JP3101225B2 - Pressure fluctuation adsorption type high purity carbon dioxide production method - Google Patents

Pressure fluctuation adsorption type high purity carbon dioxide production method

Info

Publication number
JP3101225B2
JP3101225B2 JP09037615A JP3761597A JP3101225B2 JP 3101225 B2 JP3101225 B2 JP 3101225B2 JP 09037615 A JP09037615 A JP 09037615A JP 3761597 A JP3761597 A JP 3761597A JP 3101225 B2 JP3101225 B2 JP 3101225B2
Authority
JP
Japan
Prior art keywords
adsorption
tower
pressure
gas
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09037615A
Other languages
Japanese (ja)
Other versions
JPH10101318A (en
Inventor
ジョンナム キム
クックタック チュウ
スンハン チョウ
ヒーテー バム
Original Assignee
韓國エネルギ−技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓國エネルギ−技術研究所 filed Critical 韓國エネルギ−技術研究所
Publication of JPH10101318A publication Critical patent/JPH10101318A/en
Application granted granted Critical
Publication of JP3101225B2 publication Critical patent/JP3101225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCO2 を選択的に吸着
する吸着剤を充填した吸着塔を圧力変動吸着法(PSA:Pr
essure Swing Absorption)で運転してCO2 を含む混合ガ
スから高純度の二酸化炭素を分離、回収する方法におい
て、二酸化炭素の回収率を高めるための工程構成及び運
転方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a pressure fluctuation adsorption method (PSA: Pr) for an adsorption tower packed with an adsorbent for selectively adsorbing CO 2.
TECHNICAL FIELD The present invention relates to a process configuration and an operation method for increasing the recovery rate of carbon dioxide in a method of separating and recovering high-purity carbon dioxide from a mixed gas containing CO 2 by operating with essure swing absorption).

【0002】[0002]

【従来の技術】一般的にCO2 に対する選択吸着性の大き
な吸着剤が充填された吸着塔を利用してPSA 法によりCO
2 を高純度に回収する装置の工程構成は、順次的に昇圧
ステップ−吸着ステップ−洗浄ステップ、脱着ステップ
で作られている。
BACKGROUND ART Generally, by utilizing the adsorption tower a large adsorbent filled selective adsorptivity for CO 2 CO by PSA method
The process configuration of the apparatus for recovering 2 with high purity is made up of a pressure step, an adsorption step, a washing step, and a desorption step sequentially.

【0003】前記工程を詳細に説明すると、脱着の終っ
た吸着塔にCO2 が含まれた原料ガスを導入して塔の圧力
を吸着圧力まで高める昇圧ステップ、昇圧ステップの終
った吸着塔に継続して原料ガスを供給しながらCO2 を吸
着剤に選択的に吸着させ塔出口には残りのガスを排出す
る吸着ステップ、吸着ステップの終った吸着塔に他の塔
の脱着ステップから排出された製品CO2 ガスの一部を原
料ガスの流れ方向と同じ併流で導入して、CO2 と共に吸
着されている他のガスを置換脱着させると共に、吸着塔
空隙内にあるCO2 以外のガスを洗い出して吸着塔内のCO
2 濃度を高める洗浄ステップ、洗浄ステップの終った吸
着塔の圧力を真空ポンプを使用して50−70Torr程度
に減圧されて吸着されているCO2 を脱着して製品ガスを
取る脱着ステップとで構成され、各吸着塔がお互いにス
テップの重ならないように運転される。
[0003] The above-mentioned process will be described in detail. A pressurizing step of introducing a raw material gas containing CO 2 into the adsorption tower after desorption to increase the pressure of the tower to the adsorption pressure, and continuing to the adsorption tower after the pressure raising step. adsorption step of discharging the remaining gas is selectively adsorbed allowed tower outlet to the adsorbent of CO 2 while supplying a raw material gas and was discharged from the desorption step of other tower in the adsorption tower was completed adsorption step the part of the product CO 2 gas is introduced at the same cocurrent to the flow direction of the raw material gas, causes substituted desorb other gases which are adsorbed along with CO 2, washed out other than CO 2 gas in the adsorption tower in the air gap CO in the adsorption tower
(2) A cleaning step for increasing the concentration, and a desorption step for desorbing the adsorbed CO 2 by reducing the pressure of the adsorption tower to about 50-70 Torr using a vacuum pump to remove the adsorbed CO 2 using a vacuum pump. The adsorption towers are operated so that the steps do not overlap each other.

【0004】[0004]

【発明が解決しようとする課題】然し、図1に見るよう
に、ゼオライト分子体のような吸着剤に対するCO2 の吸
着量は50−70Torr以下の低い圧力においても非常に
大きいので前記工程構成で運転した時、脱着ステップの
終った吸着塔内には多量のCO2 が残っているようになり
工程の効率が落ちる。
However, as shown in FIG. 1, the amount of CO 2 adsorbed on an adsorbent such as a zeolite molecule is very large even at a low pressure of 50-70 Torr or less. During operation, a large amount of CO 2 remains in the adsorption tower after the desorption step, and the efficiency of the process decreases.

【0005】[0005]

【課題を解決するための手段】従って、本発明ではCO2
の回収率を高めるために前記工程構成に脱着ステップの
終った吸着塔で他の塔の吸着ステップから排出されるCO
2 濃度の低い排ガスを向流として導入して脱着ステップ
の終った吸着塔に残存するCO2 を置換脱着させる吸着排
ガス低圧洗浄ステップと、吸着排ガス低圧洗浄ステップ
から排出されたCO2 濃度の高い排ガスを吸着ステップの
終った他の塔に供給してCO2 を吸着させる低圧洗浄排ガ
ス吸着ステップを導入し、また吸着排ガス低圧洗浄ステ
ップの終った塔にCO2 濃度の低い吸着ステップの排ガス
を向流として導入しCO2 の吸着前線を吸着塔入口側に送
る吸着排ガス逆蓄圧ステップを追加して、吸着排ガス逆
蓄圧ステップ以後に進行される吸着ステップから排出さ
れる排ガス中のCO2 濃度を低めた。
Accordingly, in the present invention, CO 2
In the adsorption tower after the desorption step in the above process configuration in order to increase the recovery rate of CO, the CO discharged from the adsorption step of another tower
A suction gas pressure washers step of the CO 2 is replaced desorption to remain low 2 concentration exhaust gas in finished the adsorption tower of the desorption step is introduced as a countercurrent, high CO 2 concentration discharged from the adsorption gas pressure washers step gas the introducing pressure washers exhaust adsorption step for adsorbing CO 2 is supplied to the other tower was completed adsorption step, also countercurrent to the exhaust gas of low adsorption step of the CO 2 concentration in the tower finished adsorption exhaust gas pressure washers step Added an adsorption exhaust gas reverse pressure accumulation step to send the CO 2 adsorption front to the adsorption tower inlet side to reduce the CO 2 concentration in the exhaust gas discharged from the adsorption step proceeding after the adsorption exhaust gas reverse pressure accumulation step .

【0006】このようにすることによって高純度のCO2
製品ガスを高い回収率で生産できたし、本発明で考案さ
れた工程構成は一つの吸着塔を基準として見ると、順次
的に、吸着排ガス逆蓄圧ステップ−昇圧ステップ−吸着
ステップ−低圧洗浄排ガス吸着ステップ−洗浄ステップ
−脱着ステップ−吸着排ガス低圧洗浄ステップとで作ら
れる。
[0006] By doing so, high-purity CO 2
The product gas could be produced at a high recovery rate, and the process configuration devised by the present invention, when viewed on the basis of one adsorption tower, sequentially, adsorbed exhaust gas reverse pressure accumulation step-pressure increase step-adsorption step-low pressure cleaning exhaust gas It is made up of an adsorption step, a washing step, a desorption step, and an adsorption exhaust gas low pressure washing step.

【0007】[0007]

【発明の実施の形態】以下には、本発明の要旨を図2と
図3を基準としてCO2 を選択的に吸着する吸着剤を充填
した3個の吸着塔を使用するPSA 装置を利用して高純度
CO2 を製造する例について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The gist of the present invention will be described below with reference to FIGS. 2 and 3 by using a PSA apparatus using three adsorption towers filled with an adsorbent for selectively adsorbing CO 2 . High purity
An example of producing CO 2 will be described in detail.

【0008】図2の3塔式PSA 装置において吸着排ガス
低圧洗浄ステップが終り真空状態にある第1吸着塔1A
を中心として工程構成及び運転方法に対して説明する。
真空状態にある吸着塔1Aに吸着ステップ排ガス貯蔵槽
H3にあるCO2 濃度の低い吸着排ガスを管4、バルブ2
2を通して向流で供給し塔の圧力を高めながら塔内部の
CO2 濃度の低い吸着前線を塔の入口側に送る(吸着排ガ
ス逆蓄圧ステップ)。
In the three-column PSA apparatus of FIG. 2, the first adsorption tower 1A in a vacuum state after the low-pressure washing step of the adsorption exhaust gas is completed.
The process configuration and operation method will be mainly described.
The adsorption step exhaust gas storage tank H3 containing the adsorption exhaust gas having a low CO 2 concentration is adsorbed to the adsorption tower 1A in a vacuum state by the pipe 4 and the valve 2.
2 to feed the reactor in countercurrent and increase the pressure in the tower.
The adsorption front with low CO 2 concentration is sent to the inlet side of the tower (adsorption exhaust gas reverse pressure accumulation step).

【0009】この間に第2吸着塔1Bは脱着ステップ、
第3吸着塔1C洗浄ステップを遂行する。
In the meantime, the second adsorption tower 1B is desorbed,
Perform the third adsorption tower 1C washing step.

【0010】バルブ22を締めて吸着排ガス逆蓄圧ステ
ップを終えた後にはCO2 の含まれた原料ガスが送風機B
1により原料ガス供給管2、バルブ10を通して第1吸
着塔1Aに供給され塔の圧力を吸着圧力まで昇圧する
(昇圧ステップ)。この間に第2吸着塔1Bは脱着ステ
ップを、第3吸着塔1Cは洗浄ステップを遂行する。
After the valve 22 is closed and the adsorption exhaust gas reverse pressure accumulation step is completed, the raw material gas containing CO 2 is supplied to the blower B
1, the pressure supplied to the first adsorption tower 1A through the source gas supply pipe 2 and the valve 10 is increased to the adsorption pressure (pressure increase step). During this time, the second adsorption tower 1B performs a desorption step, and the third adsorption tower 1C performs a washing step.

【0011】昇圧ステップが終った後には第1吸着塔1
Aにバルブ10を通して原料ガスを継続供給しながらCO
2 を吸着させ出口にはバルブ19を開けてCO2 濃度の低
い排ガスを吸着排ガス貯蔵槽H3に送り、吸着排ガスは
貯蔵槽H3を通して外に排出される(吸着ステップ)。
この間に第2吸着塔1Bは脱着ステップを、第3吸着塔
1Cは洗浄ステップを遂行する。
After the pressure raising step is completed, the first adsorption tower 1
A while continuously supplying raw material gas to valve A through CO
2 is adsorbed and the valve 19 is opened at the outlet to discharge exhaust gas having a low CO 2 concentration to the adsorption exhaust gas storage tank H3, and the adsorption exhaust gas is discharged outside through the storage tank H3 (adsorption step).
During this time, the second adsorption tower 1B performs a desorption step, and the third adsorption tower 1C performs a washing step.

【0012】吸着ステップが終った後には吸着排ガス低
圧洗浄ステップにある第2吸着塔1Bから排出された原
料ガス中のCO2 濃度より高い低圧洗浄排ガスを管8、バ
ルブ29、低圧洗浄排ガス貯蔵槽H1、管9、バルブ3
0、バルブ10を通して第1吸着塔1Aに導入してCO2
を吸着さ、残りのガスはバルブ19を通して吸着排ガ
ス貯蔵槽H3に送られる(低圧洗浄ガス吸着ステッ
プ)。この間に第3吸着塔1Cは洗浄ステップを遂行す
る。バルブ10、19が締められ低圧洗浄排ガス吸着ス
テップが終った後には製品ガス貯蔵槽H2から高純度の
CO2 ガスを管7、バルブ13を通して導入して第1吸着
塔1AにCO2 と共に吸着されている他のガスを置換脱着
させると共に吸着塔空隙内にあるCO2 以外のガスを洗い
出して吸着塔内のCO2 濃度を高め、脱着されたガスはバ
ルブ25、管5を通して外に排出される(洗浄ステッ
プ)。第1吸着塔1Aが洗浄ステップを遂行する間に第
2吸着塔1Bは吸着排ガス逆蓄圧ステップ−昇圧ステッ
プ−吸着ステップ−低圧洗浄排ガス吸着ステップを、そ
して第3吸着槽塔1Cは脱着ステップ−吸着排ガス低圧
洗浄ステップを各々順次的に遂行する。
After the adsorption step is completed, the low pressure cleaning exhaust gas higher than the CO 2 concentration in the raw material gas discharged from the second adsorption tower 1B in the adsorption exhaust gas low pressure cleaning step is supplied to the pipe 8, the valve 29, the low pressure cleaning exhaust gas storage tank. H1, pipe 9, valve 3
0, is introduced into the first adsorption tower 1A through the valve 10 CO 2
It was adsorbed and the remaining gas is sent to the adsorption gas reservoir H3 through the valve 19 (low-pressure washings gas adsorption step). During this time, the third adsorption tower 1C performs a washing step. After the valves 10 and 19 are closed and the low-pressure cleaning exhaust gas adsorption step is completed, high-purity
The CO 2 gas is introduced through the pipe 7 and the valve 13 to displace and desorb other gases adsorbed together with the CO 2 in the first adsorption tower 1A, and at the same time, the gases other than CO 2 in the gaps of the adsorption tower are washed out to remove the gas. The CO 2 concentration inside is increased, and the desorbed gas is exhausted outside through the valve 25 and the pipe 5 (cleaning step). While the first adsorption tower 1A performs the cleaning step, the second adsorption tower 1B performs the adsorption exhaust gas reverse pressure accumulation step-pressure increase step-adsorption step-low pressure cleaning exhaust gas adsorption step, and the third adsorption tank tower 1C performs the desorption step-adsorption. The exhaust gas low pressure cleaning step is sequentially performed.

【0013】洗浄ステップの終った第1吸着塔1Aはバ
ルブ13、25が閉ざされ、バルブ16が開けられて脱
着ステップに入る。この脱着ステップでは真空ポンプV
1で第1吸着塔の圧力を落として吸着されているCO2
脱着させて管6、バルブ28を通して製品ガス貯蔵槽H
2に送り、製品ガス貯蔵槽に送られたCO2 ガス中一部
は第2吸着塔1Bの洗浄ガスとして使用され残りは製品
ガスとして得られる(脱着ステップ)。第1吸着塔1A
が脱着ステップを遂行する間には第2吸着塔1Bは洗浄
ステップを、第3吸着塔1Cは吸着排ガス逆蓄圧ステッ
プ−昇圧ステップ−吸着ステップを順次的に遂行する。
After the washing step, the first adsorption tower 1A is closed and the valves 13 and 25 are opened, and the valve 16 is opened to start the desorption step. In this desorption step, the vacuum pump V
In 1, the pressure of the first adsorption tower is reduced to desorb the adsorbed CO 2, and the product gas storage tank H is passed through the pipe 6 and the valve 28.
2 and a part of the CO 2 gas sent to the product gas storage tank is used as a cleaning gas for the second adsorption tower 1B, and the remainder is obtained as a product gas (desorption step). 1st adsorption tower 1A
While performing the desorption step, the second adsorption tower 1B sequentially performs a washing step, and the third adsorption tower 1C sequentially performs an adsorption exhaust gas reverse pressure accumulation step, a pressure increase step, and an adsorption step.

【0014】バルブ28が閉ざされ脱着ステップが終っ
た第1吸着塔1Aには吸着排ガス貯蔵槽H3から吸着排
ガスが管4、バルブ22を通して導入され塔1Aに脱着
されずに残っているCO2 を置換脱着させてバルブ16、
管6を通して真空ポンプにより排気されて管8、バルブ
29を通して低圧洗浄排ガス貯蔵槽H1に送られた後、
管9、バルブ12を通して低圧洗浄排ガス吸着ステップ
にある第3吸着槽塔1Cに供給される(吸着排ガス低圧
洗浄ステップ)。この間に第2吸着塔1Bは洗浄ステッ
プを遂行する。
The adsorbed exhaust gas is introduced from the adsorbed exhaust gas storage tank H3 through the pipe 4 and the valve 22 into the first adsorption tower 1A, in which the valve 28 is closed and the desorption step has been completed, and CO 2 remaining without being desorbed in the tower 1A is removed. The valve 16 is replaced and detached,
After being evacuated by the vacuum pump through the pipe 6 and sent to the low-pressure washing exhaust gas storage tank H1 through the pipe 8 and the valve 29,
The gas is supplied to the third adsorption tank tower 1C in the low pressure washing exhaust gas adsorption step through the pipe 9 and the valve 12 (adsorption exhaust gas low pressure washing step). During this time, the second adsorption tower 1B performs a washing step.

【0015】(実施例1)吸着剤としてゼオライト13
Xを0.5 リットル充填した3塔式PSA 装置に25vol.%
CO2/74vol.%N2/1vol.%O2 で作られた混合ガスを
供給して図3に表わした本発明の工程構成で運転した時
と昇圧ステップ−吸着ステップ−洗浄ステップ−脱着ス
テップで構成された既存の工程で運転した場合の結果を
表1に表わした。
Example 1 Zeolite 13 was used as an adsorbent.
25 vol.% In a 3-tower PSA unit filled with 0.5 liter of X
CO 2 /74vol.%N 2 a boosting step when operated with the process configuration of /1Vol.PasentoO 2 mixed gas made of supplying the present invention represented in FIG. 3 - adsorption step - washing step - desorption step Table 1 shows the results obtained when the system was operated in the existing process configured as described above.

【0016】表1に見るように、CO2 濃度99vol.%
で、既存工程は回収率60%、生産性0.948 N1/(kg.mi
n) であるのに反して、本発明の工程は回収率80%、
生産性1.087 N1/(kg.min) であって、回収率と生産性が
各々33%と14.7%増加した。CO2 濃度95vol.%で
は、既存工程は回収率71%、生産性1.46 N1/(kg.min)
であり、本発明の工程は回収率90%、生産性1.25N1/
(kg.min) 程度で、これまた回収率27%、生産性5.4
%程度の改善効果がある。
As shown in Table 1, the CO 2 concentration is 99 vol.
The existing process has a recovery rate of 60% and a productivity of 0.948 N1 / (kg.mi
n), whereas the process according to the invention has a recovery of 80%,
The productivity was 1.087 N1 / (kg.min), and the recovery and productivity increased by 33% and 14.7%, respectively. At a CO 2 concentration of 95 vol.%, The existing process has a recovery rate of 71% and a productivity of 1.46 N1 / (kg.min)
The process of the present invention has a recovery rate of 90% and a productivity of 1.25N1 /
(kg.min), a recovery rate of 27% and a productivity of 5.4
% Improvement effect.

【0017】ここで、回収率=(製品ガス中のCO2 量/
原料ガス中のCO2 量)×100であり、生産性は単位吸
着剤当り単位時間に生産する製品ガスの量である。
Here, recovery rate = (CO 2 amount in product gas /
(CO 2 amount in raw material gas) × 100, and the productivity is the amount of product gas produced per unit time per unit adsorbent.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】このように脱着ステップの後には、塔内
に残っているCO2 を脱着、回収するために吸着排ガス低
圧洗浄ステップを導入し、このステップから排気される
原料ガスよりCO2 濃度の高いガスを低圧洗浄ガス吸着ス
テップに導入してCO2 を吸着させて回収すると共に、吸
着排ガス逆蓄圧ステップを導入して吸着ステップから排
出される排ガス中のCO2 濃度を低めることによって高純
度のCO2 を高い回収率で得ることができる。
As described above, after the desorption step, a low-pressure adsorption exhaust gas cleaning step is introduced to desorb and recover the CO 2 remaining in the tower, and the CO 2 concentration is reduced from the raw material gas exhausted from this step. high purity by a high gas was introduced into the lower pressure cleaning gas adsorption step is recovered by adsorbing the CO 2, lower the CO 2 concentration in the exhaust gas discharged from the adsorption step by introducing the adsorption gas inverse accumulator step CO 2 can be obtained at a high recovery rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ゼオライト分子体に対する二酸化炭素と窒素の
平衡吸着等温線図である。
FIG. 1 is an equilibrium adsorption isotherm of carbon dioxide and nitrogen on a zeolite molecule.

【図2】高純度CO2 を製造する3塔式PSA 装置図であ
る。
FIG. 2 is a diagram of a three-tower PSA apparatus for producing high-purity CO 2 .

【図3】3塔式2 PSA 装置の工程構成図である。FIG. 3 is a process configuration diagram of a 3-tower type 2 PSA apparatus.

【符号の説明】[Explanation of symbols]

1A…第1吸着塔、1B…第2吸着塔、1C…第3吸着
塔、H1,H2、H3…貯蔵槽、B1…送風機、V1…
真空ポンプ、2…供給管、4、5、6、7、8、9…
管、10、12、13、16、19、22、25、2
8、29、30…バルブ
1A: first adsorption tower, 1B: second adsorption tower, 1C: third adsorption tower, H1, H2, H3: storage tank, B1: blower, V1
Vacuum pump, 2 ... supply pipe, 4, 5, 6, 7, 8, 9 ...
Tubes 10, 12, 13, 16, 19, 22, 25, 2,
8, 29, 30 ... valve

フロントページの続き (72)発明者 バム ヒーテー 大韓民国光州広域市北區生龍洞180番地 (56)参考文献 特開 平6−170144(JP,A) 特開 平7−275633(JP,A) 特開 平5−228326(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 31/20 B01D 53/04 Continuation of the front page (72) Inventor Bam Heate 180 Seorong-dong, Buk-gu, Gwangju, Korea (56) References JP-A-6-170144 (JP, A) JP-A-7-275633 (JP, A) Hei 5-228326 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 31/20 B01D 53/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CO2 を選択的に吸着する吸着剤を充填し
た吸着塔を使用して圧力変動吸着法でCO2 を含む混合ガ
スから高純度のCO2 を分離、回収する方法において、
(1) :前記混合ガスを原料ガスとして吸着塔の入口側に
供給して強吸着性ガスであるCO2 を吸着させ弱吸着性ガ
スを塔の出口側に排出する吸着ステップ、(2) :吸着ス
テップの終った吸着塔の入口側に下記(5) の吸着排ガス
低圧洗浄ステップから排出される原料ガスよりCO2 濃度
の高い排出ガスを導入してCO2 を吸着させ塔の出口側に
弱吸着性ガスを排出する低圧洗浄排ガス吸着ステップ、
(3) :低圧洗浄排ガス吸着ステップの終った吸着塔の入
口側に下記(4) の脱着ステップから排出された高純度の
CO2 ガス一部を導入して塔内に残っているCO2 以外の
ガスを洗い出して塔の出口側に排出しながら塔内のCO2
濃度を高める洗浄ステップ、(4) :洗浄ステップの終っ
た吸着塔の圧力を塔の入口側から落とすことによって吸
着されていたCO2 を脱着して高純度のCO2 を回収して一
部は洗浄ステップ洗浄ガスとして使用し残りは製品とし
て取る脱着ステップ、(5) :脱着ステップの終った吸着
塔の出口側に前記(1) または(2) のステップから排出さ
れるCO2 濃度の低い吸着排ガスを導入して脱着ステップ
の終った後に残っているCO2 を置換、脱着させて塔の入
口側に排出する吸着排ガス低圧洗浄ステップ、(6) :吸
着排ガス低圧洗浄ステップの終った吸着塔の出口側に前
記(1) または(2) または(3) のステップから排出される
排ガスを導入して塔内のCO2 吸着前線を塔の入口側に送
りながら塔の圧力を高める吸着排ガス逆蓄圧ステップ、
(7) :吸着排ガス逆蓄圧ステップの終った塔の入口側
原料ガスを導入して塔の圧力を吸着ステップ圧力近くま
で高める昇圧ステップで作られた工程を反復しながら連
続的に高純度CO2 を回収することを特徴とする圧力変動
吸着式高純度CO2 の製造方法。
1. A CO 2 selectively separating high purity CO 2 from a gas mixture containing CO 2 at a pressure swing adsorption process in an adsorption column filled with the adsorbent to adsorb, in a method of recovering,
(1): an adsorption step in which the mixed gas is supplied as a raw material gas to the inlet side of an adsorption tower to adsorb CO 2 which is a strongly adsorbable gas and discharge the weakly adsorbable gas to an outlet side of the tower; (2): weak on the outlet side of the column to adsorb the adsorbed gas CO 2 by introducing the CO 2 concentrations of the higher exhaust gas from the raw material gas discharged from the low-pressure washing step following (5) to the inlet side of the adsorption tower was completed adsorption step Low-pressure cleaning exhaust gas adsorption step for discharging adsorptive gas,
(3): At the inlet side of the adsorption tower after the low-pressure washing exhaust gas adsorption step, the high-purity high-purity discharged from the desorption step (4) below
A part of the CO 2 gas is introduced to wash out gas other than CO 2 remaining in the tower, and discharged to the outlet side of the tower, while the CO 2 in the tower is discharged.
Washing step to increase the concentration, (4): desorbing the adsorbed CO 2 by reducing the pressure of the adsorption tower after the washing step from the inlet side of the tower to recover high-purity CO 2 Cleaning step: A desorption step that is used as a cleaning gas and the remainder is taken as a product. (5): Adsorption of low CO 2 concentration discharged from the above step (1) or (2) at the outlet side of the adsorption tower after the desorption step. The adsorption exhaust gas low-pressure washing step, in which the exhaust gas is introduced and the CO 2 remaining after the desorption step is replaced and desorbed and desorbed and discharged to the inlet side of the tower, (6): the adsorption tower after the adsorption exhaust gas low-pressure washing step is completed The exhaust gas discharged from the above step (1) or (2) or (3) is introduced to the outlet side, and the CO 2 adsorption front in the tower is sent to the inlet side of the tower to increase the tower pressure while increasing the tower pressure. Steps,
(7): Continuously repeating the process created by the pressure increase step to introduce the raw material gas to the inlet side of the tower after the adsorption exhaust gas reverse pressure accumulation step and increase the pressure of the tower to near the adsorption step pressure A method for producing high-purity CO 2 with a pressure fluctuation adsorption method, characterized by recovering high-purity CO 2 into water.
【請求項2】 請求項1において、原料ガスによる昇圧
ステップ(7) の代りに洗浄ステップ(3) から排出される
排出ガスを導入して吸着塔の圧力を吸着ステップ圧力の
近くまで高める洗浄排ガス昇圧ステップで作られた工程
を使用してCO2 を回収する圧力変動吸着式高純度CO2
製造方法。
2. The cleaning exhaust gas according to claim 1, wherein the exhaust gas discharged from the cleaning step (3) is introduced instead of the pressure increasing step (7) with the raw material gas to raise the pressure of the adsorption tower to near the adsorption step pressure. Pressure fluctuation adsorption type high-purity CO 2 production method in which CO 2 is recovered using the process created in the pressurization step.
JP09037615A 1996-08-28 1997-02-21 Pressure fluctuation adsorption type high purity carbon dioxide production method Expired - Lifetime JP3101225B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960035941A KR0173399B1 (en) 1996-08-28 1996-08-28 Method for manufacturing carbon dioxide by pressure swing absorption
KR96-35941 1996-08-28

Publications (2)

Publication Number Publication Date
JPH10101318A JPH10101318A (en) 1998-04-21
JP3101225B2 true JP3101225B2 (en) 2000-10-23

Family

ID=19471077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09037615A Expired - Lifetime JP3101225B2 (en) 1996-08-28 1997-02-21 Pressure fluctuation adsorption type high purity carbon dioxide production method

Country Status (2)

Country Link
JP (1) JP3101225B2 (en)
KR (1) KR0173399B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108236829A (en) * 2016-12-26 2018-07-03 戴莫尔科技有限公司 From containing CO2Separating high-purity CO in unstripped gas2Method and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817560B2 (en) * 2001-09-21 2011-11-16 三井造船プラントエンジニアリング株式会社 Carbon dioxide recovery method from carbon dioxide dry cleaning equipment
JP4627571B2 (en) * 2010-08-20 2011-02-09 住友精化株式会社 Carbon monoxide separation method and carbon monoxide separation apparatus
JP5675505B2 (en) * 2011-06-07 2015-02-25 住友精化株式会社 Target gas separation method and target gas separation device
CN102327725B (en) * 2011-07-01 2013-08-28 无锡国赢科技有限公司 Method for adsorbing and trapping CO2 by using steric effect
CN105617817B (en) * 2016-03-08 2018-06-12 镇江东辰环保科技工贸有限公司 For the device and method of acetate acid tail gas recycling CO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108236829A (en) * 2016-12-26 2018-07-03 戴莫尔科技有限公司 From containing CO2Separating high-purity CO in unstripped gas2Method and device

Also Published As

Publication number Publication date
KR0173399B1 (en) 1999-02-01
KR19980016382A (en) 1998-05-25
JPH10101318A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US5051115A (en) Pressure swing adsorption process
US4775394A (en) Process for separation of high purity gas from mixed gas
KR960004606B1 (en) Process for producing high purity oxygen gas from air
JP3902416B2 (en) Gas separation method
JPS6137968B2 (en)
JPH0244569B2 (en)
JP3073917B2 (en) Simultaneous pressure change adsorption method
EP1175934A2 (en) Improved oxygen production
JPH1024208A (en) Treatment of gaseous mixture by pressure swing adsorption
EP0354259B1 (en) Improved pressure swing adsorption process
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
JPH10272332A (en) Gas separation device and its operation method
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
WO2020105242A1 (en) Gas separation device and gas separation method
JP2587334B2 (en) Method of separating CO gas not containing CH4
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JPS61157322A (en) Separation and concentration of co2 from-containing gas
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS6238281B2 (en)
JPH07275631A (en) Substitution-reduction method for impurity in product in pressure swing adsorption method
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JPH09267016A (en) Improved pressure swing adsorption method
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas
JPH01242120A (en) Method for removing low concentration readily adsorbable gas from mixed gas and recovering slightly adsorbable gas in high yield
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term