JP7289908B1 - Pressure Swing Adsorption Gas Separator - Google Patents

Pressure Swing Adsorption Gas Separator Download PDF

Info

Publication number
JP7289908B1
JP7289908B1 JP2021214396A JP2021214396A JP7289908B1 JP 7289908 B1 JP7289908 B1 JP 7289908B1 JP 2021214396 A JP2021214396 A JP 2021214396A JP 2021214396 A JP2021214396 A JP 2021214396A JP 7289908 B1 JP7289908 B1 JP 7289908B1
Authority
JP
Japan
Prior art keywords
gas
volume
branch point
storage tank
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021214396A
Other languages
Japanese (ja)
Other versions
JP2023097965A (en
Inventor
正也 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2021214396A priority Critical patent/JP7289908B1/en
Priority to PCT/JP2022/045874 priority patent/WO2023127485A1/en
Priority to TW111148554A priority patent/TW202339839A/en
Application granted granted Critical
Publication of JP7289908B1 publication Critical patent/JP7289908B1/en
Publication of JP2023097965A publication Critical patent/JP2023097965A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

【課題】高純度の易吸着成分を回収できる圧力変動吸着式ガス分離装置を提供する。【解決手段】1以上の成分に対して易吸着性を有し、他の成分に対して難吸着性を有する吸着剤を充填する吸着筒10B,10U,11B,11Uと、原料ガスを貯留する原料ガス貯留槽1と、易吸着性成分を貯留する易吸着成分貯留槽2と、圧縮機4と前記吸着筒10B,11Bとの間に位置する経路(第1流路)L4,L5と、分岐点(第1分岐点)P,Qにおいて、経路L4,L5から分岐し、分岐点P,Qと易吸着成分貯留槽2との間に位置する経路(第2流路)L11,L12と、経路L11,L12に位置する開閉弁(第1開閉装置)V13,V12と、を備え、開閉弁V13,V12が、分岐点P,Q寄りに位置する、圧力変動吸着式ガス分離装置50を選択する。【選択図】図1The present invention provides a pressure swing adsorption gas separation apparatus capable of recovering easily adsorbable components of high purity. Kind Code: A1 Adsorption cylinders (10B, 10U, 11B, 11U) filled with an adsorbent that easily adsorbs one or more components and hardly adsorbs other components, and a raw material gas is stored. a source gas storage tank 1, an easily adsorbable component storage tank 2 for storing easily adsorbable components, paths (first flow paths) L4 and L5 located between the compressor 4 and the adsorption cylinders 10B and 11B, Paths (second flow paths) L11, L12 branched from paths L4, L5 at branch points (first branch points) P, Q and located between the branch points P, Q and the easily adsorbable component storage tank 2; , on-off valves (first on-off devices) V13 and V12 located on paths L11 and L12, and the on-off valves V13 and V12 are located near branch points P and Q. select. [Selection drawing] Fig. 1

Description

本発明は、圧力変動吸着式ガス分離装置に関する。 The present invention relates to a pressure swing adsorption gas separation device.

半導体集積回路、液晶パネル等の半導体製品を製造する工程では、希ガス雰囲気中で高周波放電によりプラズマを発生させ、該プラズマによって半導体製品もしくは表示装置の各種処理を行う装置が広く用いられている。このような処理において使用される希ガスとして、従来はアルゴンが用いられてきたが、近年はより高度な処理を行うためにクリプトンやキセノンが注目されている。しかし、クリプトンやキセノンは、原料となる空気中の存在比及び分離工程の複雑さから極めて希少で高価なガスであるため、使用済みの希ガスを回収し、再利用することが極めて重要となる。なお、希ガスを再利用するためには、少なくとも99%以上の濃度が求められる。 2. Description of the Related Art In the process of manufacturing semiconductor products such as semiconductor integrated circuits and liquid crystal panels, an apparatus is widely used in which plasma is generated by high-frequency discharge in a rare gas atmosphere and the plasma is used to perform various processes on semiconductor products or display devices. Conventionally, argon has been used as the rare gas used in such processing, but krypton and xenon have been attracting attention in recent years in order to perform more advanced processing. However, since krypton and xenon are extremely rare and expensive gases due to their abundance in air and the complexity of the separation process, it is extremely important to recover and reuse used noble gases. . In order to reuse the rare gas, a concentration of at least 99% is required.

ここで、キセノンやクリプトンを分離する装置としては、キセノンまたはクリプトンと、不純物である他成分とを含む原料ガスを、キセノンやクリプトンに対して易吸着性で、不純物である他成分に対して難吸着性の吸着剤を充填した吸着筒に流し、易吸着成分であるキセノンまたはクリプトンを吸着剤に吸着させ、難吸着成分である不純物をキセノンやクリプトンと分離するとともに、吸着剤に吸着したキセノンまたはクリプトンを吸着剤より脱離させて高濃度で回収する方法がある。 Here, as a device for separating xenon or krypton, a raw material gas containing xenon or krypton and other impurity components should be easily adsorbed to xenon or krypton and difficult to adsorb other impurity components. Flow it into an adsorption cylinder filled with an adsorbent, and let the adsorbent adsorb xenon or krypton, which are easily adsorbable components. There is a method of desorbing krypton from an adsorbent and recovering it at a high concentration.

例えば、特許文献1には、直列に接続した2本の吸着筒(上部筒、下部筒)に原料ガス貯留槽の原料ガスを加圧して流し、易吸着成分であるキセノンまたはクリプトンを吸着し、難吸着成分である不純物を分離する工程aと、易吸着成分貯留槽に充填されたキセノンまたはクリプトンを加圧して下部筒に導入し、これの空隙に残る難吸着成分である不純物を上部筒に導出し、上部筒において易吸着成分であるキセノンまたはクリプトンを吸着し、上部筒より難吸着成分である不純物を回収する工程bと、下部筒を減圧し、易吸着成分であるキセノンまたはクリプトンを吸着剤より脱離させて易吸着成分貯留槽に回収する工程cと、上部筒を減圧し、吸着剤に吸着した成分を脱離させて下部筒に導入し、さらに下部筒より流出したガスを原料ガス貯留槽に回収する工程dと、先に回収した難吸着成分である不純物を上部筒に導入し、易吸着成分であるキセノンまたはクリプトンを吸着剤より脱離させて下部筒に導入し、さらに下部筒より流出したガスを原料ガス貯留槽に回収する工程eとを備え、これらの工程a~eをシーケンスに従って順次行う分離方法が開示されている。 For example, in Patent Document 1, the source gas in the source gas storage tank is pressurized and flowed into two adsorption cylinders (upper cylinder and lower cylinder) connected in series to adsorb xenon or krypton, which are easily adsorbable components, and Step (a) for separating impurities that are difficult to adsorb components, and xenon or krypton filled in the easily adsorbable component storage tank is pressurized and introduced into the lower cylinder, and the impurities that are difficult to adsorb components remaining in the voids are transferred to the upper cylinder. step b, in which the easily adsorbed components, xenon or krypton, are adsorbed in the upper cylinder, and impurities, which are difficultly adsorbed components, are recovered from the upper cylinder; Step (c) in which the adsorbent is desorbed from the adsorbent and collected in a storage tank for easily adsorbable components; Step d of collecting in a gas storage tank, introducing the previously collected impurities, which are poorly adsorbable components, into the upper cylinder, desorbing the easily adsorbable components, xenon or krypton, from the adsorbent and introducing it into the lower cylinder, and A separation method is disclosed which includes a step e of recovering the gas that has flowed out from the lower cylinder into a raw material gas storage tank, and sequentially performs these steps a to e according to a sequence.

また、特許文献1には、吸着筒の下部筒に、原料ガス貯留槽の原料ガスを加圧して導入する流路と、易吸着成分貯留槽のガスを加圧して導入する流路と、上部筒と接続する流路と、原料ガス貯留槽に減圧して排出する流路と、易吸着成分貯留槽に減圧して排出する流路が位置し、各流路にガス流れを制御するバルブが設けられた装置が開示されている。そして、特許文献1に開示された装置では、下部筒とこれらの流路に設けられたバルブの間に、バルブを接続するために必要となる配管が設けられている。 Further, Patent Document 1 discloses a flow path for pressurizing and introducing the raw material gas from the raw material gas storage tank, a flow path for pressurizing and introducing the gas from the easily adsorbable component storage tank, and an upper tube of the adsorption tube. A flow path connected to the cylinder, a flow path for depressurizing and discharging to the source gas storage tank, and a flow path for depressurizing and discharging to the readily adsorbable component storage tank are located, and each flow path has a valve to control the gas flow. A provided apparatus is disclosed. In the device disclosed in Patent Document 1, piping necessary for connecting the valves is provided between the lower cylinder and the valves provided in these flow paths.

特開2006-61831号公報JP-A-2006-61831

特許文献1に開示された分離方法及び装置には、以下の課題がある。
上述した工程aでは、特許文献1の図1中に示すように、原料ガス貯留槽1から下部筒10Bに導入された原料ガスが、下部筒10Bから、易吸着成分貯留槽2に接続する配管L9に設けられたバルブV12と下部筒10Bとの間の配管に流入する。
次いで、上述した工程bでは、易吸着成分貯留槽2の易吸着成分ガスが、配管L4を通じて下部筒10Bに導入される。しかしながら、上述した配管L9のうち、バルブV12と下部筒10Bとの間であって、バルブV12の近傍には、易吸着成分ガスが流れないため、原料ガスが存在し続ける。
その結果、上述した工程cにおいて、上述した配管L9のうち、バルブV12と下部筒10Bとの間であって、バルブV12の近傍に存在する原料ガスが、易吸着成分貯留槽2に排出される。原料ガスに含まれる難吸着成分は、易吸着成分貯留槽2の易吸着成分ガスの不純物であるため、分離した易吸着成分の純度を低下させる要因となる。特に、原料ガスの難吸着成分の濃度が高いと、上述した配管L9のうち、バルブV12と下部筒10Bとの間の容積が少なくても、純度を低下させる要因としては非常に大きい。
The separation method and apparatus disclosed in Patent Document 1 have the following problems.
In the above-described step a, as shown in FIG. 1 of Patent Document 1, the raw material gas introduced from the raw material gas storage tank 1 into the lower cylinder 10B is connected from the lower cylinder 10B to the easily adsorbable component storage tank 2. It flows into the pipe between the valve V12 provided at L9 and the lower cylinder 10B.
Next, in step b described above, the easily adsorbable component gas in the easily adsorbable component storage tank 2 is introduced into the lower cylinder 10B through the pipe L4. However, since no readily adsorbable component gas flows in the vicinity of the valve V12 between the valve V12 and the lower cylinder 10B in the pipe L9, the source gas continues to exist.
As a result, in the above-described step c, the raw material gas present in the vicinity of the valve V12 between the valve V12 and the lower cylinder 10B in the above-described pipe L9 is discharged to the easily adsorbable component storage tank 2. . Since the weakly adsorbable components contained in the source gas are impurities in the easily adsorbable component gas in the easily adsorbable component storage tank 2, they cause a decrease in the purity of the separated easily adsorbable components. In particular, when the concentration of the difficult-to-adsorb components in the raw material gas is high, even if the volume between the valve V12 and the lower cylinder 10B in the above-described pipe L9 is small, it significantly reduces the purity.

そこで、本発明は、上記事情に鑑みてなされたものであり、高純度の易吸着成分を回収できる圧力変動吸着式ガス分離装置を提供することを課題とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a pressure swing adsorption gas separation apparatus capable of recovering high-purity easily adsorbable components.

上記課題を解決するため、本発明は以下の構成を備える。
[1] 2以上の成分を含有する原料ガスから圧力変動吸着式ガス分離方法を用いて前記成分を分離し、回収する装置であって、
1以上の前記成分に対して易吸着性を有し、他の前記成分に対して難吸着性を有する吸着剤を充填する、1以上の吸着筒と、
前記原料ガスを貯留する原料ガス貯留槽と、
前記吸着筒から導出される易吸着性の前記成分を貯留する易吸着成分貯留槽と、
前記原料ガス貯留槽又は易吸着成分貯留槽から導出されるガスを圧縮し、前記吸着筒に供給する圧縮機と、
前記圧縮機と前記吸着塔との間に位置する第1流路と、
第1分岐点において、前記第1流路から分岐し、前記第1分岐点と前記易吸着成分貯留槽との間に位置する第2流路と、
前記第2流路に位置する第1開閉装置と、を備え、
前記第1開閉装置が、前記第1分岐点寄りに位置する、圧力変動吸着式ガス分離装置。
[2] 前記第1分岐点が、前記吸着塔寄りに位置する、[1]に記載の圧力変動吸着式ガス分離装置。
[3] 第2分岐点において、前記第1流路から分岐し、前記第2分岐点と前記原料ガス貯留槽との間に位置する第3流路と、
前記第3流路に位置する第2開閉装置と、をさらに備え、
前記第2開閉装置が、前記第2分岐点寄りに位置する、[1]又は[2]に記載の圧力変動吸着式ガス分離装置。
[4] 前記第2分岐点が、前記吸着塔寄りに位置する、[3]に記載の圧力変動吸着式ガス分離装置。
In order to solve the above problems, the present invention has the following configuration.
[1] An apparatus for separating and recovering two or more components from a raw material gas using a pressure swing adsorption gas separation method,
one or more adsorption cylinders filled with an adsorbent that easily adsorbs one or more of the components and has poor adsorption of the other components;
a source gas storage tank for storing the source gas;
an easily adsorbable component storage tank for storing the easily adsorbable component led out from the adsorption cylinder;
a compressor that compresses the gas drawn out from the source gas storage tank or the easily adsorbable component storage tank and supplies the gas to the adsorption column;
a first flow path positioned between the compressor and the adsorption tower;
a second flow path branched from the first flow path at a first branch point and positioned between the first branch point and the easily adsorbable component storage tank;
a first opening and closing device located in the second flow path,
The pressure swing adsorption gas separation device, wherein the first opening/closing device is positioned near the first branch point.
[2] The pressure swing adsorption gas separation apparatus according to [1], wherein the first branch point is located closer to the adsorption tower.
[3] a third flow path branched from the first flow path at a second branch point and positioned between the second branch point and the source gas storage tank;
a second opening and closing device located in the third flow path,
The pressure swing adsorption gas separation device according to [1] or [2], wherein the second opening/closing device is located near the second branch point.
[4] The pressure swing adsorption gas separation apparatus according to [3], wherein the second branch point is located closer to the adsorption tower.

