JP3219612B2 - Method for co-producing carbon monoxide and hydrogen from mixed gas - Google Patents

Method for co-producing carbon monoxide and hydrogen from mixed gas

Info

Publication number
JP3219612B2
JP3219612B2 JP27825494A JP27825494A JP3219612B2 JP 3219612 B2 JP3219612 B2 JP 3219612B2 JP 27825494 A JP27825494 A JP 27825494A JP 27825494 A JP27825494 A JP 27825494A JP 3219612 B2 JP3219612 B2 JP 3219612B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorption
pressure
adsorption tower
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27825494A
Other languages
Japanese (ja)
Other versions
JPH08119603A (en
Inventor
克志 小菅
靖 川村
俊也 樋口
讓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27825494A priority Critical patent/JP3219612B2/en
Publication of JPH08119603A publication Critical patent/JPH08119603A/en
Application granted granted Critical
Publication of JP3219612B2 publication Critical patent/JP3219612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧力変動吸着法(PS
A)によって、一酸化炭素、水素及び少量の二酸化炭
素、メタン、窒素を含有する混合ガスより一酸化炭素及
び水素を併産する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a pressure fluctuation adsorption method (PS).
According to A), it relates to a method for co-producing carbon monoxide and hydrogen from a mixed gas containing carbon monoxide, hydrogen and small amounts of carbon dioxide, methane and nitrogen.

【0002】[0002]

【従来の技術】水素、一酸化炭素等の目的とするガスを
一酸化炭素、水素及び少量の二酸化炭素、メタン、窒素
等を含有する混合ガス中から分離回収するためのガス分
離技術として、圧力変動吸着法によるガス分離方法が知
られている。これは特定のガスを吸着剤に選択的に高圧
下で吸着させて、吸着された該ガスを低圧下で脱着させ
るガス分離方法であって、大量のガスを処理するのに適
した生産性の高い方法であるが、吸着工程で得られる製
品水素、及び脱着工程で得られる製品一酸化炭素それぞ
れに対して、目的成分以外の未吸着ガスの混入、塔内残
留未吸着ガスの混入により、目的とする製品ガスの純度
を限度以上に高めることが困難である。このため、前者
については、吸着剤の選択性及び、操作条件が重要であ
り、後者については吸着塔の置換パージ工程が重要であ
る。このような製品ガスを高純度化するための技術とし
て、例えば特開昭63−62522号公報には、1次成
分/2次成分からなるガス混合物から、吸着工程で1次
成分、脱着工程で2次成分の2成分製品ガスを分離する
ために、20以上のガス選択性を持つ吸着剤を使用し
て、吸着−置換パージ−減圧−脱着−昇圧からなる工程
による分離方法が記載されている。
2. Description of the Related Art As a gas separation technique for separating and recovering a target gas such as hydrogen and carbon monoxide from a mixed gas containing carbon monoxide, hydrogen and a small amount of carbon dioxide, methane, nitrogen, etc., a pressure separation technique has been developed. A gas separation method using a variable adsorption method is known. This is a gas separation method in which a specific gas is selectively adsorbed to an adsorbent under high pressure, and the adsorbed gas is desorbed under low pressure. This method is expensive, but the product hydrogen obtained in the adsorption process and the product carbon monoxide obtained in the desorption process are mixed with non-adsorbed gas other than the target component and mixed with non-adsorbed gas remaining in the column. It is difficult to increase the purity of the product gas to be used more than the limit. Therefore, for the former, the selectivity of the adsorbent and the operating conditions are important, and for the latter, the displacement purging step of the adsorption tower is important. As a technique for purifying such a product gas with high purity, for example, Japanese Patent Application Laid-Open No. 63-62222 discloses a technique in which a primary component / secondary component gas mixture is converted into a primary component in an adsorption step and a desorption step in a desorption step. In order to separate a two-component product gas of a secondary component, a separation method is described using an adsorbent having a gas selectivity of 20 or more, and comprising a step of adsorption-substitution purge-decompression-desorption-pressurization. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記特
開昭63−62522号公報に記載された2成分ガスの
分離方法では、置換パージ工程が吸着工程における吸着
圧力とほぼ同じである高圧力下で行われるので、2次成
分ガスの吸着量増大による置換パージ量が増大し、置換
パージガスを圧縮する必要があるため、大きな動力が必
要となる。また2成分以上の混合ガスに適用すると、吸
着剤に1次成分/2次成分以外のものが蓄積されない限
り、必ず目的成分以外のガスがいずれかに混入して純度
が低下する欠点があった。
However, in the method for separating a two-component gas described in JP-A-63-62522, the displacement purge step is performed under a high pressure which is almost the same as the adsorption pressure in the adsorption step. Since the process is performed, the displacement purge amount is increased due to an increase in the amount of adsorption of the secondary component gas, and it is necessary to compress the displacement purge gas. Therefore, a large power is required. Further, when applied to a mixed gas of two or more components, there is a disadvantage that a gas other than the target component is always mixed into any one and the purity is reduced unless a component other than the primary component / secondary component is accumulated in the adsorbent. .

