JPS6238281B2 - - Google Patents

Info

Publication number
JPS6238281B2
JPS6238281B2 JP54139475A JP13947579A JPS6238281B2 JP S6238281 B2 JPS6238281 B2 JP S6238281B2 JP 54139475 A JP54139475 A JP 54139475A JP 13947579 A JP13947579 A JP 13947579A JP S6238281 B2 JPS6238281 B2 JP S6238281B2
Authority
JP
Japan
Prior art keywords
adsorption
bed
pressure
oxygen
adsorption bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54139475A
Other languages
Japanese (ja)
Other versions
JPS5663804A (en
Inventor
Yoshiaki Kanai
Akira Wakaizumi
Masahito Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP13947579A priority Critical patent/JPS5663804A/en
Publication of JPS5663804A publication Critical patent/JPS5663804A/en
Publication of JPS6238281B2 publication Critical patent/JPS6238281B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 本発明は空気の如き主として窒素及び酸素を含
む混合ガスを原料として、該原料を窒素を選択的
に吸着する吸着剤に通過せしめて、主として窒素
成分を選択的に吸着除去して酸素成分を富化濃縮
する方法に関するもので、更に詳しくは酸素、窒
素よりなる混合ガス原料供給に対して、酸素濃度
の上昇及び収率向上を図つた圧力変動吸着法によ
る酸素濃縮法である。
Detailed Description of the Invention The present invention uses a mixed gas mainly containing nitrogen and oxygen, such as air, as a raw material, and passes the raw material through an adsorbent that selectively adsorbs nitrogen, thereby selectively adsorbing mainly nitrogen components. It relates to a method of removing and enriching and concentrating oxygen components, and more specifically, an oxygen enrichment method using a pressure fluctuation adsorption method that aims to increase the oxygen concentration and improve the yield for a mixed gas feedstock consisting of oxygen and nitrogen. It is.

一般に混合ガス中の特定成分を濃縮する場合、
混合ガス中の特定成分以外の成分を選択的に吸着
する吸着剤を充填した吸着床を複数個並設し、こ
れらの吸着床にそれぞれ原料を加圧供給して難吸
着成分である特定成分を濃縮して採取する吸着工
程、つづいて減圧、掃気、あるいは真空排気、再
加圧等の再生工程を順次切り換え繰り返し操作し
て連続運転する圧力変動吸着法(Pressure
Swing Adsorption以下PSAと称す)が採用され
ている。
Generally, when concentrating a specific component in a mixed gas,
Multiple adsorption beds filled with adsorbents that selectively adsorb components other than specific components in a mixed gas are installed in parallel, and raw materials are supplied under pressure to each of these adsorption beds to remove specific components that are difficult to adsorb. Pressure fluctuation adsorption method (pressure fluctuation adsorption method) involves continuous operation by sequentially switching and repeating the adsorption process of concentrating and collecting, followed by the regeneration process such as depressurization, scavenging, vacuum evacuation, and repressurization.
Swing Adsorption (hereinafter referred to as PSA) is adopted.

このような方法で空気の如き酸素、窒素混合ガ
スより酸素を濃縮するにあたつては、合成あるい
は天然ゼオライトが常温で選択的に窒素を吸着す
るので、該ゼオライトを吸着剤として吸着床に充
填し、吸着床に空気の如き酸素、窒素混合ガスを
導入すると窒素が吸着除去され、難吸着の酸素が
濃縮富化されて吸着床より導出される。そして吸
着床内の吸着剤がその吸着能力が劣化した時点で
吸着剤を再生するため、減圧、掃気あるいは排
気、更に再加圧と再生工程を行う。これを連続し
て濃縮酸素を採取するための複数の吸着床を設
け、各床を前記工程に順次切り換え操作して運転
される。
When concentrating oxygen from a mixed gas of oxygen and nitrogen such as air using this method, synthetic or natural zeolite selectively adsorbs nitrogen at room temperature, so the zeolite is used as an adsorbent to fill an adsorption bed. However, when a mixed gas of oxygen and nitrogen, such as air, is introduced into the adsorption bed, nitrogen is adsorbed and removed, and oxygen, which is difficult to adsorb, is concentrated and enriched and led out from the adsorption bed. When the adsorption capacity of the adsorbent in the adsorption bed deteriorates, in order to regenerate the adsorbent, depressurization, scavenging or evacuation, and further pressurization and regeneration steps are performed. A plurality of adsorption beds are provided to continuously collect concentrated oxygen, and each bed is sequentially switched to the above-mentioned process for operation.

しかるに上記PSAによる混合ガス分離濃縮で
は、易吸着窒素成分を吸着した吸着剤を再生する
際に充分に吸着剤より易吸着窒素成分の脱着が困
難で、易吸着窒素成分が吸着剤に残り、次工程で
行う吸着工程で易吸着窒素成分を充分吸着除去し
得ず、採取すべき難吸着成分である酸素と同伴し
て純度低下をもたらし、特に高純度の成分を得る
のは困難とされている。それ故再生に際して吸着
床を大気圧下の真空に排気する方法が提案されて
いるが、この方法では真空排気に先がけて、前工
程の吸着工程で吸着床内が加圧されているのでこ
れを大気圧まで減圧するよう吸着床内のガスを放
出している。しかしこの吸着床よりの放出ガスは
吸着工程中吸着床の空間に滞留した製品として有
効な難吸着成分の酸素が含まれており、したがつ
てこれを直ちに大気に放出することは収率の点か
ら好ましくない。このため、前記吸着工程後の吸
着床の真空排気により再生するに当り、真空排気
に先がけて吸着床を大気圧まで減圧するための放
出ガスを直ちに大気に放出することなく、別に設
けた吸着床に導入して有効に使用することが試み
られている。
However, in the above-mentioned mixed gas separation and concentration using PSA, when regenerating the adsorbent that has adsorbed the easily adsorbed nitrogen component, it is difficult to sufficiently desorb the easily adsorbed nitrogen component from the adsorbent, and the easily adsorbed nitrogen component remains on the adsorbent. In the adsorption process carried out in the process, easily adsorbed nitrogen components cannot be sufficiently adsorbed and removed, and they are accompanied by oxygen, which is a difficult to adsorb component to be collected, resulting in a decrease in purity, making it particularly difficult to obtain highly pure components. . Therefore, a method has been proposed in which the adsorption bed is evacuated to atmospheric pressure during regeneration, but in this method, the interior of the adsorption bed is pressurized in the previous adsorption process prior to evacuation. The gas in the adsorption bed is released to reduce the pressure to atmospheric pressure. However, the gas released from this adsorption bed contains oxygen, which is a component that is difficult to adsorb and is effective as a product that remains in the space of the adsorption bed during the adsorption process.Therefore, it is difficult to release this into the atmosphere immediately because of the yield. undesirable. For this reason, when regenerating the adsorption bed by evacuation after the adsorption process, the gas to reduce the pressure of the adsorption bed to atmospheric pressure prior to evacuation is not immediately released into the atmosphere, but instead a separate adsorption bed is used. Attempts are being made to introduce it and use it effectively.

一方、再生に当つて真空排気を終了した吸着床
を次工程での吸着工程で直ちに原料を供給して加
圧状態に昇圧することは、真空―加圧と圧力差が
大きいことにより、床内に流れる原料が急速に流
れて、吸着効果を低減して製品酸素濃縮ガスの純
度を低下せしめたり、また所望純度の製品酸素の
収量を低下させるばかりでなく、吸着剤の磨滅等
の不都合が生じることから、直ちに吸着圧力まで
昇圧せず、徐々に吸着圧まで昇圧することが行わ
れる必要がある。
On the other hand, during regeneration, it is difficult to immediately supply raw materials to the adsorption bed after it has been evacuated and raise the pressure to a pressurized state in the next adsorption process, because the pressure difference between vacuum and pressurization is large. The rapid flow of the raw material into the gas stream reduces the adsorption effect and reduces the purity of the product oxygen-enriched gas, which not only reduces the yield of product oxygen with the desired purity, but also causes inconveniences such as wear of the adsorbent. Therefore, it is necessary to gradually increase the pressure to the adsorption pressure without immediately increasing the pressure to the adsorption pressure.

そして上記した二つの吸着床の操作上の必要性
からこれら二つの吸着床を関係づけて、両者の必
要な操作条件を満足するよう操作が提案されてい
る。その一つの方法として、前記吸着工程を終了
した吸着床を再生するに当り真空排気に先だつ
て、床内圧力を吸着工程圧力よりほぼ大気圧まで
減圧するため床内より放出する製品として有効な
酸素成分を多く含むガスを別に設けた吸着床で、
すでに再生のため真空排気して真空状態にある吸
着床に導入して、両者の吸着床の圧力を均圧にす
るよう操作して、前記吸着工程より真空排気工程
へ操作する吸着床を徐々に減圧する一段階とし、
かつこの時の放出ガス中の有効な酸素成分を効果
的に回収する。一方すでに真空排気工程を終了し
て次工程で吸着工程とする吸着床を徐々に昇圧し
て一段階とする方法がある。しかしながらこのよ
うな方法で従来行われている方法は、充分な収率
が得られないばかりか、単位吸着剤当りの製品酸
素収量が少いという欠点がある。即ちこれを第1
図に従来行われている二つの方法を例示して説明
する。
Based on the operational needs of the two adsorption beds described above, an operation has been proposed in which these two adsorption beds are related to each other so as to satisfy the necessary operating conditions for both. One method is to regenerate the adsorption bed that has completed the adsorption process, and to reduce the internal pressure of the bed from the adsorption process pressure to almost atmospheric pressure before evacuation. A separate adsorption bed containing a gas containing many components,
It is introduced into an adsorption bed that has already been evacuated for regeneration and is in a vacuum state, and is operated to equalize the pressure of both adsorption beds, so that the adsorption bed that is operated from the adsorption process to the evacuation process is gradually moved. One stage of depressurization,
Moreover, effective oxygen components in the released gas at this time are effectively recovered. On the other hand, there is a method in which the vacuum evacuation process has already been completed and the pressure of the adsorption bed, which is to be used in the next adsorption process, is gradually increased to form one stage. However, such conventional methods have the disadvantage that not only a sufficient yield cannot be obtained, but also the yield of product oxygen per unit adsorbent is low. That is, this is the first
Two conventionally used methods will be explained by illustrating them in the figure.

図中aは吸着工程を終了して加圧状態にある吸
着床、bは別の吸着床で吸着剤再生のため床内を
真空排気して真空状態にある吸着床である。まづ
(i)の方法による両吸着床との均圧化では、加圧状
態にある吸着床aより床内の圧力を減圧するため
床内のガスを並流に導出し(一般に吸着工程を終
了した吸着床内では易吸着成分である窒素は原料
導入端に濃く吸着されて順次難吸着成分である酸
素を導出する端部に向けて少く吸着されており、
従つて製品として有効な酸素を回収するには原料
の流れと同じ方向いわゆる並流に導出するのが好
ましい。)、該ガスを別の真空状態にある吸着床b
に並流方向に導入して両床を均圧している。しか
し加圧状態にある吸着床aと真空状態にある吸着
床bとの圧力差が大きいため、吸着床aより吸着
床bに流れるガス流が非常に速くなり、この結果
吸着床aでは吸着剤に吸着されている窒素成分が
多く脱着して、空間に存在する製品として有効な
酸素の導出と共に同伴して吸着床bへ搬入され
る。一方吸着床bでは、吸着床aより搬入される
易吸着成分である窒素を含む酸素富化ガスが急速
な空間速度で導入される結果、易吸着成分である
窒素の該床bでの吸着前線(図中斜線部)は製品
ガス導出近く迄達するばかりか、床内に拡散され
る。
In the figure, a shows an adsorption bed in a pressurized state after completing the adsorption process, and b shows another adsorption bed in a vacuum state after the inside of the bed has been evacuated to regenerate the adsorbent. Mazu
In pressure equalization between both adsorption beds using method (i), the gas in the bed is led out in parallel flow to reduce the pressure in the bed from the pressurized adsorption bed a (generally when the adsorption process is finished). In the adsorption bed, nitrogen, which is an easily adsorbed component, is adsorbed in a high concentration at the raw material introduction end, and gradually becomes less adsorbed toward the end where oxygen, which is a difficult adsorbed component, is taken out.
Therefore, in order to recover oxygen that is useful as a product, it is preferable to conduct it in the same direction as the flow of the raw material, so-called parallel flow. ), the gas is placed in a separate vacuum bed b
is introduced in parallel flow direction to equalize the pressure on both beds. However, because the pressure difference between adsorption bed a in a pressurized state and adsorption bed b in a vacuum state is large, the gas flow flowing from adsorption bed a to adsorption bed b becomes much faster.As a result, in adsorption bed a, the adsorbent A large amount of the nitrogen component adsorbed in the adsorbent is desorbed, and oxygen, which is effective as a product existing in the space, is extracted and carried into the adsorption bed b. On the other hand, in adsorption bed b, as a result of the introduction of oxygen-enriched gas containing nitrogen, which is an easily adsorbed component, from adsorption bed a at a rapid space velocity, the adsorption front of nitrogen, which is an easily adsorbed component, on bed b The gas (hatched area in the figure) not only reaches close to the product gas outlet, but also diffuses into the floor.

それ故、以後製品酸素を該床bに向流に導入し
て、該床bを吸着圧まで昇圧したとしても、製品
酸素ガスによる加圧圧力範囲が前記均圧のため圧
力範囲より小さく、このため前記均圧によつて生
じた床内の窒素吸着前線の伸長及び拡散を解消し
得ず、従つて次工程での吸着工程で得られる製品
酸素の純度が90%以上の所望純度に達しなかつた
り、純度が不安定となり、更には所望の高純度の
酸素を得んがため、原料空気の供給流速を低く押
える必要から単位時間に処理する空気量が少くな
り、運転効率を低下せしめることとなる。
Therefore, even if product oxygen is subsequently introduced into the bed b in a countercurrent manner to raise the pressure of the bed b to the adsorption pressure, the pressurizing pressure range by the product oxygen gas is smaller than the pressure range due to the pressure equalization, and this Therefore, the extension and diffusion of the nitrogen adsorption front in the bed caused by the pressure equalization cannot be eliminated, and therefore the purity of the product oxygen obtained in the adsorption step in the next step does not reach the desired purity of 90% or more. In addition, in order to obtain the desired high-purity oxygen, it is necessary to keep the supply flow rate of raw air low, which reduces the amount of air processed per unit time, reducing operational efficiency. Become.

このようなことから(ii)の如く真空状態にある吸
着床bにまず製品酸素を向流に導入して該床の真
空状態を破りほぼ常圧程度の圧力にした後、加圧
状態にある吸着床aより該床aを並流に放出する
ガスを並流に導入して両床を均圧する方法が提案
されている。この方法では吸着床bがほぼ常圧に
された後吸着床aより並流に放出される窒素を含
む酸素富化されたガスを導入して両床が均圧化さ
れるので、両床の圧力差は前記(i)の方法程に大き
くはないが、均圧操作が前記(i)の方法では真空状
態で、(ii)の方法では常圧との圧力による差にすぎ
ず、従つて前記(i)の方法における不都合は殆んど
解消されない。それ故前記(ii)の方法で真空状態に
ある吸着床bに製品酸素を導入して該床bを常圧
以上の圧力に昇圧した後、吸着床aと吸着床bと
を前記方法で均圧化することにより前記不都合を
解消する方法もあるが、この方法では前記吸着床
b内での窒素吸着前線の長い伸長と、拡散は防げ
るが、実質的に吸着床aよりの製品として有効な
酸素を含む放出ガスを吸着床bに導入して回収す
る量が減少し結果的に収率が低減することとな
る。
For this reason, as shown in (ii), product oxygen is first introduced countercurrently into the adsorption bed b which is in a vacuum state to break the vacuum state of the bed and bring the pressure to approximately normal pressure, and then the adsorption bed b is placed in a pressurized state. A method has been proposed in which the pressure of both beds is equalized by introducing gas from adsorption bed a into bed a in parallel flow. In this method, after the adsorption bed B is brought to almost normal pressure, the pressure of both beds is equalized by introducing nitrogen-containing oxygen-enriched gas released in parallel from the adsorption bed A. Although the pressure difference is not as large as in the method (i) above, the pressure equalization operation is performed in a vacuum state in the method (i) above, and in the method (ii) the difference is only due to the pressure from normal pressure. The disadvantages of the method (i) above are hardly resolved. Therefore, after introducing product oxygen into adsorption bed b in a vacuum state and raising the pressure of bed b to above normal pressure by the method (ii) above, adsorption bed a and adsorption bed b are equalized by the method described above. There is also a method of resolving the above-mentioned disadvantages by pressurizing, but this method prevents the long extension of the nitrogen adsorption front and diffusion within the adsorption bed B, but it does not substantially reduce the effectiveness of the product from the adsorption bed A. The amount of released gas containing oxygen introduced into the adsorption bed b and recovered is reduced, resulting in a reduction in yield.

本発明はこのようなことから鋭意種々試みたと
ころ、前記欠点不都合を解消した均圧方法を見出
したものである。即ち、これを第2図により説明
する。
In view of the above, the present invention has made various attempts and has discovered a pressure equalization method that eliminates the above-mentioned drawbacks. That is, this will be explained with reference to FIG.

図中aは前記第1図と同様吸着工程を終了して
加圧状態にある吸着床、bは吸着剤再生のため真
空排気されて真空状態にある吸着床である。吸着
床aが吸着工程を終了し、吸着床bが真空排気工
程を終了した時点で、吸着床aの製品酸素の導出
端(図中上端部)と吸着床bの原料供給端(図中
下端部)と連通せしめて、吸着床aより該床を並
流に導出した窒素を含む酸素富化ガスを吸着床b
に該床を並流に導入すると同時に、吸着床bに該
床の製品酸素導出端(図中上端部)より製品酸素
を向流方向に導入する。そしてこの状態で吸着床
aと吸着床bとが均圧するまで操作する。この結
果真空状態にあつた吸着床bは、吸着床aよりの
窒素を含む酸素富化ガスと製品酸素とによつて真
空が破られ昇圧されるが、この時吸着床bには前
記した如く吸着床aより易吸着成分である窒素が
含まれ酸素富化ガスが導入されるが、同時に吸着
床bには向流方向に製品酸素が導入されるので、
吸着床bに並流に導入される前記吸着床aよりの
酸素富化ガスに含まれる窒素によつて吸着床bに
形成される吸着前線(図中斜線部)は、吸着床b
に同時に向流方向に導入される製品酸素によつて
床内に拡散するのが抑えられ、かつ急激な伸長が
抑止され、吸着床bの製品酸素導出端に押し上げ
られることなく、該床bの下方原料供給端に押圧
されて形成し、それ以後の該床bの吸着工程での
窒素を吸着する有効な床容量が増大する。又吸着
床aより導出する該床a空間に滞留する酸素富化
ガスは、吸着床bに向流に流される製品酸素によ
りその流速が抑制されるので、吸着床aの吸着剤
に吸着されている窒素の脱着が少く、このため吸
着床aより吸着床bに導入される酸素富化ガスに
同伴する易吸着成分である窒素量が少くなり、吸
着床bがこの工程で窒素により汚染される領域が
少くなり、以後の吸着工程での窒素吸着のための
有効床容量が更に増大し、高純な酸素を採取し得
るし、該床を窒素吸着前線で破過される迄に多く
混合ガスを分離処理することが可能となり、実質
的に吸着剤単位量当りのガス分離量を増加し、運
転効率を高めることとなる。
In the figure, a indicates an adsorption bed which is in a pressurized state after completing the adsorption process as in FIG. 1, and b indicates an adsorption bed which has been evacuated to regenerate the adsorbent and is in a vacuum state. When adsorption bed a finishes the adsorption process and adsorption bed b finishes the evacuation process, the product oxygen output end of adsorption bed a (upper end in the figure) and the raw material supply end of adsorption bed B (lower end in the figure) part), and the nitrogen-containing oxygen-enriched gas led out from the adsorption bed a in parallel flow through the adsorption bed b.
At the same time, product oxygen is introduced into the adsorption bed b in a countercurrent direction from the product oxygen outlet end (upper end in the figure) of the bed. In this state, the operation is continued until the pressures of adsorption bed a and adsorption bed b are equalized. As a result, the vacuum in adsorption bed b, which was in a vacuum state, is broken by the oxygen-enriched gas containing nitrogen and the product oxygen from adsorption bed a, and the pressure is increased. Oxygen-enriched gas containing nitrogen, which is an easily adsorbed component, is introduced into adsorption bed a, but at the same time, product oxygen is introduced into adsorption bed b in the countercurrent direction.
The adsorption front (hatched area in the figure) formed on adsorption bed b by nitrogen contained in the oxygen-enriched gas from adsorption bed a that is introduced into adsorption bed b in parallel flow is
At the same time, the product oxygen introduced in the countercurrent direction suppresses diffusion into the bed, suppresses rapid elongation, and prevents product oxygen from being pushed up to the product oxygen outlet end of adsorption bed b. It is formed by being pressed against the lower raw material supply end, and the effective bed capacity for adsorbing nitrogen in the subsequent adsorption process of bed b increases. In addition, the flow rate of the oxygen-enriched gas derived from adsorption bed a and staying in the bed a space is suppressed by the product oxygen flowing countercurrently to adsorption bed b, so that it is not adsorbed by the adsorbent of adsorption bed a. Therefore, the amount of nitrogen, which is an easily adsorbed component, accompanying the oxygen-enriched gas introduced from adsorption bed A to adsorption bed B is small, and adsorption bed B is contaminated with nitrogen in this process. As the area becomes smaller, the effective bed capacity for nitrogen adsorption in the subsequent adsorption process is further increased, high purity oxygen can be collected, and the bed can be filled with more mixed gas until it is penetrated by the nitrogen adsorption front. This makes it possible to separate and treat the gas, substantially increasing the amount of gas separated per unit amount of adsorbent and improving operational efficiency.

本発明は上述の如き新しい知見にもとづいて空
気の如き主として酸素窒素の混合ガスを原料とし
て、窒素を吸着剤により選択的に吸着除去して酸
素を濃縮して連続採取する加圧吸着工程と、窒素
を吸着した吸着剤を真空排気して再生する工程を
含むPSA操作による酸素濃縮法で、前記新しい均
圧化工程を採用して、収率の向上と共に全工程を
経済的かつ効率よく運転操作する酸素濃縮方法で
ある。以下本発明の酸素濃縮方法を第3図、第4
図により詳細に説明する。
Based on the above-mentioned new knowledge, the present invention utilizes a mixed gas of mainly oxygen and nitrogen, such as air, as a raw material, and a pressurized adsorption process in which nitrogen is selectively adsorbed and removed by an adsorbent to concentrate and continuously collect oxygen; The oxygen enrichment method uses PSA operation, which includes the process of vacuum evacuation and regeneration of the adsorbent that has adsorbed nitrogen, and by adopting the new pressure equalization process mentioned above, the entire process can be operated economically and efficiently while improving the yield. This is an oxygen enrichment method. The oxygen concentrating method of the present invention is shown below in Figures 3 and 4.
This will be explained in detail with reference to the drawings.

第3図は本発明の方法を実施するための装置の
一例を示す系統図、第4図は本発明方法を実施す
る一例の工程操作順序図である。第3図において
A,B,C,Dは窒素を選択的に吸着する吸着剤
たとえば天然あるいは合成のゼオライトをそれぞ
れ充填してなる吸着床、1は圧縮機、2は圧縮機
1の吐出口より原料空気を各吸着床A,B,C,
Dにそれぞれ供給する原料供給主管、3A,3
B,3C,3Dは原料供給主管2よりそれぞれ分
岐した供給導管で、各導管3A乃至3Dは弁4
A,4B,4C,4Dを介して各吸着床A,B,
C,Dに連結されている。5A,5B,5C,5
Dはそれぞれ吸着床A,B,C,Dより濃縮され
製品酸素を導出する管で、各管5A乃至5Dは弁
6A,6B,6C,6Dを介して導出主管7に連
結し、更に導出主管7は弁8を介して製品タンク
9に連結している。10A,10B,10C,1
0Dは前記吸着床A,B,C,Dと各弁4A,4
B,4C,4Dとの間で各管3A,3B,3C,
3Dから分岐された放出管で、該各放出管は弁1
1A,11B,11C,11Dを介して、一端が
大気に開口する放出主管12に連結している。1
3A,13B,13C,13Dは前記放出管10
A,10B,10C,10Dと同様各吸着床A,
B,C,Dと弁4A,4B,4C,4Dとの間で
各管3A,3B,3C,3Dより分岐した排気管
で、各排気管は弁14A,14B,14C,14
Dを介して排気主管15に連結し、更に排気主管
は真空ポンプ16に連結している。
FIG. 3 is a system diagram showing an example of an apparatus for implementing the method of the present invention, and FIG. 4 is a process operation sequence diagram of an example of implementing the method of the present invention. In Fig. 3, A, B, C, and D are adsorption beds each filled with an adsorbent that selectively adsorbs nitrogen, such as natural or synthetic zeolite, 1 is a compressor, and 2 is a discharge port of the compressor 1. Feed air is transferred to each adsorption bed A, B, C,
Main raw material supply pipes that supply to D, 3A, 3 respectively
B, 3C, and 3D are supply pipes branched from the main raw material supply pipe 2, and each pipe 3A to 3D is connected to a valve 4.
Each adsorption bed A, B, through A, 4B, 4C, 4D
It is connected to C and D. 5A, 5B, 5C, 5
D is a pipe for deriving concentrated product oxygen from the adsorption beds A, B, C, and D, respectively, and each pipe 5A to 5D is connected to the main derivation pipe 7 via valves 6A, 6B, 6C, and 6D, and the main derivation pipe 7 is connected to a product tank 9 via a valve 8. 10A, 10B, 10C, 1
0D is the adsorption bed A, B, C, D and each valve 4A, 4
B, 4C, 4D between each pipe 3A, 3B, 3C,
A discharge pipe branched from 3D, each discharge pipe having a valve 1
It is connected via 1A, 11B, 11C, and 11D to a main discharge pipe 12 whose one end opens to the atmosphere. 1
3A, 13B, 13C, 13D are the discharge pipes 10
Similar to A, 10B, 10C, 10D, each adsorption bed A,
B, C, D and valves 4A, 4B, 4C, 4D are exhaust pipes branched from each pipe 3A, 3B, 3C, 3D, and each exhaust pipe is connected to valves 14A, 14B, 14C, 14.
It is connected to a main exhaust pipe 15 via D, and the main exhaust pipe is further connected to a vacuum pump 16.

一方各吸着床A,B,C,Dより製品酸素を導
出する各導出管5A,5B,5C,5Dには弁6
A,6B,6C,6Dと各吸着床との間で、それ
ぞれ他の床と均圧化するための管17A,17
B,17C,17Dが分岐され、それぞれ各管は
弁18A,18B,18C,18Dを介して吸着
床C、吸着床D、吸着床A、吸着床Bのそれぞれ
の供給導管3C,3D,3A,3Bに連結してい
る。又前記各吸着床A,B,C,Dの製品導出管
5A,5B,5C,5Dにはそれぞれ原料タンク
9より弁19を介して配管された逆充填用主管2
0よりそれぞれ分岐された管21A,21B,2
1C,21Dがそれぞれ弁22A,22B,22
C,22Dを介して連設され、又更に前記各製品
導出管5A,5B,5C,5Dにはそれぞれ弁2
4A,24B,24C,24D及び流量調整弁2
5A,25B,25C,25Dを介して製品酸素
導出主管7と連通している再加圧用管23A,2
3B,23C,23Dが連設されている。
On the other hand, valves 6 are provided in each outlet pipe 5A, 5B, 5C, and 5D for discharging product oxygen from each adsorption bed A, B, C, and D.
Between A, 6B, 6C, 6D and each adsorption bed, pipes 17A, 17 for equalizing the pressure with other beds, respectively.
B, 17C, and 17D are branched, and each pipe is connected to each supply conduit 3C, 3D, 3A, and adsorption bed C, adsorption bed D, adsorption bed A, and adsorption bed B through valves 18A, 18B, 18C, and 18D. Connected to 3B. In addition, the product outlet pipes 5A, 5B, 5C, and 5D of each of the adsorption beds A, B, C, and D are connected to a backfilling main pipe 2 connected from the raw material tank 9 via a valve 19, respectively.
Pipes 21A, 21B, 2 branched from 0
1C and 21D are valves 22A, 22B, and 22, respectively.
C, 22D, and each of the product outlet pipes 5A, 5B, 5C, and 5D is provided with a valve 2.
4A, 24B, 24C, 24D and flow rate adjustment valve 2
Repressurization pipes 23A, 2 communicating with the product oxygen deriving main pipe 7 via 5A, 25B, 25C, 25D
3B, 23C, and 23D are arranged in series.

上述の如き装置で本発明の酸素濃縮法は次のよ
うに操作運転すると連続的に濃縮酸素が得られ
る。即ちたとえば吸着床A,B,C,Dはそれぞ
れ加圧吸着()工程―加圧吸着()工程―並流減
圧工程―向流減圧工程―向流排気工程―向流排気
工程―加圧均圧化工程―再加圧工程の8工程を前
記工程順序に従つて順次切り換え循環操作すると
共に、前記4つの床は同時点での工程がそれぞれ
前記8工程の順序を2工程づつ前かあるいは後の
工程状態、即ち床Aが加圧吸着()の工程である
場合は、床Bは前記工程順序の加圧吸着()工程
の2工程前の加圧均圧化工程、床Cは更に2工程
前の向流排気工程、床Dは更に2工程前の並流減
圧工程の状態になるよう同時点で各床の工程が組
合さるよう操作運転する。
When the oxygen concentrating method of the present invention is operated using the apparatus as described above as follows, concentrated oxygen can be obtained continuously. That is, for example, the adsorption beds A, B, C, and D each have a pressure adsorption () process, a pressurized adsorption () process, a cocurrent depressurization process, a countercurrent depressurization process, a countercurrent exhaust process, a countercurrent exhaust process, and a pressure equalization process. The eight steps of the pressurization process and the repressurization process are sequentially switched and circulated according to the above process order, and the four beds are arranged so that the processes at the same time are two steps before or after the order of the eight steps. In the process state, that is, when bed A is the pressure adsorption () process, bed B is the pressure equalization process two steps before the pressure adsorption () process in the process order, and bed C is the pressure equalization process two steps before the pressure adsorption () process in the process order. The countercurrent evacuation process before the process and the bed D are operated so that the processes of each bed are combined at the same time so that the bed D is in the state of the cocurrent depressurization process two processes before.

そして前記8工程における吸着床の状態は以下
の通りの態様を行うものである。
The state of the adsorption bed in the 8 steps is as follows.

即ち、加圧吸着()…吸着床の一端より該床に
原料を加圧供給して、該床で窒素を吸着除去し
て、他端より濃縮酸素を採取する工程、 加圧吸着()…吸着床の一端より原料を加圧供
給して、他端より濃縮酸素を採取すると共に、採
取する濃縮酸素の一部を分流して、他塔の吸着圧
迄昇圧せしめる再加圧工程に供給する工程、 並流減圧…吸着床への原料供給を停止して、吸
着床の濃縮酸素導出端より床内の加圧ガスを並流
に導出して、該床を減圧すると共に、導出ガスを
真空状態にある他床に供給する工程、 向流減圧…吸着床の原料供給端を大気と連通し
て、床内のガスを向流方向に流通して大気に放出
して床内をほぼ大気圧まで減圧する工程、 向流排気…ほぼ大気圧の吸着床を原料供給端よ
り真空ポンプによつて床内のガスを向流方向に排
気する工程、 加圧均圧化…前記第2図に図示した本発明独自
の工程で、真空状態にある吸着床に原料供給端よ
り前記他床の並流減圧ガスを導入すると同時に濃
縮酸素導出端より原料タンクより濃縮酸素を向流
方向に導入して昇圧すると共に、並流減圧工程に
ある床との間で均圧化する工程、 再加圧…吸着床の濃縮酸素導出端より再加圧吸
着()の工程にある床より採取する濃縮酸素の一
部を床に向流に導入して床内圧力を吸着圧力まで
加圧する工程、 等の吸着床の状態を各工程で保つものである。
That is, pressurized adsorption ()...a process in which raw materials are supplied under pressure to one end of the adsorption bed, nitrogen is adsorbed and removed by the bed, and concentrated oxygen is collected from the other end; pressurized adsorption ()... The raw material is supplied under pressure from one end of the adsorption bed, concentrated oxygen is collected from the other end, and a part of the collected concentrated oxygen is divided and supplied to the repressurization process where the pressure is increased to the adsorption pressure of another column. Process, co-current depressurization...The supply of raw materials to the adsorption bed is stopped, the pressurized gas in the bed is co-currently led out from the concentrated oxygen outlet end of the adsorption bed, the bed is depressurized, and the discharged gas is evacuated. Countercurrent depressurization...The raw material supply end of the adsorption bed is communicated with the atmosphere, and the gas in the bed is circulated countercurrently and released to the atmosphere to bring the inside of the bed to almost atmospheric pressure. Countercurrent exhaust: A process of exhausting the gas in the adsorption bed at almost atmospheric pressure in a countercurrent direction from the raw material supply end using a vacuum pump. Pressure equalization: As shown in Figure 2 above. In the unique process of the present invention, the cocurrent depressurized gas from the other bed is introduced from the raw material supply end into the adsorption bed in a vacuum state, and at the same time, concentrated oxygen is introduced countercurrently from the raw material tank through the concentrated oxygen outlet end to raise the pressure. At the same time, there is a process of equalizing the pressure with the bed in the co-current depressurization process, repressurization... from the concentrated oxygen outlet end of the adsorption bed, a part of the concentrated oxygen collected from the bed in the repressurization process The state of the adsorption bed is maintained in each step, such as the step of introducing the adsorbent into the bed countercurrently and increasing the pressure within the bed to the adsorption pressure.

次に前記8つの工程をとたとえば4床の吸着床
A,B,C,Dで連続運転操作する実施例を説明
する。
Next, an example will be described in which the above-mentioned eight steps are continuously operated using, for example, four adsorption beds A, B, C, and D.

まづ第1工程では弁4A,6A,8,14C,
18D,19,22Bを開状態として、その他の
弁は閉状態とし、吸着床Aには圧縮機1より空気
の如き主として酸素、窒素成分よりなる混合ガス
が1.5〜3Kg/cm2Gの圧力に圧縮されて原料供給主
管2及び分岐管3A、弁4Aを介して導入され、
該床Aで、床内の吸着剤で窒素が吸着され、導出
管5Aより約90%以上に濃縮された酸素が導出さ
れ弁6A,導出主管7、更に弁8を介して製品タ
ンク9に貯えられ加圧吸着()工程が行われる。
吸着床Bは前の工程で真空排気により床内が再生
されて真空状態にあり、該床の原料供給管3Bが
吸着床Dの導出管5Dと管17D、弁18Aを介
して連通して、前工程で加圧吸着()工程を終了
して1.5〜3Kg/cm2Gの圧力に保たれた吸着床Dよ
り該床Dの空間に滞留している原料より酸素純度
が高いが製品酸素より酸素純度が低い酸素富化ガ
スが、吸着床Bに並流に導入されると同時に吸着
床Bの導出管5Bに原料タンク9より弁19を介
してのびる逆充填主管20より分岐した管21B
が弁22Bを介して連通して、製品タンク9より
製品酸素ガスが吸着床Bに該床Bを向流方向に導
入される。この結果吸着床Bは真空状態が破ら
れ、そして吸着床Dとの間で約1〜1.5Kg/cm2Gの
圧力に均圧化される加圧均圧化工程が行われる。
又吸着床Cは前工程で床内圧力がほぼ大気圧に減
圧されていて、弁14Cの開操作により、該床C
の原料導入端の管3Cは管13C,弁14Cを介
して排気主管15に、そして更に真空ポンプ16
に連通し、吸着床C内は真空ポンプ16により向
流方向に100〜150トールの圧力迄排気され、これ
により吸着床C内の吸着剤に吸着されている窒素
は脱着して排出する真空排気工程が行われる。更
に吸着床Dは前工程で加圧吸着()工程が行わ
れ、床内は1.5〜3Kg/cm2Gの圧力にあり、弁18
Dの開操作により該床Dの製品酸素導出端の管5
Dは弁17D,18Dを介して、前記加圧均圧化
される真空状態にある吸着床Bの原料供給端の管
3Bに連通して、吸着床D内の空間に滞留する原
料より酸素純度が高く製品酸素より酸素純度が低
い酸素富化ガスが床D内を並流に流れて導出し、
吸着床Bに並流に導入する。そして前記した如く
吸着床Bとの間で1〜1.5Kg/cm2Gの圧力に均圧化
する並流減圧が行われる。
First, in the first step, valves 4A, 6A, 8, 14C,
18D, 19, and 22B are open, the other valves are closed, and a mixed gas such as air mainly consisting of oxygen and nitrogen components is supplied to the adsorption bed A from the compressor 1 at a pressure of 1.5 to 3 Kg/cm 2 G. It is compressed and introduced through the main raw material supply pipe 2, branch pipe 3A, and valve 4A,
In the bed A, nitrogen is adsorbed by the adsorbent in the bed, and oxygen concentrated to about 90% or more is discharged from the discharge pipe 5A and stored in the product tank 9 via the valve 6A, the main discharge pipe 7, and further through the valve 8. Then, a pressure adsorption () process is performed.
The adsorption bed B is in a vacuum state as the inside of the bed has been regenerated by evacuation in the previous step, and the raw material supply pipe 3B of the bed communicates with the outlet pipe 5D of the adsorption bed D via the pipe 17D and the valve 18A. The adsorption bed D, which was maintained at a pressure of 1.5 to 3 Kg/cm 2 G after completing the pressurized adsorption () process in the previous process, has a higher oxygen purity than the raw material staying in the space of the bed D, but it has a higher purity than the product oxygen. Oxygen-enriched gas with low oxygen purity is introduced into the adsorption bed B in parallel flow, and at the same time a pipe 21B is branched from the backfill main pipe 20 extending from the raw material tank 9 via the valve 19 to the outlet pipe 5B of the adsorption bed B.
are in communication via valve 22B, and product oxygen gas is introduced from product tank 9 into adsorption bed B in a countercurrent direction. As a result, the vacuum state of the adsorption bed B is broken, and a pressure equalization process is performed in which the pressure is equalized to about 1 to 1.5 kg/cm 2 G between the adsorption bed B and the adsorption bed D.
In addition, the pressure inside the adsorption bed C has been reduced to approximately atmospheric pressure in the previous step, and by opening the valve 14C, the bed C
The pipe 3C at the raw material introduction end is connected to the exhaust main pipe 15 via a pipe 13C and a valve 14C, and further to a vacuum pump 16.
The inside of the adsorption bed C is evacuated to a pressure of 100 to 150 torr in the countercurrent direction by a vacuum pump 16, whereby the nitrogen adsorbed by the adsorbent in the adsorption bed C is desorbed and exhausted. The process is carried out. Furthermore, the adsorption bed D was subjected to a pressurized adsorption ( ) step in the previous step, and the pressure inside the bed was 1.5 to 3 Kg/cm 2 G.
By opening D, the pipe 5 at the product oxygen outlet end of the bed D is opened.
D communicates through valves 17D and 18D with the pipe 3B at the raw material supply end of the adsorption bed B, which is in a vacuum state and is pressurized and equalized, to obtain a higher oxygen purity than the raw material remaining in the space within the adsorption bed D. Oxygen-enriched gas with higher oxygen purity and lower oxygen purity than product oxygen flows cocurrently in bed D and is led out.
Adsorption bed B is introduced co-currently. Then, as described above, co-current depressurization is carried out to equalize the pressure to 1 to 1.5 Kg/cm 2 G with the adsorption bed B.

上記の工程が同一時間の間各吸着床で行われた
後、次の第2工程に各吸着床は切り換え操作され
る。
After the above steps are performed on each adsorption bed for the same period of time, each adsorption bed is switched to the next second step.

即ち第2工程では弁4A,6A,8,11D,
14C,24Bを開状態とし、他の弁は閉状態に
操作される。吸着床Aは第1工程と同様圧縮機1
で1.5〜3Kg/cm2Gに圧縮された原料が管2,3
A、弁4Aを介して導入され、該床内で窒素を吸
着除去して管5Aより90%以上の酸素純度の濃縮
酸素を導出し、弁6A、管7、更に弁8を介して
製品タンク9にこれを製品として採取すると共
に、その濃縮酸素の一部を導出主管7より分岐し
て、管23B、弁24B、流量調整弁25Bを介
して吸着床Bの管5Bに流通せしめて、吸着床B
に該床Bの圧力を吸着圧1.5〜3Kg/cm2G迄昇圧す
るため向流方向に導入する加圧吸着()を行う。
その間吸着床Bは前記した如く吸着床Aで導出さ
れる製品酸素の一部を向流に導入して床内圧力を
吸着圧1.5〜3Kg/cm2G迄昇圧する再加圧工程が行
われ、吸着床Cは前記第1工程と同様真空ポンプ
によつて床内を向流に排気する向流排気の工程が
継続して行われ、又吸着床Dは弁11Dの開によ
り前工程の並流減圧で1〜1.5Kg/cm2Gの圧力とな
つている床内が管10D、弁11D、更に放出主
管12を介して大気と連通し、床内のガスを床内
を向流に流して大気に放出し、床内圧力をほぼ大
気圧にまで減圧する向流減圧工程が行われる。つ
づいて一定時間後第3工程に各吸着床は切り換え
られる。
That is, in the second step, valves 4A, 6A, 8, 11D,
14C and 24B are opened, and the other valves are closed. Adsorption bed A is compressor 1 as in the first step.
The raw material compressed to 1.5-3Kg/cm 2 G is transferred to pipes 2 and 3.
A. Introduced through valve 4A, adsorbing and removing nitrogen in the bed, leading out concentrated oxygen with an oxygen purity of 90% or more through pipe 5A, and passing through valve 6A, pipe 7, and further valve 8 to the product tank. 9, the concentrated oxygen is collected as a product, and a part of the concentrated oxygen is branched from the main outlet pipe 7 and distributed to the pipe 5B of the adsorption bed B via the pipe 23B, valve 24B, and flow rate adjustment valve 25B, and is adsorbed. Floor B
In order to increase the pressure of the bed B to an adsorption pressure of 1.5 to 3 kg/cm 2 G, pressurized adsorption () is performed in which the pressure is introduced in the countercurrent direction.
During this period, adsorption bed B undergoes a repressurization process in which a part of the product oxygen derived from adsorption bed A is introduced countercurrently to increase the pressure within the bed to an adsorption pressure of 1.5 to 3 Kg/cm 2 G as described above. As in the first step, the adsorption bed C continues to undergo a countercurrent evacuation process in which the inside of the bed is evacuated in a countercurrent direction using a vacuum pump, and the adsorption bed D is evacuated in parallel with the previous step by opening the valve 11D. The inside of the bed, which has a pressure of 1 to 1.5 Kg/cm 2 G due to flow reduction, communicates with the atmosphere through the pipe 10D, the valve 11D, and the main discharge pipe 12, so that the gas in the bed flows countercurrently within the bed. A countercurrent depressurization process is performed in which the pressure inside the bed is reduced to approximately atmospheric pressure. Subsequently, after a certain period of time, each adsorption bed is switched to the third step.

第3工程では弁4B,6B,8,14D,18
A,19,22Cが開状態に、その他の弁は閉状
態に操作され、吸着床Aは前工程の加圧吸着()
工程で床内に滞留している酸素富化ガスを並流に
導出して管17A、弁18Aを介して吸着床Cに
導入し、吸着床A内圧力を前工程の1.5〜3Kg/cm2
Gの圧力より1.0〜1.5Kg/cm2Gまで減圧する並流減
圧工程が行われ、吸着床Bは圧縮機1より管2,
3B、弁4Bを介して1.5〜3Kg/cm2Gの圧力に加
圧された原料を導入して、該床Bで窒素分を吸着
除去して管5Bより90%以上に濃縮された濃縮酸
素を導出し、弁6B、管7、弁8を介して製品タ
ンク9にこれを製品として採取する加圧吸着()
工程が行われ、吸着床Cは前工程で床内が真空状
態とされており、前記吸着床Aでの並流減圧工程
で導出される酸素富化ガスが管17A,弁18A
を介して吸着床Cの原料供給端より該床を並流に
導入されると同時に、製品タンク9より弁19、
管20、管21C、弁22C、を介して製品酸素
が吸着床Cの導出管5Cより該床に向流に導入さ
れ、この結果該床Cは真空状態が破られかつ昇圧
して吸着床Aとの間で0.5〜1.5Kg/cm2Gの圧力に均
圧化する加圧均圧化工程が行われ、又吸着床Dは
管13D、弁14D、管15を介して真空ポンプ
16と連通して、床内は向流に排気され、床内の
吸着剤に吸着している窒素を脱着排除し床を再生
する真空排気工程が行われる。これらの第3工程
を一定時間運転した後各吸着床は第4の工程に操
作される。
In the third step, valves 4B, 6B, 8, 14D, 18
A, 19, and 22C are opened, and the other valves are closed, and adsorption bed A is used for pressurized adsorption () in the previous process.
In the process, the oxygen-enriched gas remaining in the bed is led out in parallel flow and introduced into adsorption bed C via pipe 17A and valve 18A, and the pressure inside adsorption bed A is adjusted to 1.5 to 3 Kg/cm 2 of the previous step.
A cocurrent depressurization process is performed to reduce the pressure from the pressure of G to 1.0 to 1.5 Kg/cm 2 G, and the adsorption bed B is connected to the pipe 2,
3B, feedstock pressurized to a pressure of 1.5 to 3 Kg/cm 2 G is introduced via valve 4B, nitrogen content is adsorbed and removed in bed B, and concentrated oxygen concentrated to 90% or more is passed through pipe 5B. Pressurized adsorption () in which the product is extracted and collected as a product into the product tank 9 via the valve 6B, pipe 7, and valve 8.
The process is carried out, and the adsorption bed C has been made into a vacuum state in the previous process, and the oxygen-enriched gas derived from the cocurrent pressure reduction process in the adsorption bed A is passed through the pipe 17A and the valve 18A.
At the same time, from the product tank 9, a valve 19,
Through pipe 20, pipe 21C, and valve 22C, product oxygen is introduced countercurrently into the adsorption bed C from the outlet pipe 5C, so that the bed C breaks the vacuum and is pressurized to the adsorption bed A. A pressurization and equalization process is performed to equalize the pressure to 0.5 to 1.5 Kg/cm 2 G between the adsorption bed D and the adsorption bed D is connected to the vacuum pump 16 via a pipe 13D, a valve 14D, and a pipe 15. Then, the inside of the bed is evacuated in a countercurrent direction, and a vacuum evacuation process is performed to desorb and eliminate nitrogen adsorbed on the adsorbent in the bed and regenerate the bed. After operating these third steps for a certain period of time, each adsorption bed is operated in a fourth step.

第4工程では弁4B,6B,8,11A,14
D,24Cを開状態に、その他の弁は閉状態に操
作し、吸着床Aは管10A、弁11A、管12を
介して大気と連通し、該床A内のガスは該床Aを
向流に流れて大気に放出して大気圧迄減圧する減
圧工程が行われ、吸着床Bは前記第3工程と同様
圧縮機1より1.5〜3Kg/cm2Gに加圧された原料が
管2,3B、弁4Bを介して導入され、該床Bで
窒素が吸着除去されて管5Bより90%以上に濃縮
された濃縮酸素を導出し、弁6B、管7、弁8を
介して製品タンク9にこれを製品として採取する
と共に、その一部を管7より分岐して管23C、
弁24C、流量制御弁25Cを介して吸着床Cに
再加圧用ガスとして供給する加圧吸着()の工程
が行われ、吸着床Cは吸着床Bでの加圧吸着()
工程で得られる濃縮酸素の一部が前記した如く管
7より管23Cに分岐されて弁24C、流量調整
弁25Cをそれぞれ介して吸着床Cに向流に導入
して吸着圧1.5〜3Kg/cm2G迄昇圧する再加圧工程
が行われ、又吸着床Dは前記第3工程と同様吸着
床Dの原料導入端を管13D、弁14Dを介して
排気主管15と連結し、該管15とに連結された
真空ポンプ16によつて床内を向流に排気して床
を再生する向流排気工程が継続して行われる。
In the fourth step, valves 4B, 6B, 8, 11A, 14
D, 24C are opened and the other valves are closed, adsorption bed A is communicated with the atmosphere through pipe 10A, valve 11A and pipe 12, and the gas in bed A is directed towards bed A. A depressurization step is carried out in which the raw material is discharged into the atmosphere and depressurized to atmospheric pressure, and the adsorption bed B is filled with raw material pressurized to 1.5 to 3 Kg/cm 2 G by the compressor 1, as in the third step, and then transferred to the pipe 2. , 3B, is introduced via valve 4B, nitrogen is adsorbed and removed in bed B, and concentrated oxygen concentrated to 90% or more is led out from pipe 5B, and is sent to the product tank via valve 6B, pipe 7, and valve 8. 9 as a product, and a part of it is branched from pipe 7 to pipe 23C,
A process of pressurized adsorption () is performed in which the gas for repressurization is supplied to the adsorption bed C via the valve 24C and the flow rate control valve 25C, and the adsorption bed C is subjected to the pressurized adsorption () in the adsorption bed B.
A part of the concentrated oxygen obtained in the process is branched from the pipe 7 to the pipe 23C as described above, and introduced countercurrently into the adsorption bed C through the valve 24C and the flow rate adjustment valve 25C, respectively, to achieve an adsorption pressure of 1.5 to 3 Kg/cm. A repressurization process is performed to increase the pressure to 2 G, and the adsorption bed D is connected to the main exhaust pipe 15 via the pipe 13D and valve 14D, and the raw material introduction end of the adsorption bed D is connected to the main exhaust pipe 15 through the pipe 13D and the valve 14D. A countercurrent evacuation process is continued in which the bed is evacuated in a countercurrent manner by a vacuum pump 16 connected to the pump 16 to regenerate the bed.

このようにして以後所定時間間隔で、それぞれ
の各吸着床は前記8つの工程順序に従つて順次運
転されるよう弁が切り換え操作される。即ち、つ
づく第5工程では弁4C,6C,8,14A,1
8B,19,22Dが開状態に、その他の弁は閉
状態にそれぞれ操作されて、吸着床Aは向流排気
工程、吸着床Bは並流減圧工程、吸着床Cは加圧
吸着()工程、吸着床Dは加圧均圧化工程に運転
され、第6工程では弁4C,6C,8,11B,
14A,24Dが開状態に、その他の弁は閉状態
にそれぞれ操作されて、吸着床Aは向流排気工程
が第5工程に引続いて行われ、吸着床Bは向流減
圧工程が、吸着床Cは加圧吸着()工程が、吸着
床Dは再加圧工程がそれぞれ行われ、又つづく第
7工程では弁4D,6D,8,14B,18C,
19,22Aが開状態に、その他の弁は閉状態に
それぞれ操作されて、吸着床Aは加圧均圧化工程
に、吸着床Bは向流排気工程に、吸着床Cは並流
減圧工程に、又吸着床Dは加圧吸着()工程にそ
れぞれ運転される。更に第8工程では弁4D,6
D,8,11C,14B,24Aが開状態に、そ
の他の弁は閉状態にそれぞれ操作されて、吸着床
Aでは再加圧工程が、吸着床Bでは引続いて向流
排気工程が、吸着床Cでは向流減圧工程が、又吸
着床Dでは加圧吸着()工程がそれぞれ運転され
る。
In this manner, the valves are switched and operated at predetermined time intervals thereafter so that each adsorption bed is sequentially operated in accordance with the eight process sequences. That is, in the subsequent fifth step, valves 4C, 6C, 8, 14A, 1
8B, 19, and 22D are operated in the open state, and the other valves are operated in the closed state, so that adsorption bed A undergoes a countercurrent exhaust process, adsorption bed B performs a cocurrent depressurization process, and adsorption bed C performs a pressurized adsorption () process. , the adsorption bed D is operated in a pressure equalization step, and in the sixth step, valves 4C, 6C, 8, 11B,
14A and 24D are opened, and the other valves are closed. Adsorption bed A undergoes a countercurrent evacuation step following the fifth step, and adsorption bed B undergoes a countercurrent depressurization step. Bed C undergoes a pressurized adsorption ( ) step, adsorption bed D undergoes a repressurization step, and in the subsequent seventh step, valves 4D, 6D, 8, 14B, 18C,
19 and 22A are operated in the open state, and the other valves are operated in the closed state, respectively, so that adsorption bed A undergoes the pressure equalization process, adsorption bed B performs the countercurrent evacuation process, and adsorption bed C performs the cocurrent depressurization process. In addition, the adsorption bed D is operated in the pressurized adsorption () step, respectively. Furthermore, in the eighth step, valves 4D and 6
D, 8, 11C, 14B, and 24A are opened, and the other valves are closed, so that adsorption bed A undergoes a repressurization process, and adsorption bed B continues a countercurrent exhaust process. In bed C, a countercurrent depressurization process is operated, and in adsorption bed D, a pressurized adsorption () process is operated.

そしてその後引続いて第1工程乃至第8工程の
各工程の運転状態に各吸着床は循環して運転する
よう各弁は所定間隔ごとに切り換え操作して連続
運転される。この結果、90%以上に濃縮された濃
縮酸素が連続的に製品タンク9に採取され貯えら
れる。なお前記切り換え操作される弁のうち弁8
は運転中常に開状態に保たれる手動開閉弁で、弁
19,25A,25B,25C,25Dは流量を
一定に保つ流量調整弁で、その他の弁は電磁弁
で、それぞれの床が前記運転工程順序によつて運
転されるようタイムシーケンスによつて自動的に
開閉操作する方法を採用している。
Thereafter, each valve is switched at predetermined intervals and operated continuously so that each adsorption bed is circulated and operated in the operating state of each step from the first step to the eighth step. As a result, concentrated oxygen concentrated to 90% or more is continuously collected and stored in the product tank 9. Of the valves to be switched, valve 8
is a manual on-off valve that is always kept open during operation; valves 19, 25A, 25B, 25C, and 25D are flow rate adjustment valves that keep the flow constant; the other valves are solenoid valves; A method of automatically opening and closing operations according to a time sequence is adopted so that the operation is performed according to the process order.

以上は連続的に濃縮酸素を採取するため4床の
吸着床を用いた場合について説明したが、本発明
はこれに限定されるものでなく、複数床の吸着床
を設置すれば、本発明の主旨を逸脱することなく
適宜実施し得ることは極めて明白である。
Although the above description has been made of the case where four adsorption beds are used to continuously collect concentrated oxygen, the present invention is not limited to this, and if multiple adsorption beds are installed, the present invention It is quite clear that any suitable implementation may be made without departing from the spirit.

次に上述の如き本発明の酸素濃縮法を実施した
実施例を以下に示す。
Next, an example in which the oxygen concentrating method of the present invention as described above was carried out will be shown below.

吸着床設置数:4床 使用吸着剤と使用量:リンデ社製、モレキユラ
シーブ5A、25Kg/1床 処理空気量:19.9〜21.3Nm3/hr 吸着床:2.5Kg/cm2G、排気真空度:130トール 均圧化圧力:1.5Kg/cm2G、温度15℃ で運転したところ 製品酸素収量:3.1Nm3/hr 製品酸素純度:92% 収率:69% 吸着剤単位量当りの製品酸素収量:31/Kg であつた。
Number of adsorption beds installed: 4 beds Adsorbent used and amount used: Linde, Molecular Sieve 5A, 25Kg/1 bed Amount of air processed: 19.9 to 21.3Nm 3 /hr Adsorption bed: 2.5Kg/cm 2 G, Exhaust vacuum: 130 Torr Equalization pressure: 1.5Kg/cm 2 G, temperature 15℃ Operation Product oxygen yield: 3.1Nm 3 /hr Product oxygen purity: 92% Yield: 69% Product oxygen yield per unit amount of adsorbent :31/Kg.

以上のように本発明の酸素濃縮方法によると、
製品酸素を高純度に採取することが可能となるこ
とは勿論のこと、従来該種方法では高純度の製品
酸素を得ようとすると収率が低下することとなつ
ていたのを、本発明方法では、吸着工程終了後の
吸着床空間に滞留する製品として有効な酸素ガス
を廃棄することなく以後に均圧化工程に使用する
と共に本発明の独自の均圧化工程によつて大巾に
収率の向上を図ることが可能となつた。更に本発
明に採用した均圧化工程が床内に有効な酸素成分
よりなる酸素富化ガスと同時に製品酸素ガスを対
向流に導入することにより、酸素富化ガスに含ま
れる不純成分であつて易吸着成分である窒素を床
内に拡散せしめることなく、又その吸着前線の伸
長を抑止せしめると共に、これに使用する前記酸
素富化ガスを導出する床内よりの不純窒素成分の
同伴を低下せしめることとなり、この結果つづい
て操作運転する吸着工程での不純窒素を吸着除去
する床の有効容量を増大することとなり、90%以
上の高純度の酸素を安定して採取し得るばかりで
なく、処理し得る原料量が増加し、前記実施例で
明らかなように吸着剤1Kg当り31/hrの製品収
量が得られ、これは従来該種方法で、前記90%以
上の製品を得る場合の2.5〜3倍の収量であり、
実質的に大巾な性能の向上が図られたものであ
り、工業上実用装置として極めて著しい効果を発
揮するものである。
As described above, according to the oxygen concentration method of the present invention,
Not only is it possible to collect product oxygen with high purity, but the method of the present invention also solves the problem that conventional methods of the same type reduce the yield when trying to obtain high purity product oxygen. Now, the oxygen gas, which is effective as a product and remains in the adsorption bed space after the adsorption process is completed, can be used in the subsequent pressure equalization process without being discarded, and it can also be collected to a large extent by the unique pressure equalization process of the present invention. It became possible to improve the ratio. Furthermore, the pressure equalization process adopted in the present invention introduces the product oxygen gas in a counterflow at the same time as the oxygen-enriched gas consisting of effective oxygen components into the bed, thereby eliminating impurity components contained in the oxygen-enriched gas. This prevents nitrogen, which is an easily adsorbed component, from diffusing into the bed, suppresses the extension of its adsorption front, and reduces the entrainment of impure nitrogen components from the bed from which the oxygen-enriched gas used for this is derived. As a result, the effective capacity of the bed for adsorbing and removing impure nitrogen in the subsequent adsorption process is increased, making it possible not only to stably collect oxygen with a high purity of 90% or more, but also to improve the processing efficiency. As is clear from the above examples, a product yield of 31/hr per 1 kg of adsorbent was obtained, which is 2.5 to 2.5% more than the product yield of 90% or more obtained by conventional methods. The yield is three times higher,
This is a device that has substantially improved its performance, and is extremely effective as an industrially practical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の均圧化方法を説明する図、第2
図は本発明に採用した均圧化方法を説明する図、
第3図は本発明方法を説明する系統図、第4図は
本発明方法の工程操作順序図である。 A,B,C,Dは吸着床、1は圧縮機、2は原
料供給主管、3A乃至3Dは供給導管、4A乃至
4D,6A乃至6D,8,11A乃至11D,1
4A乃至14D,18,19,22A乃至22
D,24A乃至24Dは弁、5A乃至5D,17
A乃至17D,21A乃至21Dは管、7は導出
主管、9は製品タンク、10A乃至10Dは放出
管、12は放出主管、13A乃至13Dは排気
管、15は排気主管、16は真空ポンプ、20は
逆充填用主管、23A乃至23Dは再加圧用管、
25A乃至25Dは流量調整弁である。
Figure 1 is a diagram explaining the conventional pressure equalization method, Figure 2
The figure is a diagram explaining the pressure equalization method adopted in the present invention,
FIG. 3 is a system diagram illustrating the method of the present invention, and FIG. 4 is a process operation sequence diagram of the method of the present invention. A, B, C, D are adsorption beds, 1 is a compressor, 2 is a raw material supply main pipe, 3A to 3D are supply conduits, 4A to 4D, 6A to 6D, 8, 11A to 11D, 1
4A to 14D, 18, 19, 22A to 22
D, 24A to 24D are valves, 5A to 5D, 17
A to 17D, 21A to 21D are pipes, 7 is a main outlet pipe, 9 is a product tank, 10A to 10D are discharge pipes, 12 is a main discharge pipe, 13A to 13D are exhaust pipes, 15 is a main exhaust pipe, 16 is a vacuum pump, 20 is the main pipe for reverse filling, 23A to 23D are the pipes for repressurization,
25A to 25D are flow rate regulating valves.

Claims (1)

【特許請求の範囲】 1 窒素を選択的に吸着する吸着剤を充填した複
数の吸着床からなり、該吸着床に空気の如き酸素
及び窒素を含む混合ガスを加圧導入流通せしめ
て、窒素を吸着除去して濃縮酸素を採取する工程
と、前記工程で吸着した窒素を真空吸引により脱
着せしめて吸着床を再生する工程とを前記複数個
の各吸着床を順次切り換え操作して酸素を濃縮す
る方法において、 各吸着床をそれぞれ、 (イ) 吸着床の一端より該床に加圧混合ガスを導入
して、他端より濃縮酸素を採取する加圧吸着工
程、 (ロ) 混合ガスの導入を停止して、吸着床の濃縮酸
素導出端より、並流方向にガスを導出して、他
塔の加圧均圧化のために供給する並流減圧工
程、 (ハ) 吸着床の混合ガス導入端を大気と連通して床
内のガスを向流方向に放出してほぼ大気圧まで
減圧する向流減圧工程、 (ニ) 吸着床の混合ガス導入端を真空ポンプと連通
して床内を向流方向に排気する向流排気工程、 (ホ) 吸着床の混合ガス導入端より他床での並流減
圧工程よりのガスを導入すると同時に、濃縮酸
素導出端より前記加圧吸着工程で得られた濃縮
酸素の一部を導入して、並流減圧工程にある他
の床と均圧化する加圧均圧化工程、 (ヘ) 吸着床の濃縮酸素導出端より前記加圧吸着工
程で得られた濃縮酸素の一部を導入して床内を
吸着圧まで加圧する再加圧工程、 の各工程順序に従つて操作することを特徴とする
酸素濃縮法。
[Scope of Claims] 1. Consisting of a plurality of adsorption beds filled with an adsorbent that selectively adsorbs nitrogen, a mixed gas such as air containing oxygen and nitrogen is introduced under pressure and passed through the adsorption beds to absorb nitrogen. Concentrating oxygen by sequentially switching over each of the plurality of adsorption beds, a step of collecting concentrated oxygen by adsorption and removal, and a step of regenerating the adsorption bed by desorbing the nitrogen adsorbed in the step by vacuum suction. In the method, each adsorption bed is subjected to (a) a pressurized adsorption step in which a pressurized mixed gas is introduced into the bed from one end of the adsorption bed and concentrated oxygen is collected from the other end; (b) introduction of the mixed gas; A cocurrent depressurization process in which the gas is discharged in a cocurrent direction from the concentrated oxygen outlet end of the adsorption bed and supplied for pressure equalization of other columns; (c) Mixed gas introduction into the adsorption bed (d) A countercurrent depressurization process in which the end of the adsorption bed is communicated with the atmosphere and the gas in the bed is discharged in a countercurrent direction to reduce the pressure to approximately atmospheric pressure. Countercurrent exhaust step in which exhaust is carried out in the countercurrent direction, (e) Gas from the cocurrent depressurization step in another bed is introduced from the mixed gas inlet end of the adsorption bed, and at the same time, the gas obtained from the pressurized adsorption step is introduced from the concentrated oxygen outlet end. (f) A pressure equalization step in which a part of the concentrated oxygen is introduced to equalize the pressure with other beds in the cocurrent depressurization step; A repressurization step of introducing a part of the obtained concentrated oxygen to pressurize the inside of the bed to an adsorption pressure.
JP13947579A 1979-10-29 1979-10-29 Oxygen concentrating method Granted JPS5663804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13947579A JPS5663804A (en) 1979-10-29 1979-10-29 Oxygen concentrating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13947579A JPS5663804A (en) 1979-10-29 1979-10-29 Oxygen concentrating method

Publications (2)

Publication Number Publication Date
JPS5663804A JPS5663804A (en) 1981-05-30
JPS6238281B2 true JPS6238281B2 (en) 1987-08-17

Family

ID=15246102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13947579A Granted JPS5663804A (en) 1979-10-29 1979-10-29 Oxygen concentrating method

Country Status (1)

Country Link
JP (1) JPS5663804A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190629A (en) * 1981-05-18 1982-11-24 Hitachi Ltd Method and apparatus for concentrating oxygen
JPS61133114A (en) * 1984-12-04 1986-06-20 Showa Denko Kk Preparation of oxygen-enriched gas
CN108028110B (en) 2015-09-16 2020-11-06 世美特株式会社 Resistor and temperature sensor
WO2018066473A1 (en) 2016-10-07 2018-04-12 Semitec株式会社 Electronic component for welding, mounted board and temperature sensor

Also Published As

Publication number Publication date
JPS5663804A (en) 1981-05-30

Similar Documents

Publication Publication Date Title
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
JP2634022B2 (en) Separation method of gas components by vacuum swing adsorption method
EP0008882B1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
JP3232003B2 (en) Reflux in pressure swing adsorption method
US4892565A (en) Adsorptive separation utilizing multiple adsorption beds
US5520720A (en) Pressure swing adsorption process
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
US4070164A (en) Adsorption-desorption pressure swing gas separation
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
US5441558A (en) High purity nitrogen PSA utilizing controlled internal flows
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
KR19990044962A (en) Vacuum pressure circulation adsorption system and method
JPH04227812A (en) Method for recovering nitrogen gas from air
KR100838166B1 (en) Method And System for Separating Gas
EP1175934A2 (en) Improved oxygen production
US6102985A (en) Pressure swing adsorption process and system with dual product storage tanks
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
JPH0321207B2 (en)
JPH0577604B2 (en)
JPH10314531A (en) Method and apparatus for pressure swinging type adsorption
JPH0463726B2 (en)
EP0354259B1 (en) Improved pressure swing adsorption process
US5403385A (en) Serial flow pressure swing adsorption process for gas separation
JPS6238281B2 (en)