本発明の圧力変動吸着式ガス分離装置は、高純度の易吸着成分を回収できる。 INDUSTRIAL APPLICABILITY The pressure swing adsorption gas separation apparatus of the present invention is capable of recovering easily adsorbable components of high purity.

本発明の第1実施形態である圧力変動吸着式ガス分離装置の構成を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram showing the configuration of a pressure swing adsorption gas separation apparatus according to a first embodiment of the present invention; 本発明の第2実施形態である圧力変動吸着式ガス分離装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a pressure swing adsorption gas separation apparatus according to a second embodiment of the present invention;

なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 It should be noted that the dimensions and the like of the drawings illustrated in the following description are only examples, and the present invention is not necessarily limited to them, and can be implemented with appropriate changes within the scope of not changing the gist of the present invention. .

<第1実施形態>
先ず、本発明の第1の実施形態である圧力変動吸着式ガス分離装置を、図面を参照して説明する。図1は、本発明の第1実施形態である圧力変動吸着式ガス分離装置50の構成を示す模式図である。
図1に示すように、本実施形態の圧力変動吸着式ガス分離装置(以下、単に「PSA装置」ともいう)50は、2以上の成分を含有する原料ガスを貯留する原料ガス貯留槽1、易吸着性の成分(易吸着成分)を貯留する易吸着成分貯留槽2、難吸着性の成分(難吸着成分)を貯留する難吸着成分貯留槽3、圧縮機4、圧縮機5、下部筒10B,11B、上部筒10U,11Uの4つの吸着筒、経路L1~L17、及び開閉弁V1~V15を備えて、概略構成されている。本実施形態のPSA装置50は、2以上の成分を含有する原料ガスから圧力変動吸着式ガス分離方法を用いてこれらの成分を分離し、それぞれ高濃度のガス成分として回収する装置である。
<First Embodiment>
First, a pressure swing adsorption gas separation apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a pressure swing adsorption gas separation apparatus 50 according to the first embodiment of the present invention.
As shown in FIG. 1, a pressure swing adsorption gas separation apparatus (hereinafter also simply referred to as "PSA apparatus") 50 of the present embodiment includes a source gas storage tank 1 for storing a source gas containing two or more components; Easily adsorbable component storage tank 2 for storing easily adsorbable components (easily adsorbable components), difficultly adsorbable component storage tank 3 for storing difficultly adsorbable components (hardly adsorbable components), compressor 4, compressor 5, lower cylinder 10B, 11B, upper cylinders 10U, 11U, four adsorption cylinders, paths L1 to L17, and on-off valves V1 to V15. The PSA apparatus 50 of this embodiment is an apparatus for separating these components from a source gas containing two or more components using a pressure swing adsorption gas separation method and recovering each of these components as high-concentration gas components.

原料ガス貯留槽1、易吸着成分貯留槽2、及び難吸着成分貯留槽3は、いずれも気体成分(原料ガス、易吸着成分、及び難吸着成分)を貯留することが可能な容器である。これらの容器の形状や大きさ(容量)は、特に限定されるものではなく、供給量、回収量等に応じて、適宜選択することができる。また、これらの容器の材質は、貯留する気体によって腐食しない材質であれば、特に限定されるものではない。 The source gas storage tank 1, the easily adsorbable component storage tank 2, and the poorly adsorbable component storage tank 3 are all containers capable of storing gas components (source gas, easily adsorbable components, and difficultly adsorbable components). The shape and size (capacity) of these containers are not particularly limited, and can be appropriately selected according to the supply amount, collection amount, and the like. Moreover, the material of these containers is not particularly limited as long as it is a material that does not corrode with the stored gas.

原料ガスは、2以上の成分を含有する混合ガスである。混合ガスとしては、2以上の気体成分を含有するものであれば、特に限定されない。このような混合ガスとしては、例えば、窒素ガスとキセノンとの2つの気体成分を含む混合ガスが挙げられる。 A source gas is a mixed gas containing two or more components. The mixed gas is not particularly limited as long as it contains two or more gas components. Such a mixed gas includes, for example, a mixed gas containing two gas components, nitrogen gas and xenon.

下部筒10B、11B、及び上部筒10U、11Uは、それぞれ筒状容器の内側の空間に吸着剤が充填された吸着筒である。これらの吸着筒の形状や大きさ(容量)は、特に限定されるものではなく、供給量、回収量等に応じて、適宜選択することができる。また、これらの吸着筒の材質は、貯留する気体によって腐食しない材質であれば、特に限定されるものではない。 The lower cylinders 10B and 11B and the upper cylinders 10U and 11U are adsorption cylinders each having an inner space of a cylindrical container filled with an adsorbent. The shape and size (capacity) of these adsorption cylinders are not particularly limited, and can be appropriately selected according to the amount of supply, the amount of recovery, and the like. Also, the material of these adsorption cylinders is not particularly limited as long as it is a material that does not corrode with the stored gas.

下部筒10B、11B、及び上部筒10U、11Uには、それぞれ吸着剤が充填されている。吸着剤としては、原料ガス中の目的成分に対して易吸着性あるいは難吸着性を有し、目的成分以外の成分に対して難吸着性あるいは易吸着性を有するものであれば、特に限定されない。 The lower cylinders 10B and 11B and the upper cylinders 10U and 11U are each filled with an adsorbent. The adsorbent is not particularly limited as long as it easily or hardly adsorbs the target component in the raw material gas and has difficulty or easy adsorption of components other than the target component. .

例えば、原料ガスが窒素ガスとキセノンとの2つの気体成分を含む混合ガスである場合、吸着剤として活性炭を用いることができる。ここで、活性炭は、平衡吸着量としてキセノンの吸着量が多く(易吸着性)、窒素の吸着量が少ない(難吸着性)という性質を持つ。 For example, when the source gas is a mixed gas containing two gas components, nitrogen gas and xenon, activated carbon can be used as the adsorbent. Here, activated carbon has properties such that the amount of xenon adsorbed is large (easily adsorbable) and the amount of nitrogen adsorbed is small (difficultly adsorbable) as the equilibrium adsorption amount.

経路L1~L17は、上述した各構成にガスを導入、又は各構成からガスを導出するガス経路である。
経路L1は、原料ガスを原料ガス貯留槽1に導入する経路である。
経路L2は、一端が原料ガス貯留槽1に接続し、他端が分岐点Tにおいて経路L3及び経路L15と接続する。すなわち、経路L2は、原料ガス貯留槽1のガスを圧縮機4へ導出するガス経路の一部である。
経路L3は、一端が易吸着成分貯留槽2に接続し、他端が分岐点Tにおいて経路L2及び経路L15と接続する。すなわち、経路L3は、易吸着成分貯留槽2のガスを圧縮機4へ導出するガス経路の一部である。
Paths L1 to L17 are gas paths for introducing gas to each structure described above or for discharging gas from each structure.
A route L1 is a route for introducing the raw material gas into the raw material gas storage tank 1 .
One end of the path L2 is connected to the source gas storage tank 1, and the other end is connected at a branch point T to the path L3 and the path L15. That is, the path L2 is a part of the gas path that leads the gas in the raw material gas storage tank 1 to the compressor 4 .
One end of the route L3 is connected to the easily adsorbable component storage tank 2, and the other end is connected at a branch point T to the route L2 and the route L15. In other words, the path L3 is a part of the gas path that leads the gas in the easily adsorbable component storage tank 2 to the compressor 4 .

経路L4は、経路L15から分岐し、下部筒10Bに接続されている。すなわち、経路L4は、圧縮機4から導出される圧縮されたガスを下部筒10Bに導入するガス経路(第1流路)の一部である。また、経路L4の下部筒10Bの一次側には、分岐点P,Rがそれぞれ位置する。
経路L5は、経路L15から分岐し、下部筒11Bに接続されている。すなわち、経路L5は、圧縮機4から導出される圧縮されたガスを下部筒11Bに導入するガス経路(第1流路)の一部である。また、経路L5の下部筒11Bの一次側には、分岐点Q,Sがそれぞれ位置する。
Path L4 branches from path L15 and is connected to lower tube 10B. That is, the path L4 is a part of the gas path (first flow path) that introduces the compressed gas drawn out from the compressor 4 into the lower cylinder 10B. Branch points P and R are located on the primary side of the lower cylinder 10B of the path L4.
Path L5 branches from path L15 and is connected to lower tube 11B. That is, the path L5 is part of the gas path (first flow path) that introduces the compressed gas drawn out from the compressor 4 into the lower cylinder 11B. Branch points Q and S are located on the primary side of the lower cylinder 11B of the path L5.

経路L6は、経路L4、及び経路L5とそれぞれ合流し、上部筒10U、11Uより導出される難吸着成分を難吸着成分貯留槽3に導入するガス経路である。
経路L7は、難吸着成分貯留槽3から導出される難吸着成分を装置系外に排出するガス経路である。
経路L8は、難吸着成分貯留槽3から導出される難吸着成分を上部筒10U、11Uにそれぞれ導入するガス経路の一部である。
A route L6 is a gas route that merges with the routes L4 and L5, respectively, and introduces the weakly adsorbable components derived from the upper cylinders 10U and 11U into the poorly adsorbable component storage tank 3.
A route L7 is a gas route for discharging the weakly adsorbable component derived from the poorly adsorbable component storage tank 3 to the outside of the apparatus system.
The path L8 is a part of the gas path that introduces the weakly adsorbable components drawn out from the poorly adsorbable component storage tank 3 into the upper cylinders 10U and 11U, respectively.

経路L9は、経路L4を介して下部筒10Bに接続され、経路L17を介して原料ガス貯留槽1に接続されている。具体的には、経路L9は、経路L4(第1流路)に位置する分岐点(第2分岐点)Rにおいて、経路L4から分岐し、経路L10及び経路L17と合流する。すなわち、経路L9は、経路L4と経路L17との間に位置し、下部筒10Bからのガスを原料ガス貯留槽1に返送する流路(第3流路)の一部である。
経路L10は、経路L5を介して下部筒11Bに接続され、経路L17を介して原料ガス貯留槽1に接続されている。具体的には、経路L10は、経路L5(第1流路)に位置する分岐点(第2分岐点)Sにおいて、経路L5から分岐し、経路L9及び経路L17と合流する。すなわち、経路L10は、経路L5と経路L17との間に位置し、下部筒11Bからのガスを原料ガス貯留槽1に返送する流路(第3流路)の一部である。
The path L9 is connected to the lower cylinder 10B via the path L4, and is connected to the source gas storage tank 1 via the path L17. Specifically, the route L9 branches off from the route L4 at a branch point (second branch point) R located on the route L4 (first flow path) and merges with the route L10 and the route L17. That is, the path L9 is located between the path L4 and the path L17 and is part of the flow path (third flow path) for returning the gas from the lower cylinder 10B to the source gas storage tank 1.
The path L10 is connected to the lower cylinder 11B via a path L5, and is connected to the source gas storage tank 1 via a path L17. Specifically, the route L10 branches from the route L5 at a branch point (second branch point) S located on the route L5 (first flow path) and merges with the route L9 and the route L17. That is, the path L10 is located between the path L5 and the path L17, and is part of the flow path (third flow path) for returning the gas from the lower cylinder 11B to the source gas storage tank 1.

経路L11は、経路L4を介して下部筒10Bに接続され、経路L16を介して易吸着成分貯留槽2に接続されている。具体的には、経路L11は、経路L4(第1流路)に位置する分岐点(第1分岐点)Pにおいて、経路L4から分岐し、経路L12及び経路L16と合流する。すなわち、経路L11は、経路L4と経路L16との間に位置し、下部筒10Bからのガスを易吸着成分貯留槽2に返送する流路(第2流路)の一部である。
経路L12は、経路L5を介して下部筒11Bに接続され、経路L16を介して易吸着成分貯留槽2に接続されている。具体的には、経路L12は、経路L5(第1流路)に位置する分岐点(第1分岐点)Qにおいて、経路L5から分岐し、経路L11及び経路L16と合流する。すなわち、経路L12は、経路L5と経路L16との間に位置し、下部筒11Bからのガスを易吸着成分貯留槽2に返送する流路(第2流路)の一部である。
Path L11 is connected to lower cylinder 10B via path L4, and is connected to easily adsorbable component storage tank 2 via path L16. Specifically, the route L11 branches off from the route L4 at a branch point (first branch point) P located on the route L4 (first flow path) and merges with the route L12 and the route L16. That is, the path L11 is located between the path L4 and the path L16 and is part of the flow path (second flow path) for returning the gas from the lower cylinder 10B to the easily adsorbable component storage tank 2.
Path L12 is connected to lower cylinder 11B via path L5, and is connected to easily adsorbable component storage tank 2 via path L16. Specifically, the route L12 branches off from the route L5 at a branch point (first branch point) Q located on the route L5 (first flow path) and merges with the route L11 and the route L16. That is, the path L12 is located between the path L5 and the path L16 and is part of the flow path (second flow path) for returning the gas from the lower cylinder 11B to the easily adsorbable component storage tank 2.