【0004】本発明はこのような事情に鑑みてなされた
もので、吸着塔の置換パージに必要なガスを吸着塔内に
圧入するに際して大きな動力を要せず、しかも高純度
で、混合ガスより一酸化炭素及び水素を併産する方法を
提供することを目的とする。
The present invention has been made in view of such circumstances, and does not require a large power when pressurizing a gas necessary for purging the adsorption tower into the adsorption tower. An object is to provide a method for co-producing carbon monoxide and hydrogen.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載の混合ガスより一酸化炭素及び水素を併産する方法
は、一酸化炭素及び水素を含む混合ガス中の一酸化炭素
を吸着剤に高圧下で吸着させて、難吸着成分である水素
を製品として排出し、吸着された該一酸化炭素を低圧下
で脱着させて、製品一酸化炭素として得る圧力スイング
吸着法における混合ガスより一酸化炭素及び水素を併産
する方法において、一酸化炭素を選択的に吸着する吸着
剤を充填した吸着塔に、前記混合ガスを一酸化炭素の分
圧が1〜5kg/cm2 Aとなる選ばれた操作圧力を維
持させながら導入して、該一酸化炭素を吸着剤に吸着さ
せて、該吸着塔から吐出する水素の回収を行う吸着工程
と、前記吸着工程の終了後前記吸着塔内のガスを大気圧
下に放出して、該吸着塔の内圧を大気圧近くまで降圧す
る放圧工程と、前記吸着塔を真空ポンプによりさらに大
気圧以下に減圧して、前記吸着剤に吸着された一酸化炭
素を脱着させる脱着工程と、前記脱着工程の終了後、前
記吸着工程で得た水素を前記吸着塔に圧入して、該吸着
塔の内圧を次の吸着工程に必要な吸着圧力近くまで昇圧
する昇圧工程とを有し、しかも、前記放圧工程と前記脱
着工程との間に、前記脱着工程で回収する一酸化炭素の
一部を、前記吸着工程のガス流れと順方向に前記吸着塔
に送入することにより該吸着塔内の不純物成分ガスを放
出して該吸着塔内の洗浄を行う置換パージ工程を有して
いる。
According to the present invention, there is provided a semiconductor device comprising:
The method of co-producing carbon monoxide and hydrogen from the mixed gas described in the paragraph is that carbon monoxide in a mixed gas containing carbon monoxide and hydrogen is adsorbed to an adsorbent under high pressure to produce hydrogen that is a hardly adsorbable component. In the method of co-producing carbon monoxide and hydrogen from the mixed gas in the pressure swing adsorption method to obtain the product carbon monoxide by desorbing the adsorbed carbon monoxide under low pressure and selecting carbon monoxide The mixed gas is introduced into an adsorption tower filled with an adsorbent to be adsorbed while maintaining the selected operating pressure at which the partial pressure of carbon monoxide is 1 to 5 kg / cm 2 A. Is adsorbed on an adsorbent to recover the hydrogen discharged from the adsorption tower, and after the adsorption step, the gas in the adsorption tower is released under atmospheric pressure to reduce the internal pressure of the adsorption tower. Before the pressure relief process to reduce the pressure to near atmospheric pressure The adsorption tower is further depressurized to a pressure equal to or lower than the atmospheric pressure by a vacuum pump, and a desorption step of desorbing the carbon monoxide adsorbed on the adsorbent, and after the desorption step is completed, the hydrogen obtained in the adsorption step is subjected to the adsorption tower. And pressurizing the internal pressure of the adsorption tower to near the adsorption pressure required for the next adsorption step, and between the pressure release step and the desorption step, A part of the carbon monoxide to be recovered is fed into the adsorption tower in the forward direction with respect to the gas flow in the adsorption step, thereby releasing the impurity component gas in the adsorption tower and washing the inside of the adsorption tower. It has a purging step.

【0006】[0006]

【作用】請求項1記載の混合ガスより一酸化炭素及び水
素を併産する方法においては、吸着工程の吸着圧力は、
吸着成分である一酸化炭素の分圧により、1〜5kg/
cm2 Aの範囲より選ばれ、本操作圧力を維持させなが
ら一酸化炭素及び水素を含有する混合ガスを原料ガスと
して吸着塔内に導入して、該一酸化炭素を吸着剤に吸着
させるので、一酸化炭素の吸着効率及び、製品水素純度
を高めることができる。ここで一酸化炭素分圧は(吸着
操作圧力)×(原料ガス中の一酸化炭素濃度)であり、
絶対圧力(kg/cm2 A)で表示される値である。吸
着一酸化炭素分圧を実際に変化させて、吸着工程での一
酸化炭素の回収率及び製品水素中に含まれる一酸化炭素
の濃度変化を求めた実験結果を図3は示しているが、吸
着一酸化炭素分圧を1kg/cm2 A以上とすることに
より、大幅に吸着工程における一酸化炭素の回収率を増
大させ、さらに、製品水素中に含まれる一酸化炭素の濃
度を低下させることができることが分かる。縦軸の一酸
化炭素の回収率及び一酸化炭素濃度は、吸着一酸化炭素
分圧を1kg/cm2 Aとした時に得られる吸着工程に
おける一酸化炭素の回収率、及び製品水素中の一酸化炭
素濃度の値をそれぞれ1.0として表示した。
In the method for simultaneously producing carbon monoxide and hydrogen from a mixed gas according to claim 1, the adsorption pressure in the adsorption step is:
Depending on the partial pressure of carbon monoxide, which is an adsorption component, 1 to 5 kg /
selected from the range of cm 2 A, a mixed gas containing carbon monoxide and hydrogen while maintaining the operating pressure is introduced into the adsorption column as a raw material gas, so is adsorbed onto the adsorbent of the carbon monoxide, The carbon monoxide adsorption efficiency and the product hydrogen purity can be increased. Here, the carbon monoxide partial pressure is (adsorption operation pressure) × (carbon monoxide concentration in the raw material gas),
It is a value expressed in absolute pressure (kg / cm 2 A). FIG. 3 shows experimental results obtained by actually changing the adsorbed carbon monoxide partial pressure to obtain the recovery rate of carbon monoxide in the adsorption step and the change in the concentration of carbon monoxide contained in the product hydrogen. By increasing the partial pressure of adsorbed carbon monoxide to 1 kg / cm 2 A or more, the recovery rate of carbon monoxide in the adsorption step is greatly increased, and the concentration of carbon monoxide contained in the product hydrogen is reduced. You can see that it can be done. The vertical axis represents the recovery rate of carbon monoxide and the concentration of carbon monoxide. The recovery rate of carbon monoxide in the adsorption step obtained when the partial pressure of adsorbed carbon monoxide is 1 kg / cm 2 A, and the monoxide concentration in product hydrogen The value of the carbon concentration was indicated as 1.0.

