圧工程>、<パージ再生工程>の間に返送された易吸着成分は下部筒の吸着剤に吸着される。
<吸着工程>は、原料ガス貯留槽1のガス濃度で形成される第1の吸着帯が、下部筒から上部筒に移動するまで行われる(図6の「吸着工程終了時における吸着剤充填層のキセノン濃度分布を示す模式図」参照)。次いで、圧縮機4から供給するガスを、易吸着成分を貯留する易吸着成分貯留槽2内のガスに切り替え、易吸着成分を下部筒に供給する<リンス工程>を行う。
In this pressure fluctuation adsorption gas separation method, first, in the <adsorption process>, the gas in the raw material
<Adsorption process> is performed until the first adsorption band formed with the gas concentration in the raw material
易吸着成分の供給により、下部筒の吸着剤に共吸着した難吸着成分と吸着剤空隙に存在する難吸着成分は、下部筒上部、および上部筒へ押し出される。<リンス工程>は、易吸着成分の供給で形成される第2の吸着帯が、下部筒の上部に達するまで継続される(図7の「リンス工程終了時における吸着剤充填層のキセノン濃度分布を示す模式図」参照)。この<リンス工程>によって、下部筒の大部分を易吸着成分で満たすことができる。 By supplying the easily adsorbing component, the hardly adsorbing component co-adsorbed on the adsorbent in the lower cylinder and the hardly adsorbing component existing in the adsorbent gap are pushed out to the upper part of the lower cylinder and the upper cylinder. <Rinse process> is continued until the second adsorption zone formed by the supply of the easily adsorbed component reaches the upper part of the lower cylinder ("Xenon concentration distribution of the adsorbent packed layer at the end of the rinse process in FIG. 7)" (Refer to the “Schematic diagram”). By this <rinsing step>, most of the lower cylinder can be filled with the easily adsorbed component.
次いで、上部筒のガスを、再生工程が行われていたもう一方の上部筒へ供給する<均圧減圧工程>を行う。この操作によって、吸着剤に吸着されていたガスが脱着し、脱着してきたガスが、下部筒から上部筒へ、上部筒からもう一方の上部筒へ導入される。このようにして形成された上昇流によって、下部筒の上部に残存していた難吸着成分は脱着してきた易吸着成分によって上部筒へ移され、すなわち、下部筒内はほぼ完全に易吸着成分で飽和される(図8の「均圧減圧工程終了時における吸着剤充填層のキセノン濃度分布を示す模式図」参照)。この<均圧減圧工程>は、急激な上昇流により第1吸着帯と第2吸着帯が合流して形成される第3の吸着帯の前部が、上部筒上部に達する前まで継続される(図8の「均圧減圧工程終了時における吸着剤充填層のキセノン濃度分布を示す模式図」参照)。 Next, a <equal pressure reduction process> is performed in which the gas in the upper cylinder is supplied to the other upper cylinder in which the regeneration process has been performed. By this operation, the gas adsorbed by the adsorbent is desorbed, and the desorbed gas is introduced from the lower cylinder to the upper cylinder and from the upper cylinder to the other upper cylinder. Due to the upward flow formed in this way, the hardly adsorbed component remaining in the upper part of the lower cylinder is moved to the upper cylinder by the desorbed easily adsorbed component, that is, the inside of the lower cylinder is almost completely easily adsorbed. It is saturated (see “schematic diagram showing xenon concentration distribution of adsorbent packed bed at the end of the pressure equalization and decompression step” in FIG. 8). This <pressure equalization pressure reduction process> is continued until the front part of the third adsorption zone formed by the first adsorbing zone and the second adsorbing zone joining together due to the rapid upward flow reaches the upper part of the upper cylinder. (See “Schematic diagram showing xenon concentration distribution of adsorbent packed bed at the end of pressure equalizing and depressurizing step” in FIG. 8).