経路L13は、易吸着成分貯留槽2に接続され、易吸着成分貯留槽2からの易吸着成分を装置系外に供給する経路である。
経路L14は、上部筒10Uと上部筒11Uとの間に位置し、上部筒10Uと上部筒11Uとの間で均圧を行う均圧ラインである。
The path L13 is connected to the easily adsorbable component storage tank 2 and is a path for supplying the easily adsorbable component from the easily adsorbable component storage tank 2 to the outside of the apparatus system.
The path L14 is a pressure equalizing line positioned between the upper cylinder 10U and the upper cylinder 11U to equalize the pressure between the upper cylinder 10U and the upper cylinder 11U.

経路L15は、一端が経路L4及び経路L5に分岐し、これらの経路L4及び経路L5を介して下部筒10B、11Bとそれぞれ連通するとともに、他端が分岐点Tにおいて経路L2及び経路L3と接続する。すなわち、経路L15は、圧縮機4と下部筒10B、11B(吸着塔)との間に位置し、圧縮機4から導出される圧縮されたガスを下部筒10B、11Bに導入するガス経路(第1流路)の一部である。
経路L16は、一端が経路L11及び経路L12に分岐し、他端が易吸着成分貯留槽2と接続する。すなわち、経路L16は、分岐点(第1分岐点)P,Qと易吸着成分貯留槽2との間に位置し、下部筒10B、11Bからのガスを易吸着成分貯留槽2に返送する流路(第2流路)の一部である。
経路L17は、一端が経路L9及び経路L10に分岐し、他端が原料ガス貯留槽1と接続する。すなわち、経路L17は、下部筒10B、11Bと原料ガス貯留槽1との間に位置し、下部筒10B、11Bからのガスを原料ガス貯留槽1に返送する流路(第3流路)の一部である。
One end of the path L15 branches into a path L4 and a path L5. The path L15 communicates with the lower cylinders 10B and 11B through the paths L4 and L5, respectively. do. That is, the path L15 is located between the compressor 4 and the lower cylinders 10B and 11B (adsorption towers), and is a gas path (second 1 channel).
One end of the path L16 branches into the path L11 and the path L12, and the other end is connected to the easily adsorbable component storage tank 2. That is, the path L16 is located between the branch points (first branch points) P, Q and the easily adsorbable component storage tank 2, and is a flow path for returning the gas from the lower cylinders 10B, 11B to the easily adsorbable component storage tank 2. It is part of the channel (second channel).
One end of the path L17 branches into a path L9 and a path L10, and the other end is connected to the source gas storage tank 1. That is, the path L17 is positioned between the lower cylinders 10B, 11B and the raw material gas storage tank 1, and serves as a flow path (third flow path) for returning the gas from the lower cylinders 10B, 11B to the raw material gas storage tank 1. It is part.

圧縮機4は、経路L15に位置し、原料ガス貯留槽1から経路L2を介して経路L15に導出される原料ガス、及び易吸着成分貯留槽2から経路L3を介して経路L15に導出される易吸着成分のうち、いずれか一方を昇圧(圧縮)した後、経路L4又は経路L5を介して下部筒10B又は下部筒11Bに供給する。 The compressor 4 is located on the path L15, and the raw material gas is led out to the path L15 from the source gas storage tank 1 via the path L2, and the easily adsorbable component storage tank 2 is led out to the path L15 via the path L3. After one of the easily adsorbable components is pressurized (compressed), it is supplied to the lower cylinder 10B or the lower cylinder 11B via the path L4 or the path L5.

圧縮機4は、気体成分を昇圧(圧縮)できるものであれば、特に限定されない。このような圧縮機4としては、例えば、ダイアフラム式圧縮機が挙げられる。
また、圧縮機4の吐出量は、特に限定されるものではなく、気体成分の供給量、回収量等に応じて、適宜選択することができる。
The compressor 4 is not particularly limited as long as it can pressurize (compress) the gas component. Examples of such a compressor 4 include a diaphragm compressor.
Also, the discharge amount of the compressor 4 is not particularly limited, and can be appropriately selected according to the supply amount, recovery amount, and the like of the gaseous component.

圧縮機5は、経路L13に位置し、易吸着成分貯留槽2から経路L13に導出される易吸着成分を昇圧(圧縮)した後、装置系外に供給する。圧縮機5は、気体成分を昇圧(圧縮)できるものであれば、特に限定されない。このような圧縮機5としては、例えば、ダイアフラム式圧縮機が挙げられる。また、圧縮機5の吐出量は、特に限定されるものではなく、気体成分の供給量、回収量等に応じて、適宜選択することができる。 The compressor 5 is located on the path L13, and after pressurizing (compressing) the easily adsorbable component led out from the easily adsorbable component storage tank 2 to the path L13, supplies it to the outside of the system. The compressor 5 is not particularly limited as long as it can pressurize (compress) the gas component. Such a compressor 5 may be, for example, a diaphragm compressor. Also, the discharge amount of the compressor 5 is not particularly limited, and can be appropriately selected according to the supply amount, recovery amount, and the like of the gaseous component.

開閉弁V1~V15は、経路L2~L14にそれぞれ位置し、経路内の気体成分の流路を開放又は閉止する開閉装置である。
本実施形態のPSA装置50では、これらの開閉弁のうち、経路L11に位置する開閉弁(第1開閉装置)V12が、分岐点(第1分岐点)P寄りに位置する。
The on-off valves V1 to V15 are opening/closing devices positioned in the paths L2 to L14, respectively, for opening or closing the flow paths of the gas components in the paths.
In the PSA device 50 of the present embodiment, among these on-off valves, the on-off valve (first opening/closing device) V12 located on the path L11 is located near the branch point (first branch point) P.

ここで、開閉弁V12が分岐点P寄りに位置するとは、開閉弁V12と分岐点Pとの距離が短いことをいう。これにより、開閉弁V12と分岐点Pとの間の経路内の容積を低減できる。すなわち、下部筒10Bから導出されるガスを易吸着成分貯留槽2に導出する際、開閉弁V12と分岐点Pとの間の経路L11内に残留するガス量を低減できる。 Here, the position of the on-off valve V12 near the branch point P means that the distance between the on-off valve V12 and the branch point P is short. As a result, the volume in the path between the on-off valve V12 and the branch point P can be reduced. That is, when the gas discharged from the lower cylinder 10B is discharged to the easily adsorbable component storage tank 2, the amount of gas remaining in the path L11 between the on-off valve V12 and the branch point P can be reduced.

なお、開閉弁V12から分岐点Pまでの間の経路L11に残留するガスの量(残留ガス量)は、開閉弁V12から分岐点Pまでの経路L11を構成する配管の容積と、開閉弁V12の内部の容積との総和となる。
本実施形態のPSA装置50では、開閉弁V12の内部から分岐点Pまでの経路L11の容積が、圧縮機4が1分間に吸引するガス容積の0.1体積%以下であることが好ましい。
The amount of gas remaining in the path L11 from the on-off valve V12 to the branch point P (residual gas amount) is determined by the volume of the piping forming the path L11 from the on-off valve V12 to the branch point P, and the volume of the on-off valve V12 is the sum of the internal volume of
In the PSA device 50 of this embodiment, the volume of the path L11 from the inside of the on-off valve V12 to the branch point P is preferably 0.1% by volume or less of the gas volume sucked by the compressor 4 per minute.

同様に、本実施形態のPSA装置50では、これらの開閉弁のうち、経路L12に位置する開閉弁(第1開閉装置)V13が、分岐点(第1分岐点)Q寄りに位置する。 Similarly, in the PSA device 50 of the present embodiment, the on-off valve (first opening/closing device) V13 located on the path L12 is located near the branch point (first branch point) Q among these on-off valves.

ここで、開閉弁V13が分岐点Q寄りに位置するとは、開閉弁V13と分岐点Qとの距離が短いことをいう。これにより、開閉弁V13と分岐点Qとの間の経路内の容積を低減できる。すなわち、下部筒11Bから導出されるガスを易吸着成分貯留槽2に導出する際、開閉弁V13と分岐点Qとの間の経路L12内に残留するガス量を低減できる。 Here, the position of the on-off valve V13 near the branch point Q means that the distance between the on-off valve V13 and the branch point Q is short. As a result, the volume in the path between the on-off valve V13 and the branch point Q can be reduced. That is, when the gas discharged from the lower cylinder 11B is discharged to the easily adsorbable component storage tank 2, the amount of gas remaining in the path L12 between the on-off valve V13 and the branch point Q can be reduced.

なお、開閉弁V13から分岐点Qまでの間の経路L12に残留するガスの量(残留ガス量)は、開閉弁V13から分岐点Qまでの経路L12を構成する配管の容積と、開閉弁V13の内部の容積との総和となる。
本実施形態のPSA装置50では、開閉弁V13の内部から分岐点Qまでの経路L11の容積が、圧縮機4が1分間に吸引するガス容積の0.1体積%以下であることが好ましい。
The amount of gas remaining in the path L12 from the on-off valve V13 to the branch point Q (residual gas amount) is determined by the volume of the piping forming the path L12 from the on-off valve V13 to the branch point Q, and the volume of the on-off valve V13 is the sum of the internal volume of
In the PSA device 50 of the present embodiment, the volume of the path L11 from the inside of the on-off valve V13 to the branch point Q is preferably 0.1% by volume or less of the gas volume sucked by the compressor 4 per minute.

また、本実施形態のPSA装置50では、これらの開閉弁のうち、経路L9に位置する開閉弁(第2開閉装置)V10が、分岐点(第2分岐点)R寄りに位置することが好ましい。 In addition, in the PSA device 50 of the present embodiment, among these on-off valves, the on-off valve (second opening/closing device) V10 located on the path L9 is preferably located near the branch point (second branch point) R. .

ここで、開閉弁V10が分岐点R寄りに位置するとは、開閉弁V10と分岐点Rとの距離が短いことをいう。これにより、開閉弁V10と分岐点Rとの間の経路内の容積を低減できる。すなわち、下部筒10Bから導出されるガスを原料ガス貯留槽1に導出する際、開閉弁V10と分岐点Rとの間の経路L9内に残留するガス量を低減できる。 Here, the position of the on-off valve V10 near the branch point R means that the distance between the on-off valve V10 and the branch point R is short. As a result, the volume in the path between the on-off valve V10 and the branch point R can be reduced. That is, the amount of gas remaining in the path L9 between the on-off valve V10 and the branch point R can be reduced when the gas discharged from the lower cylinder 10B is discharged to the source gas storage tank 1.

なお、開閉弁V10から分岐点Rまでの間の経路L9に残留するガスの量(残留ガス量)は、開閉弁V10から分岐点Rまでの経路L9を構成する配管の容積と、開閉弁V10の内部の容積との総和となる。
本実施形態のPSA装置50では、開閉弁V10の内部から分岐点Rまでの経路L9の容積が、圧縮機4が1分間に吸引するガス容積の0.1体積%以下であることが好ましい。
The amount of gas remaining in the path L9 from the on-off valve V10 to the branch point R (residual gas amount) is determined by the volume of the piping that forms the path L9 from the on-off valve V10 to the branch point R, and the volume of the on-off valve V10. is the sum of the internal volume of
In the PSA device 50 of this embodiment, the volume of the path L9 from the inside of the on-off valve V10 to the branch point R is preferably 0.1% by volume or less of the gas volume sucked by the compressor 4 per minute.

同様、本実施形態のPSA装置50では、これらの開閉弁のうち、経路L10に位置する開閉弁(第2開閉装置)V11が、分岐点(第2分岐点)S寄りに位置することが好ましい。 Similarly, in the PSA device 50 of the present embodiment, among these on-off valves, the on-off valve (second opening/closing device) V11 located on the path L10 is preferably located near the branch point (second branch point) S. .

ここで、開閉弁V11が分岐点S寄りに位置するとは、開閉弁V11と分岐点Sとの距離が短いことをいう。これにより、開閉弁V11と分岐点Sとの間の経路内の容積を低減できる。すなわち、下部筒11Bから導出されるガスを原料ガス貯留槽1に導出する際、開閉弁V11と分岐点Sとの間の経路L10内に残留するガス量を低減できる。 Here, the position of the on-off valve V11 near the branch point S means that the distance between the on-off valve V11 and the branch point S is short. As a result, the volume in the path between the on-off valve V11 and the branch point S can be reduced. That is, when the gas discharged from the lower cylinder 11B is discharged to the source gas storage tank 1, the amount of gas remaining in the path L10 between the on-off valve V11 and the branch point S can be reduced.

なお、開閉弁V11から分岐点Sまでの間の経路L10に残留するガスの量(残留ガス量)は、開閉弁V11から分岐点Sまでの経路L10を構成する配管の容積と、開閉弁V11の内部の容積との総和となる。
本実施形態のPSA装置50では、開閉弁V11の内部から分岐点Sまでの経路L10の容積が、圧縮機4が1分間に吸引するガス容積の0.1体積%以下であることが好ましい。
The amount of gas remaining in the route L10 from the on-off valve V11 to the branch point S (residual gas amount) is determined by the volume of the pipe forming the route L10 from the on-off valve V11 to the branch point S, and the volume of the on-off valve V11. is the sum of the internal volume of
In the PSA device 50 of this embodiment, the volume of the path L10 from the inside of the on-off valve V11 to the branch point S is preferably 0.1% by volume or less of the gas volume sucked by the compressor 4 per minute.

開閉弁V10~V13は、ガス成分の流路となる配管に残留するガス量を低減することが可能であれば、特に限定されない。このような開閉弁としては、ボールバルブ、ロータリーバルブ、ベローズバルブ、ダイアフラムバルブ等が挙げられる。
これらは、開閉弁内の容積を小さくできるため、好ましい。
また、ボールバルブの中でも、三方流路切替式のボールバルブは、配管容積を極めて小さくできるため、より好ましい。
さらに、ベローズバルブやダイアフラムバルブの中でも、三方分流型や複数のバルブが一つのブロックで構成される二連三方弁等のブロック型は、配管容積を極めて小さくでき、バルブの駆動耐久性も優れるため、非常に好ましい。
The on-off valves V10 to V13 are not particularly limited as long as they can reduce the amount of gas remaining in the piping that serves as the gas component flow path. Such on-off valves include ball valves, rotary valves, bellows valves, diaphragm valves, and the like.
These are preferable because the volume inside the on-off valve can be reduced.
Further, among the ball valves, a three-way flow switching type ball valve is more preferable because the piping volume can be made extremely small.
Furthermore, among bellows valves and diaphragm valves, block types such as three-way split type and double three-way valves, in which multiple valves are made up of one block, can make the piping volume extremely small and have excellent valve driving durability. , highly preferred.

また、本実施形態のPSA装置50では、上述した分岐点(第1分岐点)P、及び分岐点(第2分岐点)Rが、それぞれ経路L4の下部筒10B寄りに位置することが好ましい。
同様に、本実施形態のPSA装置50では、上述した分岐点(第1分岐点)Q、及び分岐点(第2分岐点)Sが、それぞれ経路L5の下部筒11B寄りに位置することが好ましい。
In addition, in the PSA device 50 of the present embodiment, it is preferable that the branch point (first branch point) P and the branch point (second branch point) R described above are located closer to the lower tube 10B on the path L4.
Similarly, in the PSA device 50 of the present embodiment, the above-described branch point (first branch point) Q and branch point (second branch point) S are preferably located near the lower cylinder 11B of the path L5. .

ここで、分岐点P,Rが下部筒10B寄りに位置するとは、分岐点P,Rと下部筒10Bとの距離が短いことをいう。これにより、分岐点P,Rと下部筒10Bとの間の経路L4内の容積を低減できる。すなわち、下部筒10Bから導出されるガスを原料ガス貯留槽1あるいは易吸着成分貯留槽2に導出する際、各分岐点P,Rと下部筒10Bとの間の経路L4内に残留するガス量を低減できる。
本実施形態のPSA装置50では、各分岐点P,Rと下部筒10Bとの間の経路L4の容積が、圧縮機4が1分間に吸引するガス容積の1体積%以下であることが好ましい。
Here, the bifurcation points P and R positioned closer to the lower tube 10B means that the distance between the bifurcation points P and R and the lower tube 10B is short. As a result, the volume in the path L4 between the branch points P, R and the lower cylinder 10B can be reduced. That is, when the gas discharged from the lower cylinder 10B is led out to the source gas storage tank 1 or the easily adsorbable component storage tank 2, the amount of gas remaining in the path L4 between the branch points P, R and the lower cylinder 10B is can be reduced.
In the PSA device 50 of the present embodiment, the volume of the path L4 between the branch points P, R and the lower cylinder 10B is preferably 1% by volume or less of the gas volume sucked by the compressor 4 per minute. .

同様に、分岐点Q,Sが下部筒11B寄りに位置するとは、分岐点Q,Sと下部筒11Bとの距離が短いことをいう。これにより、分岐点Q,Sと下部筒11Bとの間の経路L5内の容積を低減できる。すなわち、下部筒11Bから導出されるガスを原料ガス貯留槽1あるいは易吸着成分貯留槽2に導出する際、各分岐点Q,Sと下部筒11Bとの間の経路L5内に残留するガス量を低減できる。
本実施形態のPSA装置50では、各分岐点Q,Sと下部筒11Bとの間の経路L5の容積が、圧縮機4が1分間に吸引するガス容積の1体積%以下であることが好ましい。
Similarly, the position of the branch points Q and S closer to the lower cylinder 11B means that the distance between the branch points Q and S and the lower cylinder 11B is short. As a result, the volume in the path L5 between the branch points Q, S and the lower cylinder 11B can be reduced. That is, when the gas discharged from the lower cylinder 11B is led out to the source gas storage tank 1 or the easily adsorbable component storage tank 2, the amount of gas remaining in the path L5 between the branch points Q and S and the lower cylinder 11B is can be reduced.
In the PSA device 50 of the present embodiment, the volume of the path L5 between the branch points Q, S and the lower cylinder 11B is preferably 1% by volume or less of the gas volume sucked by the compressor 4 per minute. .

また、本実施形態のPSA装置50では、上述した各流路にそれぞれ濃度計を設置してもよい。
具体的な濃度計の位置としては、開閉弁V3と分岐点Rとの間の経路L4、開閉弁V12と分岐点Pとの間の経路L11、開閉弁10と分岐点Rとの間の経路L10、開閉弁V4と分岐点Sとの間の経路L5、開閉弁V13と分岐点Qとの間の経路L12、開閉弁11と分岐点Sとの間の経路L11が挙げられる。
また、各濃度計は、経路L4においては分岐点R寄り、経路L11においては分岐点P寄り、経路L10においては分岐点R寄り、経路L5においては分岐点S寄り、経路L12においては分岐点Q寄り、経路L11においては分岐点S寄りに設けることが好ましい。
Further, in the PSA device 50 of the present embodiment, a concentration meter may be installed in each flow path described above.
Specific positions of the densitometers include a path L4 between the on-off valve V3 and the branch point R, a path L11 between the on-off valve V12 and the branch point P, and a path between the on-off valve 10 and the branch point R. L10, a route L5 between the on-off valve V4 and the branch point S, a route L12 between the on-off valve V13 and the branch point Q, and a route L11 between the on-off valve 11 and the branch point S.
Further, each densitometer is closer to the branch point R on the route L4, closer to the branch point P on the route L11, closer to the branch point R on the route L10, closer to the branch point S on the route L5, and a branch point Q on the route L12. It is preferable to provide it near the branch point S on the route L11.

次に、本実施形態の圧力変動吸着式ガス分離装置50の運転方法について、説明する。
なお、以下の説明では、原料ガスとして、窒素ガスとキセノンとの2つの気体成分を含む混合ガスを用い、下部筒10B、11B、及び上部筒10U、11Uに充填する吸着剤として、平衡分離型吸着剤である活性炭を使用する場合を一例として説明する。
Next, a method of operating the pressure swing adsorption gas separation apparatus 50 of this embodiment will be described.
In the following description, a mixed gas containing two gas components, nitrogen gas and xenon, is used as the raw material gas, and an equilibrium separation type A case of using activated carbon as an adsorbent will be described as an example.

本実施形態のPSA装置50の運転方法では、先ず、下部筒10B及び上部筒10Uにおいて、(1)吸着工程、(2)リンス工程、(3)下部筒減圧工程、(4)上部筒減圧工程、(5)パージ再生工程、及び(6)均圧加圧工程を行う。 In the method of operating the PSA device 50 of the present embodiment, first, in the lower cylinder 10B and the upper cylinder 10U, (1) an adsorption step, (2) a rinse step, (3) a lower cylinder pressure reduction step, and (4) an upper cylinder pressure reduction step , (5) a purge regeneration process, and (6) a pressure equalization pressurization process.

(1)吸着工程
先ず、吸着工程では、開閉弁V2,V4,V7,V9,V10,V12を閉止し、開閉弁V1,V3,V5,V14を開放して、原料ガス貯留槽1から導出される混合ガスを圧縮機4で圧縮した後、経路L15,L4を介して、下部筒10Bの下部に導入する。
ここで、下部筒10Bと上部筒10Uとは、開閉弁V5が開放されているため連通しており、ほぼ同様に圧力上昇する。
なお、原料ガス貯留槽1から導出される混合ガスは、経路L1から原料ガス貯留槽1に導入された原料ガスと、後述する上部筒減圧工程、及びパージ再生工程において下部筒10Bもしくは11Bから導出されたガスとの混合ガスである。
(1) Adsorption Step First, in the adsorption step, the on-off valves V2, V4, V7, V9, V10 and V12 are closed, the on-off valves V1, V3, V5 and V14 are opened, and the After the mixed gas is compressed by the compressor 4, it is introduced into the lower part of the lower cylinder 10B via the paths L15 and L4.
Here, the lower cylinder 10B and the upper cylinder 10U communicate with each other because the on-off valve V5 is open, and the pressure rises in substantially the same manner.
The mixed gas discharged from the raw material gas storage tank 1 is composed of the raw material gas introduced into the raw material gas storage tank 1 from the path L1 and the lower cylinder 10B or 11B in the upper cylinder decompression process and the purge regeneration process described later. It is a mixed gas with

次いで、下部筒10Bの下部に導入された混合ガスは、下部筒10Bの上部に進むにつれて、キセノンが吸着剤に優先的に吸着され、気相中に窒素が濃縮される。濃縮された窒素は、下部筒10Bの上部から上部筒10Uの下部に導入され、上部筒10Uにおいて、窒素中に含まれる微量のキセノンがさらに吸着剤に吸着される。上部筒10Uの圧力が難吸着成分貯留槽3の圧力より高くなった後、上部筒10Uにおいてさらに濃縮された窒素は、経路L6を介して、難吸着成分貯留槽3へ導出される。
なお、難吸着成分貯留槽3に貯留された窒素は、原料ガス中に含まれる窒素に応じた流量が経路L7から装置系外に排出され、残りの窒素が後述するパージ再生工程において向流パージガスとして使用される。
Next, as the mixed gas introduced into the lower part of the lower cylinder 10B advances to the upper part of the lower cylinder 10B, xenon is preferentially adsorbed by the adsorbent, and nitrogen is concentrated in the gas phase. The concentrated nitrogen is introduced from the upper part of the lower cylinder 10B to the lower part of the upper cylinder 10U, and in the upper cylinder 10U, a small amount of xenon contained in the nitrogen is further adsorbed by the adsorbent. After the pressure in the upper tube 10U becomes higher than the pressure in the weakly adsorbable component storage tank 3, the nitrogen further concentrated in the upper tube 10U is led out to the weakly adsorbable component storage tank 3 via the path L6.
The nitrogen stored in the difficult-to-adsorb component storage tank 3 is discharged out of the system through the path L7 at a flow rate corresponding to the nitrogen contained in the raw material gas, and the remaining nitrogen is used as a countercurrent purge gas in the purge regeneration step described later. used as

(2)リンス工程
次に、リンス工程では、開閉弁V1を閉止し、開閉弁V2を開放して、易吸着成分貯留槽2から導出されるキセノンを下部筒10Bの下部に導入する。易吸着成分であるキセノンを下部筒10Bに導入することで、下部筒10Bの吸着剤の充填層に共吸着された窒素と、吸着剤の空隙に存在する窒素とを下部筒10Bから上部筒10Uへ押し出し、下部筒10B内をキセノンで吸着飽和とする。次いで、開閉弁V7,V8,V14,V15を閉止し、開閉弁V9を開放することで、上部筒10Uの上部から導出された窒素は、経路L14を介して上部筒11Uに送られる。
(2) Rinsing Step Next, in the rinsing step, the on-off valve V1 is closed and the on-off valve V2 is opened to introduce the xenon drawn out from the easily adsorbable component storage tank 2 into the lower portion of the lower cylinder 10B. By introducing xenon, which is an easily adsorbed component, into the lower cylinder 10B, the nitrogen co-adsorbed in the adsorbent packed layer of the lower cylinder 10B and the nitrogen present in the pores of the adsorbent are transferred from the lower cylinder 10B to the upper cylinder 10U. , and the inside of the lower cylinder 10B is saturated with xenon. Next, by closing the on-off valves V7, V8, V14 and V15 and opening the on-off valve V9, the nitrogen discharged from the upper part of the upper cylinder 10U is sent to the upper cylinder 11U via the path L14.

(3)下部筒減圧工程
次に、下部筒減圧工程では、開閉弁V3、V5、V10を閉止し、開閉弁V12を開放する。これにより、上述した吸着工程及びリンス工程の間に下部筒10Bに吸着されたキセノンは、下部筒10Bと易吸着成分貯留槽2との差圧によって、経路L11及び経路L16を介して易吸着成分貯留槽2へ回収される。易吸着成分貯留槽2に回収されたキセノンは、原料ガス中に含まれるキセノンに応じた流量が、圧縮機5によって加圧された後、経路L13から製品として採取され、残りのキセノンが上述したリンス工程において並流パージガスとして使用される。
なお、下部筒減圧工程の間、開閉弁V5,V7,V9,V14が閉止され、上部筒10Uは休止状態となる。
(3) Lower cylinder decompression process Next, in the lower cylinder decompression process, the on-off valves V3, V5, and V10 are closed, and the on-off valve V12 is opened. As a result, the xenon adsorbed in the lower cylinder 10B during the above-described adsorption process and rinsing process flows through the paths L11 and L16 due to the pressure difference between the lower cylinder 10B and the easily adsorbable component storage tank 2. It is collected in the storage tank 2 . The xenon recovered in the easily adsorbable component storage tank 2 is compressed by the compressor 5 at a flow rate corresponding to the xenon contained in the raw material gas, and then extracted as a product from the path L13, and the remaining xenon is the above-mentioned xenon. Used as a co-current purge gas in the rinse step.
During the lower cylinder decompression process, the on-off valves V5, V7, V9, and V14 are closed, and the upper cylinder 10U is in a resting state.

ここで、本実施形態のPSA装置50によれば、下部筒10Bと易吸着成分貯留槽2との間の流路(第2流路)L11に位置する開閉弁(第1開閉装置)V12が分岐点P寄りに位置しており、開閉弁V12の内部から分岐点Pまでの経路L11の容積が低減されている。これにより、吸着工程において開閉弁V12の内部から分岐点Pまでの経路L11に残存する混合ガス量が低減されるため、下部筒減圧工程において下部筒10Bから導出される高純度のキセノンを、経路L4及び経路L11を経由する際、不純物の混合量が低減される。その結果、下部筒減圧工程において、易吸着成分であるキセノンを高純度で易吸着成分貯留槽2に回収できる。 Here, according to the PSA device 50 of the present embodiment, the opening/closing valve (first opening/closing device) V12 located in the flow path (second flow path) L11 between the lower cylinder 10B and the easily adsorbable component storage tank 2 is It is located near the branch point P, and the volume of the path L11 from the inside of the on-off valve V12 to the branch point P is reduced. As a result, the amount of the mixed gas remaining in the path L11 from the inside of the on-off valve V12 to the branch point P in the adsorption process is reduced, so that the high-purity xenon derived from the lower cylinder 10B in the lower cylinder decompression process is transferred to the path L11. The mixed amount of impurities is reduced when passing through L4 and path L11. As a result, xenon, which is an easily adsorbable component, can be recovered in the easily adsorbable component storage tank 2 at high purity in the lower cylinder depressurization step.

(4)上部筒減圧工程
次に、上部筒減圧工程では、開閉弁V3,V7,V9,V11,V12,V14を閉止し、開閉弁V5、V10を開放する。これにより、上述した下部筒減圧工程の間に休止していた上部筒10Uと、減圧した下部筒10Bとの差圧によって、上部筒10U内のガスが下部筒10Bに導入される。下部筒10Bに導入されたガスは、下部筒10B内をパージした後、下部筒10Bから導出され、経路L10及び経路L17を介して原料ガス貯留槽1に回収される。原料ガス貯留槽1に回収されたガスは、経路L1から導入される原料ガスと混合された後、上述した吸着工程において混合ガスとして使用される。
(4) Upper cylinder decompression process Next, in the upper cylinder decompression process, the on-off valves V3, V7, V9, V11, V12, and V14 are closed, and the on-off valves V5 and V10 are opened. As a result, the gas in the upper cylinder 10U is introduced into the lower cylinder 10B due to the pressure difference between the upper cylinder 10U, which has been resting during the lower cylinder depressurization step, and the decompressed lower cylinder 10B. After purging the interior of the lower cylinder 10B, the gas introduced into the lower cylinder 10B is discharged from the lower cylinder 10B and recovered in the source gas storage tank 1 via the paths L10 and L17. The gas recovered in the raw material gas storage tank 1 is mixed with the raw material gas introduced from the path L1, and then used as the mixed gas in the adsorption step described above.

(5)パージ再生工程
次に、パージ再生工程では、開閉弁V3,V9,V12,V14を閉止し、開閉弁V5,V7,V10を開放する。これにより、難吸着成分貯留槽3に貯留された窒素が、向流パージガスとして経路L8を介して上部筒10Uの上方から導入される。上部筒10Uに導入された窒素は、上部筒10Uの下方に進むにつれて、吸着剤に吸着されたキセノンを置換脱着させる。吸着剤から脱着された比較的キセノンを多く含むガスは、上部筒10Uから導出された後、下部筒10B、経路L10及び経路L17を介して、原料ガス貯留槽1に回収される。原料ガス貯留槽1に回収されたガスは、上述した上部筒減圧工程と同様に、経路L1から導入される原料ガスと混合された後、上述した吸着工程において混合ガスとして使用される。
なお、向流パージガスとして、難吸着成分貯留槽3に貯留された窒素に代えて、上述した吸着工程において上部筒10Uから導出された窒素を用い、パージ再生工程を行っている上部筒10Uに直接導入してもよい。
(5) Purge regeneration step Next, in the purge regeneration step, the on-off valves V3, V9, V12 and V14 are closed, and the on-off valves V5, V7 and V10 are opened. As a result, the nitrogen stored in the weakly adsorbable component storage tank 3 is introduced from above the upper tube 10U via the path L8 as a countercurrent purge gas. As the nitrogen introduced into the upper tube 10U moves downward in the upper tube 10U, the xenon adsorbed by the adsorbent is replaced and desorbed. The gas that is desorbed from the adsorbent and contains a relatively large amount of xenon is discharged from the upper tube 10U and then recovered in the source gas storage tank 1 via the lower tube 10B, the path L10 and the path L17. The gas recovered in the raw material gas storage tank 1 is mixed with the raw material gas introduced through the path L1 in the same manner as in the above-described upper cylinder decompression step, and then used as the mixed gas in the above-described adsorption step.
Instead of the nitrogen stored in the difficult-to-adsorb component storage tank 3, the nitrogen discharged from the upper tube 10U in the above-described adsorption step is used as the countercurrent purge gas, and is directly fed to the upper tube 10U in the purge regeneration step. may be introduced.

ここで、本実施形態のPSA装置50によれば、下部筒10Bと原料ガス貯留槽1との間の流路(第3流路)L9に位置する開閉弁(第2開閉装置)V10が分岐点R寄りに位置しており、開閉弁V10の内部から分岐点Rまでの経路L9の容積が低減されている。これにより、上部筒減圧工程、及びパージ再生工程において開閉弁V10の内部から分岐点Rまでの経路L9に残存するキセノン量が低減されるため、吸着工程において、混合ガス中のキセノン濃度を変動させることなく、原料ガス貯留槽1に貯留される混合ガスを下部筒10に導入できる。 Here, according to the PSA device 50 of the present embodiment, the opening/closing valve (second opening/closing device) V10 located in the flow path (third flow path) L9 between the lower cylinder 10B and the source gas storage tank 1 branches. It is located near the point R, and the volume of the path L9 from the inside of the on-off valve V10 to the branch point R is reduced. As a result, the amount of xenon remaining in the path L9 from the inside of the on-off valve V10 to the branch point R is reduced in the upper cylinder decompression process and the purge regeneration process, so that the xenon concentration in the mixed gas is varied in the adsorption process. The mixed gas stored in the raw material gas storage tank 1 can be introduced into the lower cylinder 10 without removing the gas.

(6)均圧加圧工程
次に、均圧加圧工程では、開閉弁V3,V7,V8,V10,V12,V14,V15を閉止し、開閉弁V9を開放する。ここで、下部筒10B及び上部筒10Uにおいて均圧加圧工程が行われる際、下部筒11B及び上部筒11Uにおいて上述したリンス工程が行われる。均圧加圧工程では、リンス工程が行われている上部筒11Uから導出された窒素が、経路L14を介して上部筒10U及び下部筒10Bに導入される。
(6) Equalizing and pressurizing process Next, in the equalizing and pressurizing process, the on-off valves V3, V7, V8, V10, V12, V14, and V15 are closed, and the on-off valve V9 is opened. Here, when the equalizing pressure process is performed in the lower tube 10B and the upper tube 10U, the above-described rinsing process is performed in the lower tube 11B and the upper tube 11U. In the pressure equalizing and pressurizing process, nitrogen discharged from the upper cylinder 11U in which the rinsing process is being performed is introduced into the upper cylinder 10U and the lower cylinder 10B via the path L14.

なお、上述した「均圧加圧工程」から「吸着工程」に戻る際、開閉弁V1を開放し、開閉弁V2を閉止する。次いで、原料ガス貯留槽1から導出される混合ガスを圧縮機4で圧縮した後、経路L15,L4を介して、下部筒10Bの下部に導入する。 When returning to the "adsorption process" from the "pressure equalization pressurization process" described above, the on-off valve V1 is opened and the on-off valve V2 is closed. Next, the mixed gas discharged from the raw material gas storage tank 1 is compressed by the compressor 4, and then introduced into the lower part of the lower cylinder 10B via the paths L15 and L4.

本実施形態のPSA装置50では、下部筒11B及び上部筒11Uにおいても、下部筒10B及び上部筒10Uと同様に、上述した6つの工程を順次実施する。
ここで、一方の吸着筒(下部筒10B及び上部筒10U)において、「吸着工程」~「リンス工程」が行われている間、他方の吸着筒(下部筒11B及び上部筒11U)において、「下部筒減圧工程」~「パージ再生工程」~「均圧加圧工程」が行われる。
また、一方の吸着筒において、「下部筒減圧工程」~「パージ再生工程」~「均圧加圧工程」が行われている間、他方の吸着筒において、「吸着工程」~「リンス工程」が行われる。
In the PSA device 50 of the present embodiment, the lower tube 11B and the upper tube 11U also sequentially perform the six steps described above, similarly to the lower tube 10B and the upper tube 10U.
Here, while the "adsorption step" to the "rinse step" are being performed in one adsorption cylinder (lower cylinder 10B and upper cylinder 10U), in the other adsorption cylinder (lower cylinder 11B and upper cylinder 11U), " Lower cylinder decompression process"-"purge regeneration process"-"equalization pressurization process" are carried out.
In addition, while the "lower cylinder depressurization process", the "purge regeneration process", and the "pressure equalization pressurization process" are being performed in one adsorption cylinder, the "adsorption process" to the "rinse process" are performed in the other adsorption cylinder. is done.

本実施形態のPSA装置50によれば、上述した6つの工程を、下部筒10B及び上部筒10Uと、下部筒11B及び上部筒11Uとの間で順次繰り返すことにより、窒素の濃縮とキセノンの濃縮とを連続的に行うことができる。 According to the PSA device 50 of the present embodiment, the six steps described above are sequentially repeated between the lower cylinder 10B and the upper cylinder 10U, and between the lower cylinder 11B and the upper cylinder 11U, thereby concentrating nitrogen and concentrating xenon. and can be performed continuously.

なお、本実施形態のPSA装置50では、経路L1から原料ガス貯留槽1への原料ガスの導入、難吸着成分貯留槽3から経路L7を介しての窒素の排出、及び、易吸着成分貯留槽2から経路L13を介してのキセノンの導出は、上述した工程に依らず連続的に行われる。 In the PSA device 50 of this embodiment, the raw material gas is introduced from the path L1 into the raw material gas storage tank 1, the nitrogen is discharged from the poorly adsorbed component storage tank 3 through the path L7, and the easily adsorbed component storage tank 2 through path L13 is continuously carried out regardless of the steps described above.

本実施形態のPSA装置50によれば、原料ガスから高純度のキセノンを分離回収することができる。
なお、本実施形態のPSA装置50で分離回収されるキセノンの純度としては、特に限定されるものではないが、99体積%以上であることが好ましく、99.9体積%以上であることがより好ましく、99.95体積%以上であることがさらに好ましい。
According to the PSA device 50 of the present embodiment, high-purity xenon can be separated and recovered from the source gas.
The purity of the xenon separated and recovered by the PSA device 50 of the present embodiment is not particularly limited, but is preferably 99% by volume or more, more preferably 99.9% by volume or more. Preferably, it is more preferably 99.95% by volume or more.

本実施形態のPSA装置50は、半導体製品、あるいは表示装置の製造設備の一部として用いることができる。本実施形態のPSA装置50によれば、製造設備から排出される排ガスを原料ガスとし、原料ガスに含まれるキセノンを分離回収した後、高純度のキセノンを製造設備に供給できる。 The PSA device 50 of this embodiment can be used as a part of manufacturing equipment for semiconductor products or display devices. According to the PSA apparatus 50 of the present embodiment, the exhaust gas discharged from the production facility is used as the raw material gas, and after the xenon contained in the raw material gas is separated and recovered, high-purity xenon can be supplied to the production facility.

また、本実施形態のPSA装置50を上述した製造設備の一部として用いる場合、キセノンを供給する必要がない状況や、原料ガス(すなわち、製造設備からの排ガス)が流入してこない状況が頻繁に起こり得る。このような場合、本実施形態のPSA装置50では、難吸着成分貯留槽3から経路L7を介して排出される窒素、あるいは易吸着成分貯留槽2から経路L13を介して導出されるキセノンを原料ガス貯留槽1に返送することで、常に製品ガス(キセノン)を供給できる状態を維持しながら供給停止状態とすることができる。 Further, when the PSA apparatus 50 of the present embodiment is used as part of the manufacturing equipment described above, there are frequent situations in which there is no need to supply xenon, or in which raw material gas (that is, exhaust gas from the manufacturing equipment) does not flow. can occur. In such a case, in the PSA device 50 of the present embodiment, nitrogen discharged from the weakly adsorbable component storage tank 3 via the path L7 or xenon derived from the easily adsorbable component storage tank 2 via the path L13 is used as the raw material. By returning the product gas (xenon) to the gas storage tank 1, it is possible to stop the supply while maintaining a state in which the product gas (xenon) can always be supplied.

以上説明したように、本実施形態のPSA装置50によれば、下部筒10Bと易吸着成分貯留槽2との間の流路(第2流路)を構成する経路L11に位置する開閉弁(第1開閉装置)V12が分岐点P寄りに位置する。これにより、開閉弁V12の内部から分岐点Pまでの経路L11の容積が低減されるため、経路中に残存するガス量を低減できる。したがって、本実施形態のPSA装置50によれば、下部筒10Bから易吸着成分(ガス)を易吸着成分貯留槽2に導出する際、キセノンへの不純物(原料ガス中のキセノン以外の成分)の混合量が低減され、高純度のキセノン(易吸着成分)を製品として分離回収できる。 As described above, according to the PSA device 50 of the present embodiment, the on-off valve ( The first opening/closing device V12 is located near the branch point P. This reduces the volume of the path L11 from the inside of the on-off valve V12 to the branch point P, thereby reducing the amount of gas remaining in the path. Therefore, according to the PSA device 50 of the present embodiment, when the easily adsorbable component (gas) is led out from the lower cylinder 10B to the easily adsorbable component storage tank 2, impurities (components other than xenon in the raw material gas) are added to xenon. The amount of mixing is reduced, and high-purity xenon (easily adsorbable component) can be separated and recovered as a product.

また、本実施形態のPSA装置50によれば、経路L4に位置する分岐点Pが下部筒10B寄りに位置する。これにより、分岐点Pから下部筒10Bまでの経路L4の容積を低減できる。したがって、本実施形態のPSA装置50によれば、下部筒10Bから易吸着成分(ガス)を易吸着成分貯留槽2に導出する際、下部筒10B、経路L4、経路L11及び開閉弁V12で閉塞される経路内に残留するガス量をさらに低減できる。 Further, according to the PSA device 50 of the present embodiment, the branch point P located on the path L4 is located closer to the lower cylinder 10B. Thereby, the volume of the route L4 from the branch point P to the lower cylinder 10B can be reduced. Therefore, according to the PSA device 50 of the present embodiment, when the easily adsorbable component (gas) is led out from the lower cylinder 10B to the easily adsorbable component storage tank 2, the lower cylinder 10B, the path L4, the path L11 and the on-off valve V12 are blocked. It is possible to further reduce the amount of gas remaining in the path to be processed.

本実施形態のPSA装置50によれば、下部筒10Bと原料ガス貯留槽1との間の流路(第3流路)を構成する経路L9に位置する開閉弁(第2開閉装置)V10が分岐点R寄りに位置する。また、経路L4に位置する分岐点Rが下部筒10B寄りに位置する。これにより、下部筒10Bから混合ガスを原料ガス貯留槽1に導出する際、下部筒10B、経路L4、経路L9及び開閉弁V10で閉塞される経路内に残留するガス量をさらに低減できる。 According to the PSA device 50 of the present embodiment, the opening/closing valve (second opening/closing device) V10 located in the path L9 constituting the flow path (third flow path) between the lower cylinder 10B and the source gas storage tank 1 is It is located near the branch point R. Also, the branch point R located on the path L4 is located near the lower cylinder 10B. As a result, when the mixed gas is discharged from the lower cylinder 10B to the source gas storage tank 1, the amount of gas remaining in the paths blocked by the lower cylinder 10B, the paths L4, L9, and the on-off valve V10 can be further reduced.

なお、本実施形態のPSA装置50では、経路L4(L5)に位置する分岐点P(分岐点Q)が、原料貯留槽1への返送経路となる経路L17への分岐点R(分岐点S)よりも下部筒10B(11B)に対して近い構成であるため、易吸着成分ガスが分岐点R(分岐点S)を通過しない利点が得られる。しかしながら、上述した構成は一例であり、本発明はこれに限定されない。すなわち、本実施形態のPSA装置50において、経路L4(L5)における分岐点P(分岐点Q)と分岐点R(分岐点S)との位置関係は逆であってもよいし、また、クロス継手を用いることによって分岐点P(分岐点Q)と分岐点R(分岐点S)とを同じ位置としてもよい。 In the PSA device 50 of the present embodiment, the branch point P (branch point Q) located on the route L4 (L5) is the branch point R (branch point S ) is closer to the lower cylinder 10B (11B) than the lower cylinder 10B (11B). However, the configuration described above is an example, and the present invention is not limited to this. That is, in the PSA device 50 of the present embodiment, the positional relationship between the branch point P (branch point Q) and the branch point R (branch point S) on the route L4 (L5) may be reversed. Branching point P (branching point Q) and branching point R (branching point S) may be located at the same position by using a joint.

<第2実施形態>
次に、本発明を適用した第2の実施形態であるPSA装置について、図2を参照して詳細に説明する。
図2に示すように、第2実施形態のPSA装置60の構成は、前述した第1実施形態のPSA装置50の構成とは、第1実施形態で示した経路L9が経路L4に位置する分岐点Rから分岐するものであるのに対し、分岐点Rではなく下部筒10Bに直接接続された経路L9’を備える点で異なるものであり、その他の構成については第1の実施形態と同一である。したがって、本実施形態のPSA装置60については、第1実施形態のPSA装置50の構成と同一の構成部分については同じ符号を付すると共に説明を省略する。
<Second embodiment>
Next, a PSA device as a second embodiment to which the present invention is applied will be described in detail with reference to FIG.
As shown in FIG. 2, the configuration of the PSA device 60 of the second embodiment differs from the configuration of the PSA device 50 of the first embodiment described above in that the path L9 shown in the first embodiment branches off to the path L4. Although it branches from the point R, it is different in that it has a path L9' that is directly connected to the lower cylinder 10B instead of the branch point R. Other configurations are the same as those of the first embodiment. be. Therefore, with regard to the PSA device 60 of the present embodiment, the same components as those of the PSA device 50 of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.

経路L9’は、一端が下部筒10Bに接続しており、他端が経路L10’及び経路L17’と合流している。すなわち、経路L9’は、下部筒10Bと経路L17’との間に位置し、下部筒10Bからのガスを原料ガス貯留槽1に返送する流路(第3流路)の一部である。
経路L10’は、一端が下部筒11Bに接続しており、他端が経路L9’及び経路L17’と合流している。すなわち、経路L10’は、下部筒11Bと経路L17’との間に位置し、下部筒11Bからのガスを原料ガス貯留槽1に返送する流路(第3流路)の一部である。
One end of the path L9' is connected to the lower tube 10B, and the other end joins the paths L10' and L17'. That is, the path L9' is located between the lower tube 10B and the path L17' and is part of the flow path (third flow path) for returning the gas from the lower tube 10B to the source gas storage tank 1.
One end of the path L10' is connected to the lower tube 11B, and the other end joins the paths L9' and L17'. That is, the path L10' is located between the lower tube 11B and the path L17' and is part of a flow path (third flow path) for returning the gas from the lower tube 11B to the source gas storage tank 1.

経路L17’は、一端が経路L9’及び経路L10’に分岐し、他端が原料ガス貯留槽1と接続する。すなわち、経路L17’は、下部筒10B、11Bと原料ガス貯留槽1との間に位置し、下部筒10B、11Bからのガスを原料ガス貯留槽1に返送する流路(第3流路)の一部である。 One end of the path L17' branches into a path L9' and a path L10', and the other end is connected to the source gas storage tank 1. That is, the path L17' is located between the lower cylinders 10B, 11B and the raw material gas storage tank 1, and is a flow path (third flow path) for returning the gas from the lower cylinders 10B, 11B to the raw material gas storage tank 1. is part of

本実施形態のPSA装置60では、これらの開閉弁のうち、経路L9’に位置する開閉弁(第2開閉装置)V10が、下部筒10B寄りに位置することが好ましい。 In the PSA device 60 of the present embodiment, among these on-off valves, the on-off valve (second opening/closing device) V10 located on the path L9' is preferably located closer to the lower cylinder 10B.

ここで、開閉弁V10が下部筒10B寄りに位置するとは、開閉弁V10と下部筒10Bとの距離が短いことをいう。これにより、開閉弁V10と下部筒10Bとの間の経路L9’内の容積を低減できる。すなわち、下部筒10Bから導出されるガスを原料ガス貯留槽1に導出する際、開閉弁V10と下部筒10Bとの間の経路L9’内に残留するガス量を低減できる。 Here, the position of the on-off valve V10 closer to the lower cylinder 10B means that the distance between the on-off valve V10 and the lower cylinder 10B is short. As a result, the volume in the path L9' between the on-off valve V10 and the lower cylinder 10B can be reduced. That is, when the gas discharged from the lower cylinder 10B is discharged to the source gas storage tank 1, the amount of gas remaining in the path L9' between the on-off valve V10 and the lower cylinder 10B can be reduced.

なお、開閉弁V10から下部筒10Bまでの間の経路L9’に残留するガスの量(残留ガス量)は、開閉弁V10から下部筒10Bまでの経路L9’を構成する配管の容積と、開閉弁V10の内部の容積との総和となる。
本実施形態のPSA装置60では、開閉弁V10の内部から下部筒10Bまでの経路L9’の容積が、圧縮機4が1分間に吸引するガス容積の0.1体積%以下であることが好ましい。
The amount of gas remaining in the path L9' from the on-off valve V10 to the lower cylinder 10B (residual gas amount) is determined by the volume of the piping forming the path L9' from the on-off valve V10 to the lower cylinder 10B, It is the total sum with the volume inside the valve V10.
In the PSA device 60 of this embodiment, the volume of the path L9′ from the inside of the on-off valve V10 to the lower cylinder 10B is preferably 0.1% by volume or less of the gas volume sucked by the compressor 4 per minute. .

同様、本実施形態のPSA装置60では、これらの開閉弁のうち、経路L10’に位置する開閉弁(第2開閉装置)V11が、下部筒11B寄りに位置することが好ましい。 Similarly, in the PSA device 60 of the present embodiment, among these on-off valves, the on-off valve (second opening/closing device) V11 positioned on the path L10' is preferably positioned closer to the lower cylinder 11B.

ここで、開閉弁V11が下部筒11B寄りに位置するとは、開閉弁V11と下部筒11Bとの距離が短いことをいう。これにより、開閉弁V11と下部筒11Bとの間の経路L10’内の容積を低減できる。すなわち、下部筒11Bから導出されるガスを原料ガス貯留槽1に導出する際、開閉弁V11と下部筒11Bとの間の経路L10’内に残留するガス量を低減できる。 Here, the position of the on-off valve V11 closer to the lower cylinder 11B means that the distance between the on-off valve V11 and the lower cylinder 11B is short. As a result, the volume in the path L10' between the on-off valve V11 and the lower cylinder 11B can be reduced. That is, when the gas discharged from the lower cylinder 11B is discharged to the source gas storage tank 1, the amount of gas remaining in the path L10' between the on-off valve V11 and the lower cylinder 11B can be reduced.

なお、開閉弁V11から下部筒11Bまでの間の経路L10’に残留するガスの量(残留ガス量)は、開閉弁V11から下部筒11Bまでの経路L10’を構成する配管の容積と、開閉弁V11の内部の容積との総和となる。
本実施形態のPSA装置60では、開閉弁V11の内部から下部筒11Bまでの経路L10’の容積が、圧縮機4が1分間に吸引するガス容積の0.1体積%以下であることが好ましい。
The amount of gas remaining in the path L10′ from the on-off valve V11 to the lower cylinder 11B (residual gas amount) is determined by the volume of the piping forming the path L10′ from the on-off valve V11 to the lower cylinder 11B, and the opening/closing volume. It is the total sum with the internal volume of the valve V11.
In the PSA device 60 of the present embodiment, the volume of the path L10' from the inside of the on-off valve V11 to the lower cylinder 11B is preferably 0.1% by volume or less of the gas volume sucked by the compressor 4 per minute. .

以上説明したように、本実施形態のPSA装置60によれば、上述した第1実施形態のPSA装置50と同様の効果が得られる。
さらに、本実施形態のPSA装置60によれば、下部筒10Bに直接接続される経路L9’を備え、下部筒10B寄りに開閉弁V10を設けることで、経路内に残留するガス量をさらに低減できるという効果を奏する。
As described above, according to the PSA device 60 of this embodiment, the same effects as those of the PSA device 50 of the first embodiment described above can be obtained.
Furthermore, according to the PSA device 60 of the present embodiment, the path L9' directly connected to the lower cylinder 10B is provided, and the on-off valve V10 is provided near the lower cylinder 10B, thereby further reducing the amount of gas remaining in the path. It has the effect of being able to

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲の設計等も含まれる。 It should be noted that the technical scope of the present invention is not limited to the above-described embodiments, and includes designs and the like that do not deviate from the gist of the present invention.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited by the following description.

図1に示すPSA装置50を用い、下表1に示すように開閉弁を制御して、原料ガスから製品ガスを分離回収した。
PSA装置50の構成は、以下の通りであった。
・下部筒(10B、11B)、上部筒(10U、11U):ステンレス鋼80A(内径83.1mm)、吸着剤充填高さ500mm
・吸着剤:活性炭(大阪ガスケミカル株式会社社製)、各1.5kg充填
・圧縮機4:ダイアフラム式圧縮機(KNF社製、吐出量:20L/min)
・圧縮機5:ダイアフラム式圧縮機(KNF社製、吐出量:0.2L/min)
(以下、すべて0℃、大気圧下)
・原料ガス:キセノン(Xe)+窒素
・経路L1から原料ガス貯留槽1への原料ガスの導入量:2.0L/min
・易吸着成分:キセノン
・易吸着成分貯留槽2から経路L13への導出量:0.2L/min
・難吸着成分:窒素
・難吸着成分貯留槽3から経路L7への導出量:1.8L/min
Using the PSA apparatus 50 shown in FIG. 1, the opening and closing valves were controlled as shown in Table 1 below to separate and recover the product gas from the raw material gas.
The configuration of the PSA device 50 was as follows.
・Lower cylinders (10B, 11B), upper cylinders (10U, 11U): stainless steel 80A (inner diameter 83.1 mm), adsorbent filling height 500 mm
・ Adsorbent: activated carbon (manufactured by Osaka Gas Chemicals Co., Ltd.), each filled with 1.5 kg ・ Compressor 4: Diaphragm compressor (manufactured by KNF, discharge rate: 20 L / min)
- Compressor 5: Diaphragm compressor (manufactured by KNF, discharge rate: 0.2 L / min)
(All below are at 0°C and atmospheric pressure)
- Raw material gas: xenon (Xe) + nitrogen - Introduction amount of raw material gas from path L1 to raw material gas storage tank 1: 2.0 L/min
・Easily adsorbable component: xenon ・Amount drawn from easily adsorbable component storage tank 2 to path L13: 0.2 L/min
・Poorly adsorbable component: Nitrogen ・Amount of poorly adsorbable component discharged from storage tank 3 to path L7: 1.8 L/min

Figure 0007289908000002
Figure 0007289908000002

<実施例1>
開閉弁V10、V11、V12、V13として、ダイアフラム式二方弁(フジキン社製メタルダイアフラムバルブ;FPR-ND-71-9.52)を用い、上記表1の条件で運転した。
結果を以下の表2に示す。
なお、開閉弁V12と分岐点Pとの間の経路L11の配管容積と、開閉弁V12内の容積とを加えた総容積は、19mLであった。
また、開閉弁V13と分岐点Qとの間の経路L12の配管容積と、開閉弁V13内の容積とを加えた総容積、開閉弁V10と点Rまでの間の経路L9の配管容積と、開閉弁V10内の容積とを加えた総容積、及び開閉弁V11と分岐点Sとの間の経路L10の配管容積と、開閉弁V11内の容積とを加えた総容積は、いずれも19mLであった。
<Example 1>
Diaphragm-type two-way valves (metal diaphragm valves manufactured by Fujikin; FPR-ND-71-9.52) were used as the on-off valves V10, V11, V12, and V13, and were operated under the conditions shown in Table 1 above.
The results are shown in Table 2 below.
In addition, the total volume including the pipe volume of the path L11 between the on-off valve V12 and the branch point P and the volume inside the on-off valve V12 was 19 mL.
In addition, the total volume obtained by adding the pipe volume of the route L12 between the on-off valve V13 and the branch point Q and the volume inside the on-off valve V13, the pipe volume of the route L9 between the on-off valve V10 and the point R, The total volume including the volume inside the on-off valve V10 and the total volume including the volume inside the on-off valve V11 and the pipe volume of the path L10 between the on-off valve V11 and the branch point S are both 19 mL. there were.

Figure 0007289908000003
Figure 0007289908000003

表2に示すように、本発明の圧力変動吸着式ガス分離装置によれば、易吸着成分を高純度で分離できることがわかった。特に、原料ガス貯留槽の易吸着成分濃度が60%以上において、易吸着成分(キセノン)を99体積%以上の高純度で分離できた。 As shown in Table 2, according to the pressure swing adsorption gas separation apparatus of the present invention, it was found that easily adsorbable components can be separated with high purity. In particular, when the easily adsorbable component concentration in the source gas storage tank was 60% or more, the easily adsorbable component (xenon) could be separated with a high purity of 99% by volume or more.

<比較例1>
本発明の比較例として、従来技術(上述した特許文献1に示す図1)の装置を使い、実施例1と同様にして分離実験を行った。
なお、各経路における配管容積と開閉弁内の容積とを加えた総容積は、53mLであった。
結果を以下の表3に示す。
<Comparative Example 1>
As a comparative example of the present invention, a separation experiment was conducted in the same manner as in Example 1 using the device of the prior art (FIG. 1 shown in Patent Document 1 mentioned above).
The total volume, which is the sum of the pipe volume in each route and the volume inside the on-off valve, was 53 mL.
The results are shown in Table 3 below.

Figure 0007289908000004
Figure 0007289908000004

表3に示すように、従来技術の装置では、各経路における配管容積と開閉弁内の容積とを加えた総容積は、53mLであるため、易吸着成分(キセノン)の濃度はいずれも99体積%未満であった。 As shown in Table 3, in the device of the prior art, the total volume, which is the sum of the pipe volume in each path and the volume inside the on-off valve, is 53 mL. %.

<実施例2>
開閉弁V10、V11、V12、V13として、ダイアフラム式三方分流弁(フジキン社製、メタルダイアフラムバルブ:FPR-NDTB-71-9.52)を用い、上記表1の条件で運転した。
結果を以下の表4に示す。
なお、開閉弁V12と分岐点Pとの間の経路L11の配管容積と、開閉弁V12内の容積とを加えた総容積は、5mLであった。
また、開閉弁V13と分岐点Qとの間の経路L12の配管容積と、開閉弁V13内の容積とを加えた総容積、開閉弁V10と点Rまでの間の経路L9の配管容積と、開閉弁V10内の容積とを加えた総容積、及び開閉弁V11と分岐点Sとの間の経路L10の配管容積と、開閉弁V11内の容積とを加えた総容積は、いずれも5mLであった。
<Example 2>
As the on-off valves V10, V11, V12, and V13, diaphragm-type three-way diverting valves (manufactured by Fujikin, metal diaphragm valve: FPR-NDTB-71-9.52) were used and operated under the conditions shown in Table 1 above.
The results are shown in Table 4 below.
In addition, the total volume including the pipe volume of the path L11 between the on-off valve V12 and the branch point P and the volume inside the on-off valve V12 was 5 mL.
In addition, the total volume obtained by adding the pipe volume of the route L12 between the on-off valve V13 and the branch point Q and the volume inside the on-off valve V13, the pipe volume of the route L9 between the on-off valve V10 and the point R, The total volume including the volume inside the on-off valve V10 and the total volume including the volume inside the on-off valve V11 and the pipe volume of the path L10 between the on-off valve V11 and the branch point S are both 5 mL. there were.

Figure 0007289908000005
Figure 0007289908000005

表4に示すように、本発明によれば、ガス成分が残留する配管部分の総容積を各5mLとすることで、易吸着成分をさらに高純度で分離できることがわかった。特に、原料ガス貯留槽の易吸着成分濃度が60%以上において、易吸着成分(キセノン)を99.95体積%以上の高純度で分離できた。 As shown in Table 4, according to the present invention, it was found that by setting the total volume of each of the piping portions where the gas components remain to 5 mL, the readily adsorbable components can be separated with even higher purity. In particular, when the easily adsorbable component concentration in the source gas storage tank was 60% or more, the easily adsorbable component (xenon) could be separated with a high purity of 99.95% by volume or more.

<実施例3>
開閉弁V10、V11、V12、V13として、三方ボールバルブ(Swagelok社製;SS-63XLTS8-A30S4)を用い、上記表1の条件で運転した。
結果を以下の表5に示す。
なお、開閉弁V12と分岐点Pとの間の経路L11の配管容積と、開閉弁V12内の容積とを加えた総容積は、5mLであった。
また、開閉弁V13と分岐点Qとの間の経路L12の配管容積と、開閉弁V13内の容積とを加えた総容積、開閉弁V10と点Rまでの間の経路L9の配管容積と、開閉弁V10内の容積とを加えた総容積、及び開閉弁V11と分岐点Sとの間の経路L10の配管容積と、開閉弁V11内の容積とを加えた総容積は、いずれも5mLであった。
<Example 3>
Three-way ball valves (SS-63XLTS8-A30S4 manufactured by Swagelok) were used as the on-off valves V10, V11, V12, and V13, and operated under the conditions shown in Table 1 above.
The results are shown in Table 5 below.
In addition, the total volume including the pipe volume of the path L11 between the on-off valve V12 and the branch point P and the volume inside the on-off valve V12 was 5 mL.
In addition, the total volume obtained by adding the pipe volume of the route L12 between the on-off valve V13 and the branch point Q and the volume inside the on-off valve V13, the pipe volume of the route L9 between the on-off valve V10 and the point R, The total volume including the volume inside the on-off valve V10 and the total volume including the volume inside the on-off valve V11 and the pipe volume of the path L10 between the on-off valve V11 and the branch point S are both 5 mL. there were.

Figure 0007289908000006
Figure 0007289908000006

表5に示すように、本発明によれば、開閉弁として三方ボールバルブを用いた場合であっても、ガス成分が残留する配管部分の総容積を各5mLとすることで、易吸着成分を実施例2と同程度の高純度で分離できることがわかった。すなわち、原料ガス貯留槽の易吸着成分濃度が60%以上において、易吸着成分(キセノン)を99.95体積%以上の高純度で分離できた。 As shown in Table 5, according to the present invention, even when a three-way ball valve is used as the on-off valve, by setting the total volume of the pipe portions where the gas components remain to 5 mL each, the readily adsorbable components can be easily adsorbed. It was found that the separation was possible with a purity as high as in Example 2. That is, when the easily adsorbable component concentration in the source gas storage tank was 60% or more, the easily adsorbable component (xenon) could be separated with a high purity of 99.95% by volume or more.

<実施例4>
原料ガスに含まれる難吸着成分として、窒素に代えてアルゴンを用いた以外は、実施例2と同じ条件を用いて運転を行った。
結果を以下の表6に示す。
<Example 4>
The operation was performed under the same conditions as in Example 2, except that argon was used instead of nitrogen as the weakly adsorbable component contained in the source gas.
The results are shown in Table 6 below.

Figure 0007289908000007
Figure 0007289908000007

表6に示すように、本発明によれば、難吸着成分としてアルゴンを用いた場合であっても、ガス成分が残留する配管部分の総容積を各5mLとすることで、易吸着成分を実施例2と同程度の高純度で分離できることがわかった。すなわち、原料ガス貯留槽の易吸着成分濃度が60%以上において、易吸着成分(キセノン)を99.95体積%以上の高純度で分離できた。 As shown in Table 6, according to the present invention, even when argon is used as the weakly adsorbable component, the total volume of the pipe sections where gas components remain is set to 5 mL for each of the easily adsorbable components. It was found that the separation was possible with a purity as high as in Example 2. That is, when the easily adsorbable component concentration in the source gas storage tank was 60% or more, the easily adsorbable component (xenon) could be separated with a high purity of 99.95% by volume or more.

<比較例2>
原料ガスに含まれる難吸着成分として、窒素に代えてアルゴンを用いた以外は、比較例1と同じ条件を用いて運転を行った。
結果を以下の表7に示す。
<Comparative Example 2>
The operation was performed under the same conditions as in Comparative Example 1, except that argon was used instead of nitrogen as the weakly adsorbable component contained in the source gas.
The results are shown in Table 7 below.

Figure 0007289908000008
Figure 0007289908000008

表7に示すように、原料ガスに含まれる難吸着成分として、窒素に代えてアルゴンを用いた場合であっても、従来技術の装置では、各経路における配管容積と開閉弁内の容積とを加えた総容積は、53mLであるため、易吸着成分(キセノン)の濃度はいずれも99体積%未満であった。 As shown in Table 7, even when argon is used instead of nitrogen as the difficult-to-adsorb component contained in the raw material gas, in the prior art device, the pipe volume in each path and the volume inside the on-off valve are Since the total volume added was 53 mL, the concentrations of easily adsorbable components (xenon) were all less than 99% by volume.

1・・・原料ガス貯留槽
2・・・易吸着成分貯留槽
3・・・難吸着成分貯留槽
4、5・・・圧縮機
10B、11B・・・下部筒
10U、11U・・・上部筒
50,60・・・圧力変動吸着式ガス分離装置(PSA装置)
V1~V15・・・開閉弁(開閉装置)
L1~L17・・・経路(流路)
P,Q,R,S,T・・・分岐点
REFERENCE SIGNS LIST 1 raw material gas storage tank 2 easily adsorbable component storage tank 3 poorly adsorbable component storage tank 4, 5 compressors 10B, 11B lower cylinders 10U, 11U upper cylinders 50, 60 Pressure fluctuation adsorption type gas separation device (PSA device)
V1 to V15・・・On-off valve (open-close device)
L1 to L17 ... route (flow path)
P, Q, R, S, T... branch point

Claims (8)

2以上の成分を含有する原料ガスから圧力変動吸着式ガス分離方法を用いて前記成分を分離し、回収する装置であって、
1以上の前記成分に対して易吸着性を有し、他の前記成分に対して難吸着性を有する吸着剤を充填する、1以上の吸着筒と、
前記原料ガスを貯留する原料ガス貯留槽と、
前記吸着から導出される易吸着性の前記成分を貯留する易吸着成分貯留槽と、
前記原料ガス貯留槽又は易吸着成分貯留槽から導出されるガスを圧縮し、前記吸着筒に供給する圧縮機と、
前記圧縮機と前記吸着との間に位置する第1流路と、
第1分岐点において、前記第1流路から分岐し、前記第1分岐点と前記易吸着成分貯留槽との間に位置する第2流路と、
前記第2流路に位置する第1開閉装置と
第2分岐点において、前記第1流路から分岐し、前記第2分岐点と前記原料ガス貯留槽との間に位置する第3流路と、
前記第3流路に位置する第2開閉装置と、を備え、
前記第1開閉装置の内部から前記第1分岐点までの経路の容積が、前記圧縮機が1分間に吸引するガス容積の0.1体積%以下である場所に、前記第1開閉装置が位置し、
前記第2開閉装置の内部から前記第2分岐点までの経路の容積が、前記圧縮機が1分間に吸引するガス容積の0.1体積%以下である場所に、前記第2開閉装置が位置する、圧力変動吸着式ガス分離装置。
An apparatus for separating and recovering two or more components from a raw material gas using a pressure swing adsorption gas separation method,
one or more adsorption cylinders filled with an adsorbent that easily adsorbs one or more of the components and has poor adsorption of the other components;
a source gas storage tank for storing the source gas;
an easily adsorbable component storage tank for storing the easily adsorbable component led out from the adsorption cylinder ;
a compressor that compresses the gas drawn out from the source gas storage tank or the easily adsorbable component storage tank and supplies the gas to the adsorption column;
a first flow path positioned between the compressor and the adsorption column ;
a second flow path branched from the first flow path at a first branch point and positioned between the first branch point and the easily adsorbable component storage tank;
a first opening/closing device positioned in the second flow path ;
a third flow path branched from the first flow path at a second branch point and located between the second branch point and the source gas storage tank;
a second opening and closing device located in the third flow path,
The first opening/closing device is positioned at a location where the volume of the path from the inside of the first opening/closing device to the first branch point is 0.1% by volume or less of the gas volume sucked by the compressor in one minute. death,
The second opening/closing device is positioned at a location where the volume of the path from the inside of the second opening/closing device to the second branch point is 0.1% by volume or less of the gas volume sucked by the compressor per minute. A pressure swing adsorption gas separator.
前記第1分岐点と前記吸着筒との間の前記第1流路の容積が、前記圧縮機が1分間に吸引するガス容積の1体積%以下である場所に、前記第1分岐点が位置する、請求項1に記載の圧力変動吸着式ガス分離装置。 The first branch point is located where the volume of the first flow path between the first branch point and the adsorption cylinder is 1% by volume or less of the gas volume sucked by the compressor in one minute. The pressure swing adsorption gas separation apparatus according to claim 1, wherein 前記第2分岐点と前記吸着筒との間の前記第1流路の容積が、前記圧縮機が1分間に吸引するガス容積の1体積%以下である場所に、前記第2分岐点が位置する、請求項2に記載の圧力変動吸着式ガス分離装置。 The second branch point is located where the volume of the first flow path between the second branch point and the adsorption cylinder is 1% by volume or less of the volume of gas sucked by the compressor per minute. The pressure swing adsorption gas separation apparatus according to claim 2, wherein 2以上の成分を含有する原料ガスから圧力変動吸着式ガス分離方法を用いて前記成分を分離し、回収する装置であって、
1以上の前記成分に対して易吸着性を有し、他の前記成分に対して難吸着性を有する吸着剤を充填する、1以上の吸着筒と、
前記原料ガスを貯留する原料ガス貯留槽と、
前記吸着筒から導出される易吸着性の前記成分を貯留する易吸着成分貯留槽と、
前記原料ガス貯留槽又は易吸着成分貯留槽から導出されるガスを圧縮し、前記吸着筒に供給する圧縮機と、
前記圧縮機と前記吸着筒との間に位置する第1流路と、
第1分岐点において、前記第1流路から分岐し、前記第1分岐点と前記易吸着成分貯留槽との間に位置する第2流路と、
前記第2流路に位置する第1開閉装置と、
前記吸着筒と前記原料ガス貯留槽とを接続する第3流路と、を備え、
前記第3流路の一端は前記吸着筒に直接接続されており、
前記第1開閉装置の内部から前記第1分岐点までの経路の容積が、前記圧縮機が1分間に吸引するガス容積の0.1体積%以下である場所に、前記第1開閉装置が位置する、圧力変動吸着式ガス分離装置。
An apparatus for separating and recovering two or more components from a raw material gas using a pressure swing adsorption gas separation method,
one or more adsorption cylinders filled with an adsorbent that easily adsorbs one or more of the components and has poor adsorption of the other components;
a source gas storage tank for storing the source gas;
an easily adsorbable component storage tank for storing the easily adsorbable component led out from the adsorption cylinder;
a compressor that compresses the gas drawn out from the source gas storage tank or the easily adsorbable component storage tank and supplies the gas to the adsorption column;
a first flow path positioned between the compressor and the adsorption cylinder;
a second flow path branched from the first flow path at a first branch point and positioned between the first branch point and the easily adsorbable component storage tank;
a first opening/closing device positioned in the second flow path;
a third flow path connecting the adsorption cylinder and the source gas storage tank,
one end of the third channel is directly connected to the adsorption cylinder,
The first opening/closing device is positioned at a location where the volume of the path from the inside of the first opening/closing device to the first branch point is 0.1% by volume or less of the gas volume sucked by the compressor in one minute. A pressure swing adsorption gas separator.
前記第1分岐点と前記吸着筒との間の前記第1流路の容積が、前記圧縮機が1分間に吸引するガス容積の1体積%以下である場所に、前記第1分岐点が位置する、請求項4に記載の圧力変動吸着式ガス分離装置。 The first branch point is located where the volume of the first flow path between the first branch point and the adsorption cylinder is 1% by volume or less of the gas volume sucked by the compressor in one minute. The pressure swing adsorption gas separation apparatus according to claim 4, wherein 2以上の成分を含有する原料ガスから圧力変動吸着式ガス分離方法を用いて前記成分を分離し、回収する装置であって、
1以上の前記成分に対して易吸着性を有し、他の前記成分に対して難吸着性を有する吸着剤を充填する、1以上の吸着筒と、
前記原料ガスを貯留する原料ガス貯留槽と、
前記吸着筒から導出される易吸着性の前記成分を貯留する易吸着成分貯留槽と、
前記原料ガス貯留槽又は易吸着成分貯留槽から導出されるガスを圧縮し、前記吸着筒に供給する圧縮機と、
前記圧縮機と前記吸着筒との間に位置する第1流路と、
第1分岐点において、前記第1流路から分岐し、前記第1分岐点と前記易吸着成分貯留槽との間に位置する第2流路と、
前記第2流路に位置する第1開閉装置と、
第2分岐点において、前記第1流路から分岐し、前記第2分岐点と前記原料ガス貯留槽との間に位置する第3流路と、を備え、
前記第1開閉装置の内部から前記第1分岐点までの経路の容積が、前記圧縮機が1分間に吸引するガス容積の0.1体積%以下である場所に、前記第1開閉装置が位置し、
前記第1分岐点が、前記第2分岐点よりも前記吸着筒に対して近い、圧力変動吸着式ガス分離装置。
An apparatus for separating and recovering two or more components from a raw material gas using a pressure swing adsorption gas separation method,
one or more adsorption cylinders filled with an adsorbent that easily adsorbs one or more of the components and has poor adsorption of the other components;
a source gas storage tank for storing the source gas;
an easily adsorbable component storage tank for storing the easily adsorbable component led out from the adsorption cylinder;
a compressor that compresses the gas drawn out from the source gas storage tank or the easily adsorbable component storage tank and supplies the gas to the adsorption column;
a first flow path positioned between the compressor and the adsorption cylinder;
a second flow path branched from the first flow path at a first branch point and positioned between the first branch point and the easily adsorbable component storage tank;
a first opening/closing device positioned in the second flow path;
a third flow path branched from the first flow path at a second branch point and positioned between the second branch point and the source gas storage tank;
The first opening/closing device is positioned at a location where the volume of the path from the inside of the first opening/closing device to the first branch point is 0.1% by volume or less of the gas volume sucked by the compressor in one minute. death,
The pressure swing adsorption gas separation device, wherein the first branch point is closer to the adsorption column than the second branch point.
前記第1分岐点と前記吸着筒との間の前記第1流路の容積が、前記圧縮機が1分間に吸引するガス容積の1体積%以下である場所に、前記第1分岐点が位置する、請求項6に記載の圧力変動吸着式ガス分離装置。 The first branch point is located where the volume of the first flow path between the first branch point and the adsorption cylinder is 1% by volume or less of the gas volume sucked by the compressor in one minute. The pressure swing adsorption gas separation apparatus according to claim 6, wherein 前記第2分岐点と前記吸着筒との間の前記第1流路の容積が、前記圧縮機が1分間に吸引するガス容積の1体積%以下である場所に、前記第2分岐点が位置する、請求項7に記載の圧力変動吸着式ガス分離装置。 The second branch point is located where the volume of the first flow path between the second branch point and the adsorption cylinder is 1% by volume or less of the volume of gas sucked by the compressor per minute. The pressure swing adsorption gas separation apparatus according to claim 7, wherein
JP2021214396A 2021-12-28 2021-12-28 Pressure Swing Adsorption Gas Separator Active JP7289908B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021214396A JP7289908B1 (en) 2021-12-28 2021-12-28 Pressure Swing Adsorption Gas Separator
PCT/JP2022/045874 WO2023127485A1 (en) 2021-12-28 2022-12-13 Pressure-fluctuation-adsorption-type gas separation device
TW111148554A TW202339839A (en) 2021-12-28 2022-12-16 Pressure swing adsorption type gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021214396A JP7289908B1 (en) 2021-12-28 2021-12-28 Pressure Swing Adsorption Gas Separator

Publications (2)

Publication Number Publication Date
JP7289908B1 true JP7289908B1 (en) 2023-06-12
JP2023097965A JP2023097965A (en) 2023-07-10

Family

ID=86721429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214396A Active JP7289908B1 (en) 2021-12-28 2021-12-28 Pressure Swing Adsorption Gas Separator

Country Status (1)

Country Link
JP (1) JP7289908B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126435A (en) 2000-10-20 2002-05-08 Nippon Sanso Corp Method of separating and purifying gas and equipment therefor
JP2002137909A (en) 2000-10-30 2002-05-14 Air Water Inc Helium gas refining method
JP2003071231A (en) 2001-09-04 2003-03-11 Nippon Sanso Corp Gas separation and refining apparatus and operation method therefor
JP2003192315A (en) 2001-12-19 2003-07-09 Sumitomo Seika Chem Co Ltd Equipment for refining helium
JP2004000819A (en) 2002-04-15 2004-01-08 Nippon Sanso Corp Gas isolating process
JP2006061831A (en) 2004-08-26 2006-03-09 Taiyo Nippon Sanso Corp Pressure variable adsorption type gas separation method and apparatus
WO2007055035A1 (en) 2005-11-14 2007-05-18 Taiyo Nippon Sanso Corporation Pressure fluctuation adsorption method and apparatus
WO2010116623A1 (en) 2009-03-30 2010-10-14 大陽日酸株式会社 Pressure variation adsorption method for gas separation of gas and apparatus therefor
WO2015146211A1 (en) 2014-03-28 2015-10-01 住友精化株式会社 Method and system for purifying helium gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126435A (en) 2000-10-20 2002-05-08 Nippon Sanso Corp Method of separating and purifying gas and equipment therefor
JP2002137909A (en) 2000-10-30 2002-05-14 Air Water Inc Helium gas refining method
JP2003071231A (en) 2001-09-04 2003-03-11 Nippon Sanso Corp Gas separation and refining apparatus and operation method therefor
JP2003192315A (en) 2001-12-19 2003-07-09 Sumitomo Seika Chem Co Ltd Equipment for refining helium
JP2004000819A (en) 2002-04-15 2004-01-08 Nippon Sanso Corp Gas isolating process
JP2006061831A (en) 2004-08-26 2006-03-09 Taiyo Nippon Sanso Corp Pressure variable adsorption type gas separation method and apparatus
WO2007055035A1 (en) 2005-11-14 2007-05-18 Taiyo Nippon Sanso Corporation Pressure fluctuation adsorption method and apparatus
WO2010116623A1 (en) 2009-03-30 2010-10-14 大陽日酸株式会社 Pressure variation adsorption method for gas separation of gas and apparatus therefor
WO2015146211A1 (en) 2014-03-28 2015-10-01 住友精化株式会社 Method and system for purifying helium gas

Also Published As

Publication number Publication date
JP2023097965A (en) 2023-07-10

Similar Documents

Publication Publication Date Title
JP4898194B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus
US6752851B2 (en) Gas separating and purifying method and its apparatus
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
EP1867379B1 (en) Pressure swing adsorption process with improved recovery of high-purity product
TW398989B (en) Pressure swing adsorption process and system with a single adsorbent bed
WO2003086586A1 (en) Gas separating method
JP2005504626A (en) PSA process for co-production of nitrogen and oxygen
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
US6428607B1 (en) Pressure swing adsorption process which provides product gas at decreasing bed pressure
JP7289908B1 (en) Pressure Swing Adsorption Gas Separator
JP7289909B1 (en) Pressure Swing Adsorption Gas Separator
WO2023127485A1 (en) Pressure-fluctuation-adsorption-type gas separation device
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JP7374925B2 (en) Gas separation equipment and gas separation method
JP7381554B2 (en) Pressure fluctuation adsorption type gas separation equipment
TWI626214B (en) Purification method and purification system for carbonic acid gas
KR20190054742A (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
JP7487165B2 (en) Pressure swing adsorption gas separation method and pressure swing adsorption gas separation device
KR100515703B1 (en) Pressure swing adsorption process with controlled internal depressurization flow
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JPH0149530B2 (en)
KR20200018042A (en) Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen or Air
KR100559254B1 (en) Apparatus for concentrating an oxygen and method thereof
JPH1157376A (en) Separation of gaseous mixture by pressure-swing adsorption system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7289908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150