【0007】なお、吸着一酸化炭素分圧が5kg/cm
2 Aを越えたところでも併産は十分に可能であるが、操
作圧力が高圧となり、設備の安全上、構造を高強度とせ
ねばならず設備費のアップにつながる等、また、製品水
素濃度、製品一酸化炭素回収率も殆ど向上がみられなく
なること等により吸着一酸化炭素の分圧は5kg/cm
2 Aを上限とすることが望ましい。さらに、吸着工程の
終了後、前記吸着塔内のガスを大気圧下に放出して、該
吸着塔の内圧を大気圧近くまで降圧するので、吸着塔内
に残留する目的成分以外のガスを、動力を必要とするこ
となく放出できる。また、脱着を行って一酸化炭素を回
収した後、前記吸着工程で得た水素を前記吸着塔に圧入
して、該吸着塔の内圧を、次の吸着工程に必要な吸着圧
力まで昇圧するので、吸着塔内の水素濃度が高くなっ
て、続く吸着工程で回収される水素の純度を低下させる
ことなく、安定した品質を保つことができる。
The partial pressure of adsorbed carbon monoxide is 5 kg / cm.
It is possible to co-produce even where 2 A is exceeded, but the operating pressure is high, and the structure must be high in strength for the safety of equipment, leading to an increase in equipment costs. The partial pressure of adsorbed carbon monoxide is 5 kg / cm due to little improvement in the product carbon monoxide recovery rate.
It is desirable that the upper limit be 2 A. Further, after the end of the adsorption step, the gas in the adsorption tower is released under atmospheric pressure, and the internal pressure of the adsorption tower is reduced to near atmospheric pressure. Can be released without the need for power. Further, after performing the desorption to recover carbon monoxide, the hydrogen obtained in the adsorption step is press-fitted into the adsorption tower, and the internal pressure of the adsorption tower is increased to the adsorption pressure required for the next adsorption step. In addition, the concentration of hydrogen in the adsorption tower is increased, and stable quality can be maintained without lowering the purity of hydrogen recovered in the subsequent adsorption step.

【0008】そして、放圧工程と脱着工程との間に前記
の脱着工程で回収した純度の高い一酸化炭素を吸着工程
のガス流れと順方向に吸着塔に送入することにより、吸
着塔内の不純物成分ガスを放出して吸着塔内の洗浄を行
うので、続く脱着工程において回収される一酸化炭素の
純度を高めることができる。ここで吸着工程のガス流れ
と逆方向に一酸化炭素を送入した場合には、吸着塔の上
部に残留する不純なガス成分と混合するため、脱着工程
において回収される一酸化炭素の純度が低下してしま
う。
Then, between the pressure release step and the desorption step, the high-purity carbon monoxide recovered in the desorption step is fed into the adsorption tower in the forward direction with respect to the gas flow in the adsorption step. Is released to clean the interior of the adsorption tower, so that the purity of carbon monoxide recovered in the subsequent desorption step can be increased. Here, when carbon monoxide is fed in the opposite direction to the gas flow in the adsorption step, the purity of the carbon monoxide recovered in the desorption step is reduced because it is mixed with the impure gas components remaining in the upper part of the adsorption tower. Will drop.

【0009】[0009]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに図1は本発明の一実施例に係る混合ガスより
一酸化炭素及び水素を併産する方法を適用した装置にお
ける操作フロー及び吸着塔内ガスの分布状態を示した説
明図、図2は同装置の全体概略説明図、図3は吸着工程
における一酸化炭素の回収率及び製品水素中の一酸化炭
素濃度と、吸着一酸化炭素分圧との関係を示す図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is an explanatory diagram showing an operation flow and a distribution state of gas in an adsorption tower in an apparatus to which a method for simultaneously producing carbon monoxide and hydrogen from a mixed gas according to an embodiment of the present invention is applied, and FIG. FIG. 3 is a diagram schematically illustrating the entire apparatus, and FIG. 3 is a diagram illustrating the relationship between the recovery rate of carbon monoxide in the adsorption step, the concentration of carbon monoxide in the product hydrogen, and the partial pressure of adsorbed carbon monoxide.

【0010】まず、図2に示した本発明の一実施例に係
る混合ガスより一酸化炭素及び水素を併産する方法を適
用した装置について説明する。吸着塔A、B、C、Dの
内部には一酸化炭素を吸着するための吸着剤が充填され
ている。吸着塔A、B、C、Dは内径が25mm、高さ
が3700mmとなって、一酸化炭素の吸着剤として
は、特公昭60−49022号(特許1326552
号)公報に示されるような活性炭にハロゲン化アルミニ
ウムを担持した吸着剤1.8リットル/塔が充填されて
いる。ここでハロゲン化アルミニウムの担体としては、
活性炭の他にグラファイト等が使用でき、シリカ、活性
アルミナに銅化合物を担持したもの及び、ゼオライトに
銅イオンでイオン交換したもの、無機化合物担体に塩化
銅又はハロゲン化アルミニウムを担持させたもの等も使
用可能である。
First, an apparatus to which the method for simultaneously producing carbon monoxide and hydrogen from a mixed gas according to one embodiment of the present invention shown in FIG. 2 will be described. The inside of the adsorption towers A, B, C and D is filled with an adsorbent for adsorbing carbon monoxide. The adsorption towers A, B, C, and D have an inner diameter of 25 mm and a height of 3700 mm. As a carbon monoxide adsorbent, Japanese Patent Publication No. 60-49022 (Patent No. 1326552)
No.), 1.8 liters / column of an adsorbent having aluminum halide supported on activated carbon as shown in the publication. Here, as the carrier of the aluminum halide,
In addition to activated carbon, graphite and the like can be used, silica, activated alumina carrying a copper compound, zeolite ion-exchanged with copper ions, inorganic compound carrier carrying copper chloride or aluminum halide, etc. Can be used.

【0011】そして、吸着塔A、B、C、Dの上下には
パイプ配管12、12aが取付けられており、それぞれ
のパイプ配管12内を連通または閉止するための自動開
閉弁A1〜A7、B1〜B7、C1〜C7、D1〜D7
が設けられている。これら自動開閉弁の開閉操作によ
り、各吸着塔A、B、C、Dを混合ガス供給部15、製
品一酸化炭素供給部16、製品水素供給部17及びオフ
ガス供給部18へと必要に応じて適宜連通できるように
構成されている。また各吸着塔A、B、C、Dと製品一
酸化炭素供給部16に接続するパイプ配管12の経路に
は真空ポンプ10とバッファタンク13が配置されてお
り、各吸着塔A、B、C、Dの上部に連なるパイプ配管
12aには、吸着塔A、B、C、Dを置換パージする際
に使用される一酸化炭素を含有した置換パージオフガス
を原料へリサイクルするための圧縮機11と貯蔵用のバ
ッファタンク14とが設けられている。なお、図中では
必要な計装機器を省略して表示している。
[0011] Pipe pipes 12, 12a are mounted above and below the adsorption towers A, B, C, D, respectively, and automatic opening / closing valves A1 to A7, B1 for communicating or closing the inside of the respective pipe pipes 12 are provided. ~ B7, C1 ~ C7, D1 ~ D7
Is provided. By the opening and closing operation of these automatic opening and closing valves, each of the adsorption towers A, B, C, and D is connected to the mixed gas supply unit 15, the product carbon monoxide supply unit 16, the product hydrogen supply unit 17, and the off gas supply unit 18 as necessary. It is configured to be able to communicate appropriately. A vacuum pump 10 and a buffer tank 13 are arranged in a path of a pipe 12 connecting each of the adsorption towers A, B, C, D and the product carbon monoxide supply unit 16. , D are connected to a compressor 11 for recycling a purge purge off gas containing carbon monoxide used for purging the adsorption towers A, B, C, and D into raw materials. A buffer tank 14 for storage is provided. In the figure, necessary instrumentation devices are omitted.

【0012】次に、前記装置を用いて、混合ガス中から
一酸化炭素と水素とを回収する一連の工程の動作は、表
1のタイムサイクルに示す様に、それぞれの吸着塔A〜
Dは上下の自動開閉弁An〜Dn(対象工程の吸着塔に
設けられている弁の何れか1個のみを開く、n=1〜
7)により各工程をサイクリックに繰り返す。ここで
は、吸着塔Aの動作を中心とした方法について説明す
る。ここで原料となる混合ガス中の一酸化炭素、水素、
二酸化炭素、メタンの濃度はそれぞれ50.20%、4
5.93%、3.52%、0.35%である。吸着塔A
において目的ガスである一酸化炭素の吸着工程を行って
いる時点では、吸着塔Aの下部配管は混合ガス供給部1
5に、上部配管は製品水素供給部17にそれぞれ独立に
連通する状態に自動開閉弁A1、A5を開として混合ガ
スを吸着塔Aに導入する。
Next, the operation of a series of steps for recovering carbon monoxide and hydrogen from the mixed gas using the above-mentioned apparatus is described in the time cycle of Table 1 in each of the adsorption towers A to A.
D denotes upper and lower automatic on-off valves An to Dn (open only one of the valves provided in the adsorption tower in the target process, n = 1 to
Each step is repeated cyclically according to 7). Here, a method focusing on the operation of the adsorption tower A will be described. Here, carbon monoxide, hydrogen,
The concentrations of carbon dioxide and methane are 50.20% and 4 respectively.
5.93%, 3.52% and 0.35%. Adsorption tower A
At the time when the adsorption step of carbon monoxide as the target gas is being performed in
5, the upper piping opens the automatic opening / closing valves A1 and A5 so as to communicate with the product hydrogen supply unit 17 independently, and introduces the mixed gas into the adsorption tower A.

【0013】図1(a)に示すように、一酸化炭素の破
過前線が吸着塔上部に達する以前で、且つ水素以外の成
分の少なくとも1成分以上が破過しない状態で脱着工程
を終了させる。破過前線とは吸着塔内の特定成分ガスの
吸着破過の状態を示すもので、この破過前線が吸着塔の
上部に達すると吐出するガス中の特定成分の濃度が急速
に増大する。そして吸着塔内を移動する破過前線の通過
を、実験等により予測してある所定時間に達した時に、
もしくは吐出ガスのガス成分を測定して水素ガスの濃度
が所定レベルに達した時に、吸着塔上下に配置された自
動開閉弁A1、A5を全閉として、吸着工程を終了させ
る(図1(a))。本工程における吸着塔Aの内圧は大
気圧より+3.5kg/cm2 高い圧力であり、吸着一
酸化炭素分圧に換算すると約2.3kg/cm2 Aであ
る。
As shown in FIG. 1A, the desorption step is terminated before the breakthrough front of carbon monoxide reaches the upper part of the adsorption tower and in a state where at least one component other than hydrogen does not break through. . The breakthrough front indicates the state of adsorption breakthrough of a specific component gas in the adsorption tower, and when the breakthrough front reaches the upper part of the adsorption tower, the concentration of the specific component in the discharged gas rapidly increases. Then, when the passage of the breakthrough front moving in the adsorption tower reaches a predetermined time predicted by experiments and the like,
Alternatively, when the gas component of the discharged gas is measured and the concentration of the hydrogen gas reaches a predetermined level, the automatic opening / closing valves A1 and A5 arranged above and below the adsorption tower are fully closed, and the adsorption step is ended (FIG. 1 (a) )). The internal pressure of the adsorption tower A in this step is a pressure higher than the atmospheric pressure by +3.5 kg / cm 2, which is about 2.3 kg / cm 2 A in terms of the partial pressure of adsorbed carbon monoxide.

【0014】しかる後、上部の自動開閉弁A7を開い
て、ほぼ大気圧に下がるまで吸着塔A内のガスをオフガ
スとして放出するが、必要に応じて自動開閉弁A7を閉
じ、A4を開いてバッファタンク14内に貯蔵すること
もできる。このような放圧工程により一酸化炭素及び水
素以外の成分を多く含む不純なガスが効率的に除かれる
(図1(b))。そして、所定時間もしくは、所定圧力
に吸着塔の内圧が達した時点で、自動開閉弁A7もしく
はA4を全閉として、放圧工程を終了させる。
Thereafter, the upper automatic opening / closing valve A7 is opened, and the gas in the adsorption tower A is released as an off-gas until the pressure almost drops to the atmospheric pressure. If necessary, the automatic opening / closing valve A7 is closed and A4 is opened. It can also be stored in the buffer tank 14. By such a pressure release step, an impure gas containing a large amount of components other than carbon monoxide and hydrogen is efficiently removed (FIG. 1B). Then, when the internal pressure of the adsorption tower reaches a predetermined time or a predetermined pressure, the automatic on-off valve A7 or A4 is fully closed, and the pressure release step is completed.

【0015】そして、前記吸着塔Aの下部から即ち、吸
着工程におけるガス流れと順方向にして、バッファタン
ク13に貯蔵されている高濃度の一酸化炭素を自動開閉
弁A3、A4を開として吸着塔Aに送入することにより
吸着塔A内の不純なガスを下部から上部に押し出して、
吸着塔A内の洗浄を行った(図1(c))。本置換パー
ジ工程では、送り込む高濃度の一酸化炭素量は、脱着工
程で得られるガスを必要とされる製品一酸化炭素純度に
応じて使用するが、本実施例では、脱着工程で得られた
ガスの約50%を吸着塔Aへ供給し、所定時間に達した
時点で自動開閉弁A3、A4を閉として本工程を終了さ
せる。
Then, the high-concentration carbon monoxide stored in the buffer tank 13 is adsorbed from the lower portion of the adsorption tower A, that is, in the forward direction of the gas flow in the adsorption step, by opening the automatic on-off valves A3 and A4. The impure gas in the adsorption tower A is pushed out from the lower part to the upper part by feeding into the tower A,
The inside of the adsorption tower A was washed (FIG. 1 (c)). In this replacement purge step, the amount of high concentration carbon monoxide to be sent is used according to the required product carbon monoxide purity using the gas obtained in the desorption step, but in this example, the gas obtained in the desorption step is used. About 50% of the gas is supplied to the adsorption tower A, and when a predetermined time has been reached, the automatic opening / closing valves A3 and A4 are closed to terminate the present process.

【0016】次いで、吸着塔Aの下部にある自動開閉弁
A2を開いて、真空ポンプ10により吸着塔A内を吸着
圧力が50Torrとなるまで減圧し、吸着剤に吸着さ
れている一酸化炭素を脱着させた(図1(d))。この
間、前記一酸化炭素はバッファタンク13を介して製品
一酸化炭素供給部16及び置換パージ工程に使用される
ガスとして供給される。そして、所定の時間に達した時
点で自動開閉弁A2を閉じて脱着工程を終了した。
Next, the automatic opening / closing valve A2 at the lower portion of the adsorption tower A is opened, and the pressure inside the adsorption tower A is reduced by the vacuum pump 10 until the adsorption pressure becomes 50 Torr, and the carbon monoxide adsorbed by the adsorbent is removed. It was detached (FIG. 1 (d)). During this time, the carbon monoxide is supplied via the buffer tank 13 as a gas used in the product carbon monoxide supply unit 16 and the replacement purge step. Then, when a predetermined time was reached, the automatic opening / closing valve A2 was closed to complete the desorption process.

【0017】昇圧工程においては、以上のようにして脱
着工程を終了した前記吸着塔Aの上部から、あるいは必
要に応じて下部から、前記吸着工程で得た高純度の水素
を自動開閉弁A6を開いて送入し(図1(e))、吸着
塔Aの内圧を約3.5kg/cm2 G(大気圧との差
圧)となるまで昇圧させ所定の時間又は、所定の吸着塔
内圧力に達した時点で、自動開閉弁A6を閉として本工
程を終了し、次の脱着工程へと吸着塔Aは移行する。
In the pressurizing step, the high-purity hydrogen obtained in the adsorbing step is supplied to the automatic on-off valve A6 from above or, if necessary, from the lower part of the adsorbing tower A after the desorption step is completed. It is opened and fed (FIG. 1 (e)), and the internal pressure of the adsorption tower A is increased to about 3.5 kg / cm 2 G (differential pressure from the atmospheric pressure) for a predetermined time or in the predetermined adsorption tower. When the pressure reaches the pressure, the automatic opening / closing valve A6 is closed to end this step, and the adsorption tower A shifts to the next desorption step.

【0018】以上の操作を吸着塔A〜Dについて、表
1、表2に示すタイムサイクルに従ってサイクリックに
逐次行う。表1、表2において自動開閉弁A1〜D7の
空白で表示したものは閉止状態にあることを示し、A〜
D塔はそれぞれ吸着塔A〜Dを表示している。なお、上
記置換パージ工程を行うための操作工程を省略した工程
により、同様の操作を行うこともでき、その一例とし
て、3基の吸着塔でのタイムサイクルを表3に示した。
The above operations are sequentially performed on the adsorption towers A to D cyclically according to the time cycles shown in Tables 1 and 2. In Tables 1 and 2, the blanks of the automatic on-off valves A1 to D7 indicate that the valves are in the closed state.
Column D indicates adsorption columns A to D, respectively. In addition, the same operation can be performed by a process in which the operation process for performing the replacement purge process is omitted. As an example, a time cycle in three adsorption towers is shown in Table 3.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】以上のようにして混合ガスの分離を行った
結果、製品水素中に含まれる水素、一酸化炭素、二酸化
炭素、メタンの各成分は、96.16%、3.33%、
0.01%、0.50%であり、製品一酸化炭素中に含
まれる水素、一酸化炭素、二酸化炭素、メタンの各成分
は、0.32%、99.64%、0.03%、0.01
%であり、混合ガス、製品水素、製品一酸化炭素のガス
量はそれぞれ314.75、107.09、141.5
1Nl/Hrであった。なお、本実施例の吸着、脱着時
間はそれぞれ300秒とした。
As a result of the separation of the mixed gas as described above, the components of hydrogen, carbon monoxide, carbon dioxide, and methane contained in the product hydrogen are 96.16%, 3.33%,
0.01% and 0.50%, and the components of hydrogen, carbon monoxide, carbon dioxide and methane contained in the product carbon monoxide are 0.32%, 99.64%, 0.03%, 0.01
%, And the gas amounts of the mixed gas, product hydrogen, and product carbon monoxide are 314.75, 107.09, and 141.5, respectively.
It was 1 Nl / Hr. Note that the adsorption and desorption times in this example were each 300 seconds.

【0023】比較例として、製品一酸化炭素による吸着
塔Aの置換パージを、3.5kg/cm2 Gの高圧の圧
力下で行い、かつ置換パージに使用したガス量を本実施
例の2.7倍使用した他は、前記実施例と同様の条件で
前記混合ガスの分離を行った結果、製品水素中に含まれ
る水素、一酸化炭素、二酸化炭素、メタンの各成分は、
94.09%、5.42%、0.01%、0.48%で
あり、製品一酸化炭素中に含まれる水素、一酸化炭素、
二酸化炭素、メタンの各成分は、4.28%、88.9
3%、6.56%、0.23%であった。比較例におい
ては、実施例に較べて水素及び一酸化炭素の純度が低
く、しかも、置換パージ工程において一酸化炭素の圧入
のための動力を必要とするために、電力が実施例に較べ
て約50%上昇した。
As a comparative example, the purging of the adsorption tower A with the product carbon monoxide was performed under a high pressure of 3.5 kg / cm 2 G, and the amount of gas used for the purging purge was changed to 2. Except for using 7 times, as a result of performing the separation of the mixed gas under the same conditions as in the above example, each component of hydrogen, carbon monoxide, carbon dioxide, and methane contained in the product hydrogen was:
94.09%, 5.42%, 0.01% and 0.48%, and hydrogen, carbon monoxide contained in the product carbon monoxide,
Each component of carbon dioxide and methane is 4.28%, 88.9
They were 3%, 6.56% and 0.23%. In the comparative example, the purity of hydrogen and carbon monoxide was lower than in the example, and power was required for injection of carbon monoxide in the displacement purge step. It has risen 50%.

【0024】以上、本発明の実施例を説明したが、本発
明はこれらの実施例に限定されるものではなく、要旨を
逸脱しない条件での変更等は全て本発明の適用範囲であ
る。例えば上記実施例においては、吸着塔の基数が4基
である装置について述べたが、基数に限定されることな
く本発明の適用が可能であるし、置換パージオフガスを
原料にリサイクルさせずにオフガスとして排出し、圧縮
機11及びバッファタンク14の省略、あるいはバッフ
ァタンク13と自動開閉弁A3〜D3の間にブロワーも
しくはファンを設置する等の変更も可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and all changes and the like without departing from the gist are within the scope of the present invention. For example, in the above embodiment, an apparatus in which the number of adsorption towers is four has been described. However, the present invention is applicable without being limited to the number of adsorption towers. And the compressor 11 and the buffer tank 14 may be omitted, or a blower or a fan may be installed between the buffer tank 13 and the automatic opening / closing valves A3 to D3.

【0025】[0025]

【発明の効果】請求項1記載の混合ガスより一酸化炭素
及び水素を併産する方法においては、一酸化炭素を選択
的に吸着する吸着剤を充填した吸着塔に、一酸化炭素及
び水素を含有する混合ガスを一酸化炭素の分圧が1〜5
kg/cm2 Aとなる選ばれた操作圧力を維持させなが
ら導入して、該一酸化炭素を吸着剤に吸着させて、該吸
着塔から吐出する水素の回収を行う吸着工程と、前記吸
着工程の終了後前記吸着塔内のガスを大気圧下に放出し
て、該吸着塔の内圧を大気圧近くまで降圧する放圧工程
と、前記吸着塔を真空ポンプによりさらに大気圧以下に
減圧して、前記吸着剤に吸着された一酸化炭素を脱着さ
せる脱着工程と、前記脱着工程の終了後、前記吸着工程
で得た水素を前記吸着塔に圧入して、該吸着塔の内圧を
次の吸着工程に必要な吸着圧力近くまで昇圧する昇圧工
程とを有するように構成されているので、吸着塔内の水
素濃度が高くなって、続く吸着工程で回収される水素の
純度を低下させることなく安定した品質を保つことがで
きる。そして、放圧工程と脱着工程との間に、前工程で
回収した純度の高い一酸化炭素を吸着工程のガス流れと
順方向に吸着塔に送入することにより、吸着塔内に残留
する不純物成分ガスを放出させて吸着塔内の洗浄を行う
ので、続く脱着工程において回収される一酸化炭素の純
度をさらに高めることができる。
According to the method for simultaneously producing carbon monoxide and hydrogen from a mixed gas according to the first aspect, carbon monoxide and hydrogen are supplied to an adsorption tower packed with an adsorbent for selectively adsorbing carbon monoxide. The mixed gas to be contained has a partial pressure of carbon monoxide of 1 to 5
an adsorption step of introducing while maintaining the selected operating pressure of kg / cm 2 A to adsorb the carbon monoxide to the adsorbent and recovering hydrogen discharged from the adsorption tower; After the end of, the gas in the adsorption tower is released under atmospheric pressure, a pressure release step of reducing the internal pressure of the adsorption tower to near atmospheric pressure, and further reducing the pressure of the adsorption tower to below atmospheric pressure by a vacuum pump. After the completion of the desorption step of desorbing the carbon monoxide adsorbed on the adsorbent and the desorption step, the hydrogen obtained in the adsorption step is injected into the adsorption tower, and the internal pressure of the adsorption tower is adjusted to the next adsorption level. It is configured to have a pressure boosting step to raise the pressure to near the adsorption pressure required for the process, so that the hydrogen concentration in the adsorption tower increases, and it is stable without reducing the purity of hydrogen recovered in the subsequent adsorption step Quality can be maintained. Then, between the pressure release step and the desorption step, the high-purity carbon monoxide recovered in the previous step is fed into the adsorption tower in a forward direction with the gas flow in the adsorption step, thereby removing impurities remaining in the adsorption tower. Since the inside of the adsorption tower is washed by releasing the component gas, the purity of carbon monoxide recovered in the subsequent desorption step can be further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る混合ガスより一酸化炭
素及び水素を併産する方法を適用した装置における操作
フロー図及び吸着塔内ガスの分布状態を示した説明図で
ある。
FIG. 1 is an operation flow diagram and an explanatory diagram showing a distribution state of gas in an adsorption tower in an apparatus to which a method for simultaneously producing carbon monoxide and hydrogen from a mixed gas according to an embodiment of the present invention is applied.

【図2】同装置の全体概略説明図である。FIG. 2 is an overall schematic explanatory view of the apparatus.

【図3】吸着工程における一酸化炭素の回収率及び製品
水素中の一酸化炭素濃度と、吸着一酸化炭素分圧との関
係を示す図である。
FIG. 3 is a diagram showing the relationship between the recovery rate of carbon monoxide in the adsorption step, the concentration of carbon monoxide in product hydrogen, and the partial pressure of adsorbed carbon monoxide.

【符号の説明】[Explanation of symbols]

10:真空ポンプ、11:圧縮機、12:パイプ配管、
12a:パイプ配管、13:バッファタンク、14:バ
ッファタンク、15:混合ガス供給部、16:製品一酸
化炭素供給部、17:製品水素供給部、18:オフガス
供給部、A:吸着塔、A1:自動開閉弁、A2:自動開
閉弁、A3:自動開閉弁、A4:自動開閉弁、A5:自
動開閉弁、A6:自動開閉弁、A7:自動開閉弁、B:
吸着塔、B1:自動開閉弁、B2:自動開閉弁、B3:
自動開閉弁、B4:自動開閉弁、B5:自動開閉弁、B
6:自動開閉弁、B7:自動開閉弁、C:吸着塔、C
1:自動開閉弁、C2:自動開閉弁、C3:自動開閉
弁、C4:自動開閉弁、C5:自動開閉弁、C6:自動
開閉弁、C7:自動開閉弁、D:吸着塔、D1:自動開
閉弁、D2:自動開閉弁、D3:自動開閉弁、D4:自
動開閉弁、D5:自動開閉弁、D6:自動開閉弁、D
7:自動開閉弁
10: vacuum pump, 11: compressor, 12: pipe piping,
12a: pipe piping, 13: buffer tank, 14: buffer tank, 15: mixed gas supply section, 16: product carbon monoxide supply section, 17: product hydrogen supply section, 18: off gas supply section, A: adsorption tower, A1 : Automatic open / close valve, A2: Automatic open / close valve, A3: Automatic open / close valve, A4: Automatic open / close valve, A5: Automatic open / close valve, A6: Automatic open / close valve, A7: Automatic open / close valve, B:
Adsorption tower, B1: automatic open / close valve, B2: automatic open / close valve, B3:
Automatic open / close valve, B4: Automatic open / close valve, B5: Automatic open / close valve, B
6: Automatic open / close valve, B7: Automatic open / close valve, C: Adsorption tower, C
1: Automatic open / close valve, C2: Automatic open / close valve, C3: Automatic open / close valve, C4: Automatic open / close valve, C5: Automatic open / close valve, C6: Automatic open / close valve, D: Adsorption tower, D1: Automatic Open / close valve, D2: Automatic open / close valve, D3: Automatic open / close valve, D4: Automatic open / close valve, D5: Automatic open / close valve, D6: Automatic open / close valve, D
7: Automatic open / close valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 俊也 福岡県北九州市戸畑区大字中原46−59 新日本製鐵株式会社 機械・プラント事 業部内 (72)発明者 加藤 讓 福岡県北九州市戸畑区大字中原46−59 新日本製鐵株式会社 機械・プラント事 業部内 (56)参考文献 特開 昭49−56893(JP,A) 特開 昭49−41292(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 3/56 B01D 53/04 C01B 31/18 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiya Higuchi 46-59 Ohara Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Machinery & Plant Business Department (72) Inventor Yuzuru Kato Tobata-ku, Kitakyushu-shi, Fukuoka Ohara Nakahara 46-59 Nippon Steel Corporation Machinery & Plant Division (56) References JP-A-49-56893 (JP, A) JP-A-49-41292 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C01B 3/56 B01D 53/04 C01B 31/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一酸化炭素及び水素を含む混合ガス中の
一酸化炭素を吸着剤に高圧下で吸着させて、難吸着成分
である水素を製品として排出し、吸着された該一酸化炭
素を低圧下で脱着させて、製品一酸化炭素として得る圧
力スイング吸着法における混合ガスより一酸化炭素及び
水素を併産する方法において、 一酸化炭素を選択的に吸着する吸着剤を充填した吸着塔
に前記混合ガスを一酸化炭素の分圧が1〜5kg/cm
2 Aとなる選ばれた操作圧力を維持させながら導入し
て、該一酸化炭素を吸着剤に吸着させて、該吸着塔から
吐出する水素の回収を行う吸着工程と、前記吸着工程の
終了後前記吸着塔内のガスを大気圧下に放出して、該吸
着塔の内圧を大気圧近くまで降圧する放圧工程と、 前記吸着塔を真空ポンプによりさらに大気圧以下に減圧
して、前記吸着剤に吸着された一酸化炭素を脱着させる
脱着工程と、 前記脱着工程の終了後、前記吸着工程で得た水素を前記
吸着塔に圧入して、該吸着塔の内圧を次の吸着工程に必
要な吸着圧力近くまで昇圧する昇圧工程とを有し、しか
も、前記放圧工程と前記脱着工程との間に、前記脱着工
程で回収する一酸化炭素の一部を、前記吸着工程のガス
流れと順方向に前記吸着塔に送入することにより該吸着
塔内の不純物成分ガスを放出して該吸着塔内の洗浄を行
う置換パージ工程を有してなることを特徴とする混合ガ
スより一酸化炭素及び水素を併産する方法。
1. A method for adsorbing carbon monoxide in a mixed gas containing carbon monoxide and hydrogen onto an adsorbent under high pressure to discharge hydrogen, which is a component that is hardly adsorbed, as a product, and removing the adsorbed carbon monoxide. In a method in which carbon monoxide and hydrogen are co-produced from a mixed gas in a pressure swing adsorption method that is desorbed under low pressure and obtained as product carbon monoxide, an adsorption tower filled with an adsorbent that selectively adsorbs carbon monoxide is used. The mixed gas has a partial pressure of carbon monoxide of 1 to 5 kg / cm.
An adsorption step of introducing while maintaining the selected operating pressure of 2 A, adsorbing the carbon monoxide on an adsorbent, and recovering hydrogen discharged from the adsorption tower; and A pressure release step of releasing the gas in the adsorption tower to atmospheric pressure and reducing the internal pressure of the adsorption tower to near atmospheric pressure; A desorption step of desorbing the carbon monoxide adsorbed on the agent, and after completion of the desorption step, pressurize the hydrogen obtained in the adsorption step into the adsorption tower and use the internal pressure of the adsorption tower for the next adsorption step. A pressure increasing step to increase the pressure to near the adsorption pressure, and furthermore, between the pressure release step and the desorption step, a part of the carbon monoxide recovered in the desorption step is combined with the gas flow of the adsorption step. Impurities in the adsorption tower are sent by feeding the adsorption tower in the forward direction. A method for co-producing carbon monoxide and hydrogen from a mixed gas, the method comprising a purging step of discharging a substance component gas to wash the inside of the adsorption tower.
JP27825494A 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas Expired - Fee Related JP3219612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27825494A JP3219612B2 (en) 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27825494A JP3219612B2 (en) 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas

Publications (2)

Publication Number Publication Date
JPH08119603A JPH08119603A (en) 1996-05-14
JP3219612B2 true JP3219612B2 (en) 2001-10-15

Family

ID=17594779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27825494A Expired - Fee Related JP3219612B2 (en) 1994-10-17 1994-10-17 Method for co-producing carbon monoxide and hydrogen from mixed gas

Country Status (1)

Country Link
JP (1) JP3219612B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355522A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
WO2008062534A1 (en) * 2006-11-24 2008-05-29 Iwatani Corporation Method of concentrating ozone gas and apparatus therefor
JP4627571B2 (en) * 2010-08-20 2011-02-09 住友精化株式会社 Carbon monoxide separation method and carbon monoxide separation apparatus
JP6667381B2 (en) * 2016-06-20 2020-03-18 株式会社神戸製鋼所 Hydrogen gas production method and hydrogen gas production device

Also Published As

Publication number Publication date
JPH08119603A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
US4539020A (en) Methods for obtaining high-purity carbon monoxide
US4775394A (en) Process for separation of high purity gas from mixed gas
US5051115A (en) Pressure swing adsorption process
US6752851B2 (en) Gas separating and purifying method and its apparatus
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
JPH0244569B2 (en)
USRE32590E (en) Methods for obtaining high-purity carbon monoxide
WO2003086586A1 (en) Gas separating method
JP2002306918A (en) Gas separating method and device thereof
WO2002051524A1 (en) Method for separating hydrogen gas
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
WO2020105242A1 (en) Gas separation device and gas separation method
JPH07267612A (en) Pressure swing adsorption type production of oxygen and apparatus therefor
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JP7381554B2 (en) Pressure fluctuation adsorption type gas separation equipment
JPH0525801B2 (en)
JPH0112529B2 (en)
JPH0768119A (en) Method for separation and recovery of carbon monoxide
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees