JPS61157322A - Separation and concentration of co2 from-containing gas - Google Patents

Separation and concentration of co2 from-containing gas

Info

Publication number
JPS61157322A
JPS61157322A JP59274885A JP27488584A JPS61157322A JP S61157322 A JPS61157322 A JP S61157322A JP 59274885 A JP59274885 A JP 59274885A JP 27488584 A JP27488584 A JP 27488584A JP S61157322 A JPS61157322 A JP S61157322A
Authority
JP
Japan
Prior art keywords
tower
adsorbing
gas
adsorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59274885A
Other languages
Japanese (ja)
Other versions
JPH0128611B2 (en
Inventor
Takaaki Tamura
田村 孝章
Naoki Negishi
根岸 直毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO
Original Assignee
KOGYO KAIHATSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO filed Critical KOGYO KAIHATSU KENKYUSHO
Priority to JP59274885A priority Critical patent/JPS61157322A/en
Publication of JPS61157322A publication Critical patent/JPS61157322A/en
Publication of JPH0128611B2 publication Critical patent/JPH0128611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To enhance the recovery efficiency of CO2, by sending the open air into an adsorbing tower after the completion of desorbing operation to make the pressure in the tower almost equal to atmospheric pressure before entering adsorbing operation. CONSTITUTION:Stock gas is sent into an adsorbing tower from one end thereof at atmospheric pressure and, after the completion of adsorbing operation, a part of desorbed gas is sent into the adsorbing tower at atmospheric pressure and exhausted from the other end thereof along with a hardly adsorbable component. Subsequently, the adsorbing tower is evacuated by a vacuum pump and desorbed gas is temporarily stored in a desorbed gas tank to be partially left as gas for cleaning operation while the remainder is taken out as product CO2 gas. Next, the open air is sent into the adsorbing tower from one end thereof to bring the pressure in the adsorbing tower to almost atmospheric pressure. Thereafter, the next adsorbing operation is performed.

Description

【発明の詳細な説明】 この発明に、活性炭吸着剤を充填した吸着塔の一端から
、CO7含有ガスを大気圧またはそれ以上の圧力で送入
して吸着剤にCO2’r、吸着させ、ついで吸着塔内の
圧力を吸着操作時よりも低下させて吸着剤に吸着されて
いるCot t−脱着させることによってCot t−
分離濃縮する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In this invention, CO7-containing gas is fed at atmospheric pressure or higher pressure from one end of an adsorption column filled with an activated carbon adsorbent to cause CO2'r to be adsorbed by the adsorbent, and then The pressure inside the adsorption tower is lowered than during the adsorption operation, and the Cot t- adsorbed on the adsorbent is desorbed.
It relates to a method of separation and concentration.

活性炭吸着剤によるCOlの分離濃縮はすでに公知であ
る。この公知の方法においては、活性炭吸着剤を充填し
た吸着塔の一端からCO1含有ガス(原料ガス)が大気
圧またはそれ以上の圧力で送入され、活性炭吸着剤に対
する易吸着成分であるCOtが吸着され、難吸着成分は
吸着塔の他端から排出される。吸着剤に所定量のCOl
が吸着されると、吸着操作は中止され、脱着操作に移行
する。この脱着操作では、原料ガスの送入全中止し、吸
着塔内の圧力を吸着操作時よりも低くし、吸着剤に吸着
されているCO!の脱着が行われる。脱着操作が終了す
ると、吸着塔内に直ちに原料ガスが送入され、吸着操作
が始まる。このようにして吸着操作と脱着操作とを交互
にくり返してCOlの濃縮分離が行われる。
The separation and concentration of CO1 using activated carbon adsorbents is already known. In this known method, CO1-containing gas (raw material gas) is fed from one end of the adsorption tower filled with activated carbon adsorbent at atmospheric pressure or higher pressure, and COt, which is a component easily adsorbed to the activated carbon adsorbent, is adsorbed. The poorly adsorbed components are discharged from the other end of the adsorption column. A predetermined amount of COl on the adsorbent
Once adsorbed, the adsorption operation is stopped and the desorption operation begins. In this desorption operation, the supply of raw material gas is completely stopped, the pressure inside the adsorption tower is lowered than during the adsorption operation, and the CO adsorbed by the adsorbent is removed! is attached and detached. Immediately after the desorption operation is completed, the raw material gas is fed into the adsorption tower, and the adsorption operation begins. In this way, the adsorption operation and the desorption operation are repeated alternately to concentrate and separate CO1.

しかしながら、上記のような従来の方法では、CO8の
回収率が低く、また吸着操作の開始時におけるCOlの
流出の傾向が認められる。
However, in the conventional method as described above, the recovery rate of CO8 is low and there is a tendency for CO1 to flow out at the beginning of the adsorption operation.

この発明は、上記のような従来の方法の欠点上なくし、
Cot t”商い回収率で分離濃縮することが可能な方
法を提供することを目的としている。
The present invention overcomes the above-mentioned drawbacks of the conventional method,
The purpose of the present invention is to provide a method that enables separation and concentration with a high recovery rate.

この発明方法によれば、脱着操作の終了後に、吸着塔内
に大気空気を送入して塔内の圧力をほぼ大気圧にしたの
ち、吸着操作に入るという順序が採用される。この大気
空気の送入は、吸着塔の原料ガス供給側および出ガス排
出側のいずれからも行うことができるが、出ガス排出側
から行うのが好ましい。
According to the method of this invention, after the desorption operation is completed, atmospheric air is introduced into the adsorption tower to bring the pressure inside the tower to approximately atmospheric pressure, and then the adsorption operation is started. This atmospheric air can be introduced from either the raw material gas supply side or the output gas discharge side of the adsorption tower, but it is preferably carried out from the output gas discharge side.

またこの発明の他の態様において、吸着塔内圧その出ガ
ス排出側から大気空気を送入すると同時に、原料ガス供
給側から原料ガスを送入することによって吸着塔内の圧
力がほぼ大気圧にもたらされる。
In another aspect of the present invention, the pressure inside the adsorption tower is brought to almost atmospheric pressure by feeding atmospheric air from the output gas discharge side and simultaneously feeding the raw material gas from the raw material gas supply side. It will be done.

このような圧力調整操作を行うことにより、圧力調整操
作を行わなかった場合と比較して、Cot回収率が著る
しく向上することが実験により確認された。ここで00
2回収率とに、分離濃縮した成品ガス中のCotの量t
、原料ガス中のCO,の量で除した値會指す。
It has been confirmed through experiments that by performing such a pressure adjustment operation, the Cot recovery rate is significantly improved compared to the case where no pressure adjustment operation is performed. 00 here
2 recovery rate, the amount of Cot in the separated and concentrated product gas t
, refers to the value divided by the amount of CO in the raw material gas.

実施例I 内径107M、長さ680訪カラム内に、粒度10〜2
0メツシユのヤシガラ活性炭2.4 x9 i充填した
吸着塔全用意し、この吸着塔の一端から、容積比でco
、 a o、 o%、Nt70.o%の原料ガス?供給
することにより吸着操作を行い、所定の吸着操作の終了
後に、掃除操作、脱着操作、圧力調整操作をこの順序で
行った。各操作の条件は下記のとおりであつ念。
Example I Particle size 10-2 in inner diameter 107M, length 680 mm column
A complete adsorption tower filled with 2.4 x 9 i of coconut shell activated carbon of 0 mesh is prepared, and from one end of this adsorption tower, co
, ao, o%, Nt70. o% raw material gas? An adsorption operation was performed by supplying the liquid, and after a predetermined adsorption operation was completed, a cleaning operation, a desorption operation, and a pressure adjustment operation were performed in this order. Please note that the conditions for each operation are as follows.

(吸着操作) 約15℃の原料ガス全吸着塔の一端から大気圧で送入し
た。操作所要時間は8分50秒であった、(掃除操作) 吸着操作の終了後、後述する脱着ガスの一部全  1大
気圧で吸着塔内に送入し、吸着塔内に残存する難吸着成
分とともに他端から排出した。所要時間は1分lO秒で
あった。
(Adsorption operation) The raw material gas at about 15° C. was completely fed into the adsorption column from one end at atmospheric pressure. The operation time required was 8 minutes and 50 seconds. (Cleaning operation) After the adsorption operation was completed, a portion of the desorbed gas, which will be described later, was fed into the adsorption tower at a pressure of 1 atmosphere, and the remaining difficult to adsorbed gas in the adsorption tower was removed. It was discharged from the other end along with the components. The time required was 1 minute 10 seconds.

(脱着操作) 吸着塔の内部を真空ポンプで、最大到達真空度? (J
 a+1(Jl (絶対圧ンに5分間減圧することで行
われた。真空ポンプの排気は脱着ガスタンクに一時的に
貯留し、このうち19.61t−高濃度Cot成品ガス
として系外に取出し、残部はつぎの掃除操作に使用した
(Desorption operation) Check the maximum vacuum level inside the adsorption tower using a vacuum pump? (J
This was done by reducing the pressure to a+1(Jl (absolute pressure) for 5 min. was used for the next cleaning operation.

(圧力調整操作) 脱着操作で減圧にされた吸着塔の内部に、その一端から
大気空気全速入し、吸着塔内の圧力をほぼ大気圧に調整
した。その後に次回の吸着操作が開始された。
(Pressure adjustment operation) Atmospheric air was introduced at full speed from one end into the adsorption tower whose pressure had been reduced by the desorption operation, and the pressure inside the adsorption tower was adjusted to approximately atmospheric pressure. After that, the next adsorption operation was started.

実施例■ 実施例Iの操作において、脱着操作に引続いて行われる
圧力調整操作時に、吸着塔の一端から大気空気を送入す
ると同時に、他端から原料ガス全大気圧で送入して吸着
塔内をほぼ大気圧にした以外に同じ操作金繰ジ返した。
Example ■ In the operation of Example I, during the pressure adjustment operation that follows the desorption operation, atmospheric air is introduced from one end of the adsorption tower, and at the same time, the raw material gas is introduced from the other end at full atmospheric pressure to perform adsorption. The same operation was repeated except that the inside of the tower was brought to almost atmospheric pressure.

比較例 実施例Iの操作において、脱着操作の終了後に、圧力調
整操作?行うことなく直ちに次回の吸着操作に移った以
外は同じ換作?繰り返した。
In the operation of Comparative Example Example I, is the pressure adjustment operation performed after the completion of the desorption operation? Is it the same conversion except that you immediately move on to the next adsorption operation without doing it? repeated.

上記の実施例I、■および比較例における脱着ガス中の
Cot%とCOt回収率との関係を図に示す。
The relationship between the Cot% in the desorption gas and the COt recovery rate in the above Examples I, (2) and Comparative Example is shown in the figure.

この図から明らかなように、実施例【および■では、比
較例と比べて、001回収率に著るしい向上が認められ
、したがって同一純度のcot r同一量生産する場合
には、原料ガスが少量ですむ。このことはまた原料ガス
送入動力の節約上もたらすことにもなジ、生産原価の低
下に及ぼす効果に大きい。
As is clear from this figure, a significant improvement in the 001 recovery rate was observed in Examples [and Only a small amount is required. This also saves power for feeding raw material gas, and has a great effect on lowering production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例I、■および比較例における脱着ガス中の6
02%とCO7回収率との関係を示すグラフである。 特許出願人   財団法人工業開発研究所(外2名ン 
−゛
The figure shows 6 in the desorption gas in Example I, ■ and Comparative Example.
2 is a graph showing the relationship between CO7 recovery rate and CO7 recovery rate. Patent applicant: Industrial Development Research Institute (2 others)
−゛

Claims (2)

【特許請求の範囲】[Claims] (1)活性炭吸着剤を用いてCO_2含有ガスからCO
_2を圧力変動吸着法により分離濃縮するに際し、脱着
操作の終了後に吸着塔内に大気空気を送入して塔内をほ
ぼ大気圧にしたのち吸着操作を行うことを特徴とするC
O_2含有ガスからCO_2を分離濃縮する方法。
(1) CO from CO_2-containing gas using activated carbon adsorbent
When separating and concentrating _2 by the pressure fluctuation adsorption method, atmospheric air is introduced into the adsorption tower after the desorption operation is completed to bring the inside of the tower to approximately atmospheric pressure, and then the adsorption operation is performed C.
A method for separating and concentrating CO_2 from O_2-containing gas.
(2)活性炭吸着剤を用いてCO_2含有ガスからCO
_2を圧力変動吸着法により分離濃縮するに際し、脱着
操作の終了後に吸着塔の一端から大気空気を、他端から
原料ガスをそれぞれ送入して塔内をほぼ大気圧にしたの
ち吸着操作を行うことを特徴とするCO_2含有ガスか
らCO_2を分離濃縮する方法。
(2) CO from CO_2-containing gas using activated carbon adsorbent
When separating and concentrating _2 by pressure fluctuation adsorption method, after the desorption operation is completed, atmospheric air is introduced from one end of the adsorption tower and raw material gas is introduced from the other end to bring the inside of the tower to almost atmospheric pressure, and then the adsorption operation is performed. A method for separating and concentrating CO_2 from a CO_2-containing gas.
JP59274885A 1984-12-28 1984-12-28 Separation and concentration of co2 from-containing gas Granted JPS61157322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274885A JPS61157322A (en) 1984-12-28 1984-12-28 Separation and concentration of co2 from-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274885A JPS61157322A (en) 1984-12-28 1984-12-28 Separation and concentration of co2 from-containing gas

Publications (2)

Publication Number Publication Date
JPS61157322A true JPS61157322A (en) 1986-07-17
JPH0128611B2 JPH0128611B2 (en) 1989-06-05

Family

ID=17547891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274885A Granted JPS61157322A (en) 1984-12-28 1984-12-28 Separation and concentration of co2 from-containing gas

Country Status (1)

Country Link
JP (1) JPS61157322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986835A (en) * 1987-12-26 1991-01-22 Seitetsu Kagaku Co., Ltd. Process for separating and recovering carbonic acid gas from gas mixture by adsorption
JPH0687022A (en) * 1992-09-08 1994-03-29 Nippon Steel Corp Take-up machine for strip
US5656064A (en) * 1995-10-04 1997-08-12 Air Products And Chemicals, Inc. Base treated alumina in pressure swing adsorption
JP2006212524A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Composite incineration system and method for waste
JP2006212523A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Fluidized layer gasification furnace, composite gasification system and method for waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986835A (en) * 1987-12-26 1991-01-22 Seitetsu Kagaku Co., Ltd. Process for separating and recovering carbonic acid gas from gas mixture by adsorption
JPH0687022A (en) * 1992-09-08 1994-03-29 Nippon Steel Corp Take-up machine for strip
US5656064A (en) * 1995-10-04 1997-08-12 Air Products And Chemicals, Inc. Base treated alumina in pressure swing adsorption
US5917136A (en) * 1995-10-04 1999-06-29 Air Products And Chemicals, Inc. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents
JP2006212524A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Composite incineration system and method for waste
JP2006212523A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Fluidized layer gasification furnace, composite gasification system and method for waste
JP4662338B2 (en) * 2005-02-02 2011-03-30 三菱重工環境・化学エンジニアリング株式会社 Waste combined gasification processing system and method

Also Published As

Publication number Publication date
JPH0128611B2 (en) 1989-06-05

Similar Documents

Publication Publication Date Title
US4775394A (en) Process for separation of high purity gas from mixed gas
CA1271710A (en) Process for producing high concentration oxygen by a pressure-swing-absorption method
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
US4406675A (en) RPSA Process
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
JPS63166702A (en) Concentration of oxygen gas
GB1456465A (en) Gas separation
JP3902416B2 (en) Gas separation method
JPH1024208A (en) Treatment of gaseous mixture by pressure swing adsorption
CA2226696A1 (en) Vacuum/pressure swing adsorption (vpsa) method for production of an oxygen enriched gas
JPH03262514A (en) Concentration of chlorine gas
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JPS61157322A (en) Separation and concentration of co2 from-containing gas
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
JPH0733404A (en) Production of high concentration oxygen
JPH01262919A (en) Method for separating and recovering nitrogen and oxygen in air
JPH0555171B2 (en)
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPH02283608A (en) Method for separating and recovering carbon monoxide
JP2004300035A (en) Method for separating methane gas and apparatus therefor
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH0699015A (en) Pressure swing adsorption method
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JPH10216453A (en) Separation of gas