以上一連の操作によって、下部筒内をほぼ完全に易吸着成分で吸着飽和とすることができる。下部筒内に吸着された易吸着成分は、<下部筒減圧工程>において、減圧により易吸着成分貯留槽に回収される。易吸着成分貯留槽に回収されたガスは、一部を製品ガスあるいは排ガスとして採取し、残りのガスは<リンス工程>において並流パージガスとして使用する。易吸着成分の易吸着成分貯留槽への回収に際して、下部筒内は全て易吸着成分で満たされていること、さらに、難吸着成分によるパージ操作を行わないことから、極めて高濃度で易吸着成分を易吸着成分貯留槽へ回収することができる。 Through the series of operations described above, the inside of the lower cylinder can be almost completely saturated with the easily adsorbed component. The easily adsorbed component adsorbed in the lower cylinder is collected in the easily adsorbed component storage tank by the reduced pressure in the <lower cylinder depressurizing step>. A part of the gas collected in the easily adsorbed component storage tank is collected as product gas or exhaust gas, and the remaining gas is used as a cocurrent purge gas in the <rinsing step>. When collecting easily adsorbed components to the easily adsorbed component storage tank, the lower cylinder is completely filled with easily adsorbed components, and further, no purge operation with difficult adsorbed components is performed. Can be recovered in the easily adsorbed component storage tank.
上記した<吸着工程>、<リンス工程>、<均圧減圧工程>の工程において、上部筒10U(または11U)に流出した易吸着成分は、上部筒10U(または11U)に充填された吸着剤によって吸着される。そして、上部筒10U(または11U)に吸着された易吸着成分は、<上部筒減圧工程>、<パージ再生工程>において、全て原料ガス貯留槽1に回収される。原料ガス貯留槽1では、原料ガスの導入によって、易吸着成分貯留槽2から採取された易吸着成分とほぼ同量の易吸着成分が補充され、難吸着成分と共に<吸着工程>を行う下部筒10B(または11B)へ再度供給される。
In the above-described <adsorption step>, <rinsing step>, and <equal pressure reduction step>, the easily adsorbed component that has flowed out into the upper tube 10U (or 11U) is adsorbed in the upper tube 10U (or 11U). Is adsorbed by. The easily adsorbed components adsorbed on the upper cylinder 10U (or 11U) are all recovered in the source
難吸着成分は、<吸着工程>および<リンス工程>において、上部筒10U(または11U)より難吸着成分貯留槽3に回収される。<吸着工程>、および<リンス工程>では、第1の吸着帯前部が、上部筒10U(または11U)の上部に達する前に終了することから、難吸着成分貯留槽3に回収される難吸着成分には、ほとんど易吸着成分が含まれない。難吸着成分貯留槽3に回収した難吸着成分は、一部を排ガスあるいは製品ガスとして装置系外に排出し、残りのガスは<パージ再生工程>において向流パージガスとして使用する。向流パージガスとして吸着筒に導入した難吸着成分は、全て原料ガス貯留槽1に回収される。原料ガス貯留槽1では、原料ガスの導入によって、難吸着成分貯留槽3から採取される難吸着成分とほぼ同量の難吸着成分が補充され、易吸着成分と共に<吸着工程>を行う下部筒10B(または11B)へ再度供給される。
In the <adsorption process> and the <rinse process>, the hardly adsorbed component is recovered from the upper cylinder 10U (or 11U) into the hardly adsorbed
以上説明したように、本圧力変動吸着式ガス分離方法においては、易吸着成分と難吸着成分が同時に高濃度で採取できることがわかる。また、装置系外に排出される易吸着成分は、難吸着成分に伴って流出するわずかな易吸着成分のみであり、装置系外に流出する難吸着成分は、易吸着成分に伴って流出する難吸着成分のみである。従って、易吸着成分、難吸着成分が同時に極めて高回収率で回収できることがわかる。 As described above, it can be seen that in this pressure fluctuation adsorption type gas separation method, an easily adsorbed component and a hardly adsorbed component can be collected at a high concentration at the same time. In addition, the easily adsorbed components discharged out of the apparatus system are only a few easily adsorbed components flowing out along with the hardly adsorbed components, and the hardly adsorbed components flowing out out of the apparatus system flow out along with the easily adsorbed components. Only hard-to-adsorb components. Therefore, it can be seen that the easily adsorbed component and the hardly adsorbed component can be recovered at an extremely high recovery rate at the same time.
なお、上記した本実施例では、原料ガスとして易吸着成分のキセノンと難吸着成分の窒素の混合ガスを使用した例を示したが、難吸着成分が複数ある場合にも適用できる。例えば、キセノン、窒素に加えて、酸素、アルゴンが原料ガスに含まれる場合には、易吸着成分貯留槽2にはキセノンが、又難吸着成分貯留槽3にはキセノンを含まない窒素、酸素、アルゴンの混合ガスを回収することができる。
これは、活性炭が酸素、アルゴンに対して窒素とほぼ同じ吸着量を有することから、酸素とアルゴンが窒素と同様に濃縮されるためである。また、キセノン、窒素に加えて水素、ヘリウムが含まれる場合には、水素、ヘリウムが活性炭に吸着されないため、酸素、アルゴンに比べてさらに容易に分離できる。従って、易吸着成分貯留槽2にはキセノン、難吸着成分貯留槽3には、難吸着成分である窒素、水素、ヘリウムの混合ガスを回収することができる。
In the above-described embodiment, an example in which a mixed gas of xenon as an easily adsorbed component and nitrogen as a hardly adsorbed component is used as a raw material gas. For example, when oxygen and argon are contained in the source gas in addition to xenon and nitrogen, xenon is contained in the easily adsorbed
This is because activated carbon has almost the same amount of adsorption as oxygen with respect to oxygen and argon, so oxygen and argon are concentrated in the same manner as nitrogen. Further, when hydrogen and helium are contained in addition to xenon and nitrogen, since hydrogen and helium are not adsorbed by the activated carbon, they can be separated more easily than oxygen and argon. Therefore, xenon can be recovered in the easily adsorbed
又、上記実施例では、平衡分離型吸着剤である活性炭を用い、目的成分であるキセノンを易吸着成分として高濃度、高回収率で回収する例を示したが、本発明の特許請求の範囲はこれに限定されるものではない。
本発明の圧力変動吸着式ガス分離方法は、易吸着成分と同時に難吸着成分も高濃度、高回収率で採取することができるため、目的成分を難吸着成分、除去すべき成分を易吸着成分とし、目的成分である難吸着成分を高濃度、高回収率で回収することもできる。
例えば、細孔径が0.4nm程度の速度分離型吸着剤であるNa−A型ゼオライト、CMSなどを用いた場合、この吸着剤は、クリプトン、キセノンに対して難吸着性を有し、窒素、酸素、アルゴンに対しては易吸着性を示す。この場合、難吸着成分貯留槽3には目的成分であるクリプトン、キセノン、易吸着成分貯留槽2には排ガスである窒素、酸素、アルゴンを回収することができる。
In the above embodiment, an example is shown in which activated carbon , which is an equilibrium separation type adsorbent, is used and xenon, which is the target component, is recovered as an easily adsorbed component with a high concentration and a high recovery rate. Is not limited to this.
The pressure fluctuation adsorption-type gas separation method of the present invention can collect the easily adsorbed component and the hardly adsorbed component at a high concentration and with a high recovery rate. In addition, the difficultly adsorbed component that is the target component can be recovered at a high concentration and a high recovery rate.
For example, when Na-A type zeolite, CMS, or the like, which is a rate separation type adsorbent having a pore size of about 0.4 nm, is used, this adsorbent has poor adsorptivity to krypton and xenon, and nitrogen, Easy adsorption to oxygen and argon. In this case, krypton and xenon which are target components can be recovered in the hardly adsorbed
実施例1として、図1に示す圧力変動吸着式ガス分離装置により、キセノンと窒素を含む混合ガスを原料ガスとして、キセノンを分離する実験を行った。
下部筒10B、11B、及び上部筒10U、11Uとして、内径108.3mm、充填高さ500mmの円筒状の容器に活性炭2.0kg充填したものを使用した。圧縮機4と圧縮機5は、それぞれ40L/min.、20L/min.(流量[L/min.]は0℃、1気圧換算値、以下同じ。)の容量のものを使用した。装置はサイクルタイム500秒で運転され、各工程の時間は表5に示したタイムシーケンスで行った。
As Example 1, an experiment was conducted to separate xenon using a mixed gas containing xenon and nitrogen as a raw material gas by the pressure fluctuation adsorption gas separation apparatus shown in FIG.
As the
原料ガス貯留槽1に導入される原料ガスの流量は2L/min.であり、ガス濃度は、キセノン50容量%、窒素50容量%である。又、易吸着成分貯留槽2より採取されるキセノン流量は1L/min.、難吸着成分貯留槽3より採取される窒素流量は1L/min.とした。
The flow rate of the source gas introduced into the source
上記した運転条件において、約24時間の連続運転を行ったところ、経路L7から導出される窒素濃度、経路L13から導出されるキセノン濃度がほぼ一定に落ち着き、即ち、ほぼ循環定常状態に達することを確認した。この時、窒素中のキセノン濃度、キセノン中の窒素濃度は、共に約300ppmであった。これは、窒素及びキセノンのそれぞれ濃度が、共に99.97%であり、又回収率も同様に99.97%となったことを示す。
以上により、難吸着成分である窒素と、易吸着成分であるキセノンが共に、高濃度、高回収率で採取できることが確認できた。
Under the above operating conditions, when continuous operation was performed for about 24 hours, the nitrogen concentration derived from the path L7 and the xenon concentration derived from the path L13 settled to be substantially constant, that is, the circulation steady state was reached. confirmed. At this time, the concentration of xenon in nitrogen and the concentration of nitrogen in xenon were both about 300 ppm. This indicates that the concentrations of nitrogen and xenon were both 99.97%, and the recovery rate was 99.97% as well.
From the above, it was confirmed that both nitrogen, which is a hardly adsorbable component, and xenon, which is an easily adsorbable component, can be collected at a high concentration and a high recovery rate.
実施例2として、実施例1と同様に図1に示す圧力変動吸着式ガス分離装置を用いて、キセノン、窒素、酸素、アルゴン、水素を含む混合ガスを原料ガスとして、キセノンを分離する実験を行った。
原料ガス貯留槽1に導入される原料ガスの流量は2.1L/min.であり、ガス濃度は、キセノン23.8容量%、窒素23.8容量%、アルゴン23.8容量%、水素4.8容量%、残部酸素である。
又、易吸着成分貯留槽2より回収されるキセノン流量は0.5L/min.、難吸着成分貯留槽3より回収される混合ガス流量は1.6L/min.とした。
As Example 2, an experiment for separating xenon using a mixed gas containing xenon, nitrogen, oxygen, argon, and hydrogen as a source gas using the pressure fluctuation adsorption gas separation apparatus shown in FIG. went.
The flow rate of the source gas introduced into the source
The xenon flow rate recovered from the easily adsorbed
運転は、各工程の時間を実施例1と同じ前記表5に表示したタイムシーケンスとして、約24時間の連続運転を行ったところ、経路L7から導出される混合ガス中に含まれるキセノン濃度は約900ppmであり、経路L13から導出されるキセノン中に含まれる窒素濃度、酸素濃度、アルゴン濃度は全て約50ppmであった。また水素はキセノン中から検出されなかった。
従って、回収したキセノンの濃度は約99.98%であり、回収率は99.7%となる。
以上の実験の結果より、難吸着成分が複数存在する場合においても、目的成分のキセノンが高濃度、高回収率で回収できることが確認できた。
The operation was carried out continuously for about 24 hours as the time sequence indicated in Table 5 with the time of each step as in Example 1, and the concentration of xenon contained in the mixed gas derived from the path L7 was about The nitrogen concentration, the oxygen concentration, and the argon concentration contained in xenon derived from the path L13 were all about 50 ppm. Hydrogen was not detected in xenon.
Therefore, the concentration of recovered xenon is about 99.98%, and the recovery rate is 99.7%.
From the results of the above experiments, it was confirmed that the xenon of the target component can be recovered at a high concentration and a high recovery rate even when there are a plurality of hardly adsorbed components.
本発明の圧力変動吸着式ガス分離方法及び装置は、前記製造設備に供給し、使用した後に排出される混合ガスから、キセノン等の高付加価値ガスを高濃度、高回収率で効率良く回収し、循環利用するための方法及び装置として有効活用することができる。そして、本圧力変動吸着式ガス分離装置と、前記半導体製品、もしくは表示装置の製造設備で形成される循環サイクルとの結合によって、半導体製造装置などで使用される高価な雰囲気ガスのコストを大幅に低減することができる。 The pressure fluctuation adsorption type gas separation method and apparatus of the present invention efficiently recovers high value-added gas such as xenon at a high concentration and high recovery rate from the mixed gas supplied to the manufacturing facility and discharged after use. It can be effectively used as a method and apparatus for recycling. And by combining this pressure fluctuation adsorption gas separation device and the circulation cycle formed by the manufacturing equipment of the semiconductor product or display device, the cost of expensive atmospheric gas used in semiconductor manufacturing equipment etc. is greatly increased. Can be reduced.
1…原料ガス貯留槽、 2…易吸着成分貯留槽、 3…難吸着成分貯留槽、
4、5…圧縮機、 10B、11B…下部筒、 10U、11U…上部筒、
DESCRIPTION OF
4, 5 ... Compressor, 10B, 11B ... Lower cylinder, 10U, 11U ... Upper cylinder,
Claims (16)
この吸着剤に対して易吸着性である易吸着成分と、前記吸着剤に対して難吸着性である難吸着成分を含む原料ガスを用い、
前記吸着剤を充填した下部筒、上部筒と、少なくとも前記原料ガスを貯留する原料ガス貯留槽と、前記易吸着成分を貯留する易吸着成分貯留槽を備えた分離装置を使用し、前記原料ガスから前記易吸着成分と前記難吸着成分とを回収する圧力変動吸着式ガス分離方法であって、
(a)原料ガス貯留槽のガスを加圧して下部筒に導入して、前記ガス中の前記易吸着成分を前記吸着剤に吸着し、下部筒からの前記易吸着成分が減少したガスを上部筒に導入し、前記ガス中に含まれる易吸着成分を上部筒の吸着剤を用いて吸着して、上部筒から流出してくる前記難吸着成分を回収する工程と、
(b)易吸着成分貯留槽のガスを加圧して前記下部筒に導入して、下部筒の吸着剤に共吸着された難吸着成分と前記吸着剤の空隙に残存する難吸着成分を上部筒に導出し、下部筒から流入してきたガス中に含まれる易吸着成分を上部筒の吸着剤に吸着して、上部筒から流出してくる難吸着成分を回収する工程と、
(c)下部筒を減圧して、下部筒の吸着剤に吸着した易吸着成分を脱着させ、脱着してきた易吸着成分を易吸着成分貯留槽に回収する工程と、
(d)上部筒を減圧して、上部筒の吸着剤に吸着したガスを脱着させ、脱着してきたガスを下部筒に導入し、下部筒から流出してきたガスを原料ガス貯留槽に回収する工程と、
(e)上記工程(a)、(b)において回収した難吸着成分を向流パージガスとして上部筒に導入し、上部筒の吸着剤に吸着した易吸着成分を置換脱着し、上部筒から流出してくるガスを下部筒に導入し、下部筒に導入したガスによって下部筒の吸着剤に吸着した易吸着成分を置換脱着し、下部筒から流出してくるガスを原料ガス貯留槽に回収する工程を有し、
(f)上記工程(a)−(e)をあらかじめ定められたシーケンスに基づいて、順次繰り返し行うことによって前記原料ガス中の易吸着成分および難吸着成分を同時に回収することを特徴とする圧力変動吸着式ガス分離方法。 Adsorbent and
Using a source gas containing an easily adsorbing component that is easily adsorbing to this adsorbent and a difficultly adsorbing component that is hardly adsorbing to the adsorbent,
Using a separation apparatus comprising a lower cylinder, an upper cylinder filled with the adsorbent, a source gas storage tank for storing at least the source gas, and an easily adsorbed component storage tank for storing the easily adsorbed component; A pressure fluctuation adsorption gas separation method for recovering the easily adsorbed component and the hardly adsorbed component from
(A) The gas in the raw material gas storage tank is pressurized and introduced into the lower cylinder, the easily adsorbed component in the gas is adsorbed on the adsorbent, and the gas from which the easily adsorbed component is reduced from the lower cylinder is Introducing into the cylinder, adsorbing the easily adsorbed component contained in the gas using the adsorbent of the upper cylinder, and collecting the hardly adsorbed component flowing out from the upper cylinder;
(B) Pressurizing the gas in the easy adsorption component storage tank and introducing it into the lower cylinder, and the difficult adsorption component co-adsorbed on the adsorbent in the lower cylinder and the difficult adsorption component remaining in the gap between the adsorbents in the upper cylinder a step of deriving, by adsorbing readily adsorbable component contained in the gas flowing in from the bottom tube to the adsorbent of the upper tube, to recover the less readily adsorbable component flowing out from the upper tube in,
(C) Depressurizing the lower cylinder , desorbing the easily adsorbed component adsorbed on the adsorbent of the lower cylinder , and collecting the easily adsorbed component that has been desorbed in the easily adsorbed component storage tank;
And (d) an upper cylinder under vacuum, to desorb the adsorbed gas to the adsorbent of the upper cylinder, the gas that has been desorbed into the lower tube, to recover the gas which has flowed out from the lower cylinder to the material gas storage tank process When,
(E) The hardly adsorbed component recovered in the above steps (a) and (b) is introduced into the upper cylinder as a countercurrent purge gas, and the easily adsorbed component adsorbed on the adsorbent in the upper cylinder is replaced and desorbed and flows out from the upper cylinder. Introducing the gas coming into the lower cylinder, replacing and desorbing easily adsorbed components adsorbed on the adsorbent in the lower cylinder with the gas introduced into the lower cylinder, and recovering the gas flowing out from the lower cylinder to the source gas storage tank Have
(F) Pressure fluctuation characterized by simultaneously recovering the easily adsorbed component and the hardly adsorbed component in the raw material gas by sequentially repeating the steps (a) to (e) based on a predetermined sequence. Adsorption gas separation method.
(i)(b)の工程を終了した上部筒と、(e)の工程を終了した他の上部筒の間を連通させ、(b)の工程を終了した上部筒のガスを、(e)の工程を終了した上部筒へ導入し、かつ(b)の工程を終了した下部筒のガスを、(b)の工程を終了した上部筒へ導入するとともに、易吸着成分貯留槽のガスを前記下部筒に導入する工程、を含み、
前記(e)の工程は、少なくとも2つ以上の下部筒と上部筒を用い、
(j)(e)の工程を終了した上部筒と、(b)の工程を終了した他の上部筒の間を連通させ、(b)の工程を終了した上部筒のガスを、(e)の工程を終了した上部筒へ導入し、(e)の工程を終了した上部筒のガスを、(e)の工程を終了した下部筒へ導入する工程、
を含む、ことを特徴とする請求項1に記載の圧力変動吸着式ガス分離方法。 The step (b) uses at least two lower cylinders and an upper cylinder,
(I) The upper cylinder which finished the process of (b) and the other upper cylinder which finished the process of (e) are communicated, and the gas of the upper cylinder which finished the process of (b) is (e) Introducing the gas in the lower cylinder after completing the step (b) into the upper cylinder after completing the step (b), and introducing the gas in the easily adsorbed component storage tank Including the step of introducing into the lower cylinder,
The step (e) uses at least two lower cylinders and an upper cylinder,
(J) The upper cylinder that has completed the step (e) is communicated with the other upper cylinder that has completed the step (b), and the gas in the upper cylinder that has completed the step (b) Introducing the gas in the upper cylinder after completing the step (e) into the lower cylinder after completing the step (e),
The pressure fluctuation adsorption type gas separation method according to claim 1, comprising:
(g)(a)の工程を終了した上部筒と、(e)の工程を終了した他の上部筒の間を連通させ、(a)の工程を終了した上部筒のガスを、(e)の工程を終了した上部筒へ導入し、かつ(a)の工程を終了した下部筒のガスを、(a)の工程を終了した上部筒へ導入するとともに、易吸着成分貯留槽内のガスを前記下部筒に導入する工程、を含み、
前記(e)の工程は、少なくとも2つ以上の下部筒と上部筒を用い、
(h)(e)の工程を終了した上部筒と、(b)の工程を終了した他の上部筒の間を連通させ、(b)の工程を終了した上部筒のガスを、(e)の工程を終了した上部筒へ導入し、(e)の工程を終了した上部筒のガスを、(e)の工程を終了した下部筒へ導入する工程、
を含む、ことを特徴とする請求項1に記載の圧力変動吸着式ガス分離方法。 The step (b) uses at least two lower cylinders and an upper cylinder,
(G) The upper cylinder that has completed the process of (a) is communicated with the other upper cylinder that has completed the process of (e), and the gas in the upper cylinder that has completed the process of (a) is (e) Introducing the gas in the lower cylinder after completing the step (a) into the upper cylinder after completing the step (a), and introducing the gas in the easily adsorbable component storage tank Introducing into the lower cylinder,
The step (e) uses at least two lower cylinders and an upper cylinder,
(H) The upper cylinder that has completed the step (e) is communicated with the other upper cylinder that has completed the step (b), and the gas in the upper cylinder that has completed the step (b) Introducing the gas in the upper cylinder after completing the step (e) into the lower cylinder after completing the step (e),
The pressure fluctuation adsorption type gas separation method according to claim 1, comprising:
前記原料ガスの少なくとも1種類の主要成分に対して易吸着性を有し、前記原料ガスの少なくとも1種類の主要成分に対して難吸着性を有する少なくとも1種類の吸着剤が充填された下部筒及び上部筒と、
前記原料ガスを導入する原料ガス貯留槽と、
前記吸着剤に対し易吸着性を示す主要成分を貯留する易吸着成分貯留槽と、
前記吸着剤に対し難吸着性を示す主要成分を貯留する難吸着成分貯留槽と、
前記原料ガス貯留槽又は前記易吸着成分貯留槽から排出されるガスを圧縮する圧縮機と、
前記吸着剤に対し易吸着性を示す主要成分を前記下部筒及び上部塔に吸着させる際に、前記原料ガス貯留槽又は前記易吸着成分貯留槽から前記圧縮機を介して前記下部筒へと原料ガス又は前記易吸着性を示す主要成分を供給する管路と、
前記下部筒と前記上部筒とを接続する管路と、
前記上部筒と前記難吸着成分貯留槽とを接続する管路と、
前記下部筒を減圧して、当該下部筒に充填した吸着剤に吸着した前記易吸着性を示す主要成分を脱着させる工程で、脱着させた高純度の前記易吸着性を示す主要成分を前記下部筒から前記易吸着成分貯留槽に返送する管路と、
前記上部筒を減圧して、当該上部筒に充填した吸着剤に吸着したガスを脱着させる工程で、脱着させたガスを前記下部筒に導入し、当該下部筒から流出してきた易吸着成分を含むガスを前記原料ガス貯留槽に回収する管路と、を備えることを特徴とする圧力変動吸着式ガス分離装置。 An apparatus for separating main components from a raw material gas comprising a mixed gas containing at least two main components using a pressure fluctuation adsorption gas separation method,
A lower cylinder filled with at least one kind of adsorbent which has an easy adsorptivity to at least one main component of the raw material gas and has a hard adsorbability to at least one main component of the raw material gas. And the upper tube,
A source gas storage tank for introducing the source gas;
An easy-adsorption component storage tank for storing a main component exhibiting an easy-adsorption property for the adsorbent;
A hard-adsorption component storage tank for storing a main component showing hard-adsorption to the adsorbent;
A compressor for compressing the gas discharged from the raw material gas storage tank or the easily adsorbed component storage tank;
When adsorbing main components that are easily adsorbable to the adsorbent to the lower cylinder and the upper column, the raw material is supplied from the source gas storage tank or the easy adsorption component storage tank to the lower cylinder via the compressor. A pipe for supplying a gas or a main component exhibiting easy adsorption;
A conduit connecting the lower tube and the upper tube;
A pipe line connecting the upper cylinder and the hardly adsorbed component storage tank;
In the step of depressurizing the lower cylinder and desorbing the main component exhibiting easy adsorption adsorbed on the adsorbent filled in the lower cylinder, the main component exhibiting easy adsorption having high desorption is removed from the lower section. A conduit for returning from the cylinder to the easily adsorbed component storage tank;
In the step of depressurizing the upper cylinder and desorbing the gas adsorbed to the adsorbent filled in the upper cylinder, the desorbed gas is introduced into the lower cylinder and includes an easily adsorbed component that has flowed out of the lower cylinder A pressure fluctuation adsorption gas separation apparatus , comprising: a pipe for collecting gas in the raw material gas storage tank .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004247396A JP4481112B2 (en) | 2004-08-26 | 2004-08-26 | Pressure fluctuation adsorption type gas separation method and apparatus |
TW095106232A TWI354575B (en) | 2004-08-26 | 2006-02-24 | Pressure swing adsorption method and device theref |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004247396A JP4481112B2 (en) | 2004-08-26 | 2004-08-26 | Pressure fluctuation adsorption type gas separation method and apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006061831A JP2006061831A (en) | 2006-03-09 |
JP2006061831A5 JP2006061831A5 (en) | 2006-04-20 |
JP4481112B2 true JP4481112B2 (en) | 2010-06-16 |
Family
ID=36108752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004247396A Expired - Lifetime JP4481112B2 (en) | 2004-08-26 | 2004-08-26 | Pressure fluctuation adsorption type gas separation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4481112B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5202836B2 (en) * | 2006-12-01 | 2013-06-05 | 日本エア・リキード株式会社 | Xenon recovery system and recovery device |
TW201043327A (en) * | 2009-03-30 | 2010-12-16 | Taiyo Nippon Sanso Corp | Pressure swing adsorbing type gas separating method and separation device |
US8591634B2 (en) | 2010-01-28 | 2013-11-26 | Air Products And Chemicals, Inc. | Method and equipment for selectively collecting process effluent |
KR102317284B1 (en) * | 2014-03-28 | 2021-10-25 | 스미토모 세이카 가부시키가이샤 | Purification method and purification device for target gas |
JP7135319B2 (en) | 2017-01-06 | 2022-09-13 | 東ソー株式会社 | xenon adsorbent |
CN110694428B (en) * | 2019-09-30 | 2020-06-23 | 湖南省计量检测研究院 | Working method of hydrogen separation equipment |
CN112827320B (en) * | 2020-12-23 | 2022-09-09 | 四川天采科技有限责任公司 | FTrPSA adjustable separation method using chlorine-based SiC-CVD process tail gas as reaction circulating gas |
CN113735079B (en) * | 2020-12-31 | 2023-10-27 | 李保军 | Method and production device for extracting ultra-high purity helium at normal temperature |
JP7381554B2 (en) * | 2021-12-28 | 2023-11-15 | 大陽日酸株式会社 | Pressure fluctuation adsorption type gas separation equipment |
JP7289908B1 (en) | 2021-12-28 | 2023-06-12 | 大陽日酸株式会社 | Pressure Swing Adsorption Gas Separator |
JP7487165B2 (en) * | 2021-12-28 | 2024-05-20 | 大陽日酸株式会社 | Pressure swing adsorption gas separation method and pressure swing adsorption gas separation device |
JP7289909B1 (en) | 2021-12-28 | 2023-06-12 | 大陽日酸株式会社 | Pressure Swing Adsorption Gas Separator |
IL313880A (en) | 2021-12-28 | 2024-08-01 | Taiyo Nippon Sanso Corp | Pressure swing adsorption gas separation apparatus |
-
2004
- 2004-08-26 JP JP2004247396A patent/JP4481112B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006061831A (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4898194B2 (en) | Pressure fluctuation adsorption gas separation method and separation apparatus | |
US6544318B2 (en) | High purity oxygen production by pressure swing adsorption | |
JP3899282B2 (en) | Gas separation method | |
JPH0429601B2 (en) | ||
JP3902416B2 (en) | Gas separation method | |
EP1175934A2 (en) | Improved oxygen production | |
JP4481112B2 (en) | Pressure fluctuation adsorption type gas separation method and apparatus | |
CA2366185A1 (en) | Improved pressure swing adsorption process for high recovery of high purity gas | |
KR19980081620A (en) | Pressure swing adsorption method and device | |
JP2006061831A5 (en) | ||
JP3869831B2 (en) | Gas separation method and apparatus | |
JP2004066125A (en) | Method of separating target gas | |
JPH0733404A (en) | Production of high concentration oxygen | |
JP6515045B2 (en) | Method and apparatus for producing nitrogen gas | |
JP3654658B2 (en) | Pressure fluctuation adsorption type oxygen production method and apparatus | |
KR0173399B1 (en) | Method for manufacturing carbon dioxide by pressure swing absorption | |
JP7381554B2 (en) | Pressure fluctuation adsorption type gas separation equipment | |
JPS60819A (en) | Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method | |
JP7487165B2 (en) | Pressure swing adsorption gas separation method and pressure swing adsorption gas separation device | |
JPH02283608A (en) | Method for separating and recovering carbon monoxide | |
KR102439732B1 (en) | Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen | |
JP2004160294A (en) | Method for separating and concentrating heavy hydrogen | |
JP5031275B2 (en) | Isotope gas separation method using pressure swing adsorption method | |
JP2005313128A (en) | Isotope-selective adsorbent and isotope separation and concentration method as well as isotope separation and concentration device | |
JP3031797B2 (en) | Pressure fluctuation adsorption separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100317 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4481112 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |