KR0173399B1 - Method for manufacturing carbon dioxide by pressure swing absorption - Google Patents

Method for manufacturing carbon dioxide by pressure swing absorption Download PDF

Info

Publication number
KR0173399B1
KR0173399B1 KR1019960035941A KR19960035941A KR0173399B1 KR 0173399 B1 KR0173399 B1 KR 0173399B1 KR 1019960035941 A KR1019960035941 A KR 1019960035941A KR 19960035941 A KR19960035941 A KR 19960035941A KR 0173399 B1 KR0173399 B1 KR 0173399B1
Authority
KR
South Korea
Prior art keywords
adsorption
tower
gas
pressure
low pressure
Prior art date
Application number
KR1019960035941A
Other languages
Korean (ko)
Other versions
KR19980016382A (en
Inventor
김종남
주국택
조순행
변희태
Original Assignee
손영목
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손영목, 한국에너지기술연구소 filed Critical 손영목
Priority to KR1019960035941A priority Critical patent/KR0173399B1/en
Priority to JP09037615A priority patent/JP3101225B2/en
Publication of KR19980016382A publication Critical patent/KR19980016382A/en
Application granted granted Critical
Publication of KR0173399B1 publication Critical patent/KR0173399B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 CO2를 선택적으로 흡착하는 흡착제를 충전한 흡착탑을 압력변동흡착법으로 운전하여 CO2를 포함한 혼합가스로부터 고순도 CO2를 분리, 회수하는 방법에 있어서, 기존의 공정은 승압스텝-흡착스텝-세정스텝-탈착스텝으로 이루어지는데 낮은 압력에서 CO2의 흡착량이 큰 경우에는 탈착스텝이 끝난 뒤에도 흡착제에 잔류하는 CO2의 양이 많으므로 이를 회수하여 공정의 효율을 높이기 위한 방법에 관한 것으로서, 상기 공정구성에다가 탈착스텝이 끝난 흡착탑으로 다른 탑의 흡착스텝에서 배출되는 CO2농도가 낮은 배가스를 향류로 도입하여 탈착시스템이 끝난 흡착탑에 잔존하는 CO2를 치환 탈착시키는 흡착배가스 저압세정스텝과 흡착배가스 저압세정스텝에서 배출되는 CO2농도 높은 배가스를 흡착스텝이 끝난 다른 탑으로 공급하여 CO2를 흡착시키는 저압세정배가스 흡착스텝을 도입하였고, 또 흡착배가스 저압, 세정스텝이 끝난 탑으로 CO2농도가 낮은 흡착스텝의 배가스를 향류로 도입하여 CO2의 흡착전선을 흡착탑 입구쪽으로 보내는 흡착배가스 역축압스텝을 추가하여 흡착 배가스 역축압스텝 이후에 진행되는 흡착스텝에서 배출되는 배가스 중의 CO2농도를 낮추었다. 이렇게 함으로써 고순도의 CO2제품가스를 높은 회수율로 생산할 수 있었으며, 본 발명에서 고안된 공정구성은 하나의 흡착탑을 기준으로 하여 보면 순차적으로 흡착배가스 역축압스텝-승압스텝-흡착스텝-저압세정배가스 흡착스텝-세정스텝-탈착스텝-흡착배가스 저압세정스텝으로 이루어진다.The present invention provides a method for separating and recovering high-purity CO 2 from a mixed gas containing CO 2 by operating an adsorption tower filled with an adsorbent for selectively adsorbing CO 2 by a pressure swing adsorption method. -When the adsorption amount of CO 2 is large at the low pressure but the cleaning step is desorption step, since the amount of CO 2 remaining in the adsorbent after the desorption step is large, it relates to a method for recovering this to increase the efficiency of the process, In addition to the process configuration, adsorption exhaust gas low pressure washing step and adsorption are carried out by introducing a flue gas having a low CO 2 concentration discharged from the adsorption step of the other tower into the countercurrent to displace the CO 2 remaining in the adsorption tower after the desorption system. by supplying a high concentration of CO 2 off-gas discharged from the low pressure off-gas cleaning step to another adsorption tower is over CO 2 step A low pressure clean flue gas adsorption step was introduced, and a low pressure adsorption flue gas low pressure and a cleaning step were introduced to the tower where the exhaust gas of the adsorption step with a low CO 2 concentration was introduced into the counter current to direct the adsorption line of CO 2 to the inlet of the adsorption tower. The pressure step was added to lower the concentration of CO 2 in the flue gas discharged from the adsorption step proceeding after the adsorption flue gas reverse compression step. By doing so, it was possible to produce high purity CO 2 product gas with high recovery rate, and the process configuration devised in the present invention is based on one adsorption tower, and the adsorption exhaust gas reverse pressure step-boosting step-adsorption step-low pressure cleaning flue gas adsorption step is sequentially. -Cleaning step-desorption step-adsorption flue gas low pressure cleaning step.

Description

압력변동흡착식 고순도 이산화탄소 제조방법Pressure fluctuation adsorption high purity carbon dioxide manufacturing method

제1도는 제올라이트 분자체에 대한 이산화탄소와 질소의 평형흡착등온선.1 is an equilibrium adsorption isotherm of carbon dioxide and nitrogen on a zeolite molecular sieve.

제2도는 고순도 CO2를 제조하는 3탑식 PSA장치도.2 is a three- tower PSA apparatus for producing high purity CO 2 .

제3도는 3탑식 CO2 PSA장치의 공정구성도.3 is a three-top CO2 Process diagram of PSA device.

[발명의 목적][Purpose of invention]

본 발명은 CO2를 선택적으로 흡착하는 흡착제를 충진한 흡착탑을 압력변동흡착법(PSA : Pressure Swing Adsorption)으로 운전하여 CO2를 포함한 혼합가스로부터 고순도 이산화탄소를 분리, 회수하는 방법에 있어서 이산화탄소의 회수율을 높이기 위한 공정구성 및 운전방법에 관한 것이다.The present invention provides a recovery rate of carbon dioxide in a method for separating and recovering high purity carbon dioxide from a mixed gas containing CO 2 by operating an adsorption tower packed with an adsorbent for selectively adsorbing CO 2 by pressure swing adsorption (PSA). It relates to a process configuration and operation method for increasing.

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical field to which the invention belongs and the prior art in that field]

일반적으로 CO2에 대한 선택 흡착성이 큰 흡착제가 충진된 흡착탑을 이용하여 PSA법에 의해 CO2를 고순도로 회수하는 장치의 고정 구성은 순차적으로 승압스텝-흡착스텝-세정스텝-탈착스텝으로 이루어져 있다. 상기 공정을 상세히 설명하면, 탈착이 끝난 흡착탑으로 CO2가 포함된 원료가스를 도입하여 탑의 압력을 흡착압력까지 높이는 승압스텝, 승압스텝이 끝난 흡착탑으로 계속 원료가스를 공급하면서 CO2를 흡착제에 선택적으로 흡착시키고 탑 출구로는 나머지 가스를 배출하는 흡착스텝, 흡착스텝이 끝난 흡착탑으로 다른 탑의 탈착스텝에서 배출된 제품 CO2가스의 일부를 원료가스의 흐름방향과 같은 병류로 도입하여 CO2와 같이 흡착되어 있는 다른 가스를 치환 탈착시킴과 동시에 흡착탑 공극내에 있는 CO2이외의 가스를 씻어내어 흡착탑내의 CO2농도를 높이는 세정스텝, 세정스텝이 끝난 흡착탑의 압력을 진공펌프를 사용하여 50~70 Torr 정도로 감압시켜 흡착되어 있는 CO2를 탈착하여 제품가스를 취하는 탈착스텝으로 구성되며 각 흡착탑이 서로 스텝이 겹치지 않게 운전된다.In general, the fixed structure of the apparatus for recovering CO 2 at high purity by a PSA method using a selective adsorbability is greater adsorbent is packed adsorption column for CO 2 is sequentially step-up step-by-consists of a desorption step - the adsorption step and the cleaning step . The process is described in detail, by introducing a source gas containing CO 2 into the desorption adsorption tower to raise the pressure of the tower to the adsorption pressure, while supplying the raw material gas to the adsorption tower after the boosting step is completed, CO 2 is supplied to the adsorbent. to selectively adsorb and tower exit by introducing a portion of the product CO 2 gas discharged from the adsorption step, desorption step of the other tower in the adsorption tower adsorption step over to discharge the remaining gas in co-current, such as the direction of flow of the source gas CO 2 As shown in Fig. 2 , a vacuum pump is used to purify the pressure of the adsorption tower after the step of desorbing and adsorbing other gases adsorbed to the gas, and to remove the gases other than the CO 2 in the adsorption tower cavity to increase the CO 2 concentration in the adsorption tower. 70 under reduced pressure to about 2 Torr to remove the CO adsorbed is composed of desorption step that takes the product gas switch each of the adsorption towers with each other This operation is not overlap.

하지만 제1도에서 보이는 바와 같이 제올라이트 분자체와 같은 흡착탑에 대한 CO2의 흡착량은 50~70 Torr 이하의 낮은 압력에서도 매우 크기 때문에 상기 공정구성으로 운전했을 때 탈착스텝이 끝난 흡착탑내에는 많은 양의 CO2가 남아있게 되어 공정의 효율이 떨어진다.However, as shown in FIG. 1, the adsorption amount of CO 2 on the adsorption column such as zeolite molecular sieve is very large even at low pressure of 50 to 70 Torr or less. CO 2 remains and the efficiency of the process is reduced.

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

따라서 본 발명에서는 CO2의 회수율을 높이기 위하여 상기 공정구성에다가 탈착스텝이 끝난 흡착탑으로 다른 탑의 흡착스텝에서 배출되는 CO2농도가 낮은 배가스를 향류로 도입하여 탈착스텝이 끝난 흡착탑에 잔존하는 CO2를 치환탈착시키는 흡착배가스 저압세정스텝과 흡착배가스 저압세정스텝에서 배출되는 CO2농도 높은 배가스를 흡착스텝이 끝난 다른 탑으로 공급하여 CO2를 흡착시키는 저압세정배가스 흡착스텝을 도입하였고, 또 흡착배가스 저압세정스텝이 끝난 탑으로 CO2농도가 낮은 흡착스텝의 배가스를 향류로 도입하여 CO2의 흡착전선을 흡착탑 입구쪽으로 보내는 흡착배가스 역축압스텝을 추가하여 흡착배가스 역축압스텝 이후에 진행되는 흡착스텝에서 배출되는 배가스 중의 CO2농도를 낮추었다. 이렇게 함으로써 고순도의 CO2제품가스를 높은 회수율로 생산할 수 있었으며, 본 발명에서 고안된 공정구성은 하나의 흡착탑을 기준으로 하여 보면, 순차적으로 흡착배가스 역축압스텝-승압스텝-흡착스텝-저압세정배가스 흡착스텝-세정스텝-탈착스텝-흡착배가스 저압세정스텝으로 이루어진다.Therefore, in the present invention, CO 2 remaining in the process configuration edaga desorbed adsorption step is introduced to the low CO 2 concentration exhaust gas discharged from the adsorption step of the other tower in the adsorption tower over a counter-current end of the desorption step in order to increase the recovery of CO 2 a was introduced into a replacement detachable suction-gas low-pressure washing step and the adsorption-gas low-pressure washing with a CO 2 concentration of the high-gas discharged from the step-fed to another tower adsorption step over a low-pressure cleaning exhaust gas adsorbing step for adsorbing the CO 2 which, again suction-gas The adsorption step proceeds after the adsorption exhaust gas reverse compression step by introducing the adsorption exhaust gas reverse compression step that introduces the flue gas of the adsorption step with low CO 2 concentration into the countercurrent to direct the adsorption wire of CO 2 to the inlet tower entrance. CO 2 concentration in the flue gas discharged from the By doing so, it was possible to produce high purity CO 2 product gas with high recovery rate, and the process configuration devised in the present invention is based on one adsorption tower, and the adsorption flue gas reverse pressure step-boosting step-adsorption step-low pressure cleaning flue gas is sequentially adsorbed. Step-cleaning step-desorption step-sorption exhaust gas low pressure cleaning step.

[발명의 구성 및 작용][Configuration and Function of Invention]

이하에는 본 발명의 요지를 제2도와 제3도를 기준으로 하여 CO2를 선택적으로 흡착하는 흡착제를 충진한 3개의 흡착탑을 사용하는 PSA장치를 이용하여 고순도 CO2를 제조하는 실시예에 대하여 상세히 설명하고자 한다.Hereinafter, an embodiment of manufacturing high-purity CO 2 using a PSA apparatus using three adsorption towers filled with an adsorbent for selectively adsorbing CO 2 based on the second and third aspects of the present invention will be described in detail. I will explain.

제2도의 3탑식 PSA장치에서 흡착배가스 저압세정스텝이 끝나고 진공상태에 있는 제1흡착탑 1A를 중심으로 공정구성 및 운전방법에 대해 설명한다. 진공상태에 있는 흡착탑 1A로 흡착스텝 배가스 저장조 H3에 있는 CO2농도가 낮은 흡착배가스를 관 4. 밸브 22를 통하여 향류로 공급하여 탑의 압력을 높이면서 탑내부의 CO2흡착전선을 탑의 입구쪽으로 보낸다(흡착배가스 역축압스텝). 이 동안에 제2흡착탑 1B는 탈착스텝 제3흡착탑 1C는 세정스텝을 수행한다. 밸브 22를 잠그어 흡착배가스 역축압스텝을 끝낸 다음에는 CO2가 포함된 원료가스가 송풍기 B1에 의해 원료가스 공급관 2, 밸브 10을 통하여 제1흡착탑 1A로 공급되어 탑의 압력을 흡착압력까지 승압한다(승압스텝). 이 동안에 제2흡착탑 1B는 탈착스텝, 제3흡착탑 1C는 세정스텝을 수행한다. 승압스텝이 끝난 다음에는 제1흡착탑 1A로 밸브 10을 통하여 원료가스를 계속 공급하면서 CO2를 흡착시키고 출구로는 밸브 19를 열어서 CO2농도가 낮은 배가스를 흡착배가스 저장조 H3로 보내며 흡착배가스는 저장조 H3를 통하여 밖으로 배출된다(흡착스텝). 이 동안에 제2흡착탑 1B는 탈착스텝, 제3흡착탑 1C는 세정스텝을 수행한다. 흡착스텝이 끝난 다음에는 흡착배가스 저압세정스텝에 있는 제2흡착탑 1B에서 배출된 원료가스 중의 CO2농도보다 높은 저압세정 배가스를 관 8, 밸브 29, 저압세정배가스 저장조 H1, 관 9, 밸브 30, 밸브 10을 통하여 제1흡착탑 1A로 도입하여 CO2를 흡착시키며 나머지 가스는 밸브 19를 통하여 흡착배가스 저장조 H3로 보내어진다(저압세정배가스 흡착스텝). 이 동안에 제3흡착탑 1C는 세정스텝을 수행한다. 밸브 10, 19가 잠기어 저압세정배가스 흡착스텝이 끝난 다음에는 제품가스 저장조 H2로 부터 고순도의 CO2가스를 관 7, 밸브 13을 통하여 도입하여 제1흡착탑 1A에 CO2와 같이 흡착되어 있는 다른 가스를 치환 탈착시킴과 동시에 흡착탑 공극내에 있는 CO2이외의 가스를 씻어내어 흡착탑내의 CO2농도를 높이며 탈착된 가스는 밸브 25, 관 5를 통하여 밖으로 배출된다(세정스텝). 제1흡착탑 1A가 세정스텝을 수행하는 동안에 제2흡착탑 1B는 흡착배가스 역축압스텝--승압스텝-흡착스텝-저압세정배가스 흡착스텝을 그리고 제3흡착탑 1C는 탈착스텝-흡착배가스 저압세정스텝을 각각 순차적으로 수행한다. 세정스텝이 끝난 제1흡착탑 1A는 밸브 13, 25가 닫히고 밸브 16이 열리어 탈착스텝에 들어간다. 이 탈착스텝에서는 진공펌프 V1로 제1흡착탑의 압력을 떨어뜨려 흡착되어 있는 CO2를 탈착시켜 관 6, 밸브 28을 통하여 제품가스 저장조 H2로 보내며 제품가스 저장조로 보내어진 CO2가스 중 일부는 제2흡착탑 1B의 세정가스로 사용되고 나머지는 제품가스로 얻어진다(탈착스텝). 제1흡착탑 1A가 탈착스텝을 수행하는 동안에 제2흡착탑 1B는 세정스텝을, 제3흡착탑 1C는 흡착배가스 역축압스텝-승압스텝-흡착스텝을 순차적으로 수행한다. 밸브 28이 닫히고 탈착스텝이 끝난 제1흡착탑 1A로는 흡착배가스 저장조 H3로부터 흡착배가스가 관 4, 밸브 22를 통하여 도입되어 탑 1A에 탈착되지 않고 남아있는 CO2를 치환 탈착시키어 밸브 16, 관 6을 통하여 진공펌프에 의해 배기되어서 관 8, 밸브 29를 통해 저압세정배가스 저장조 H1로 보내진 다음에 관 9, 밸브 30, 밸브 12를 통하여 저압세정배가스 흡착스텝에 있는 제3흡착탑 1C로 공급된다(흡착배가스 저압세정스텝). 이 동안에 제2흡착탑 1B는 세정스텝을 수행한다.The process configuration and operation method will be described with reference to the first adsorption tower 1A in a vacuum state after the adsorption flue gas low pressure cleaning step in the three tower PSA apparatus of FIG. A low suction-gas CO 2 concentration in the adsorption step in the adsorption tower 1A H3-gas storage tank in the vacuum pipe 4. The entrance of the tower inside the CO 2 adsorption front is supplied in counter-current through the valve 22 while increasing the pressure of the column top To the back (sorption exhaust gas reverse pressure step). In the meantime, the second adsorption tower 1B performs the desorption step and the third adsorption tower 1C performs the cleaning step. After closing the valve 22 and ending the adsorption exhaust gas reverse pressure step, the source gas containing CO 2 is supplied to the first adsorption tower 1A through the source gas supply pipe 2 and the valve 10 by the blower B1 to boost the pressure of the tower to the adsorption pressure. (Boost step). In the meantime, the second adsorption tower 1B performs the desorption step and the third adsorption tower 1C performs the cleaning step. After the boosting step, CO 2 is adsorbed while continuously supplying raw material gas through valve 10 to the first adsorption tower 1A, and valve 19 is opened at the outlet to send exhaust gas having low CO 2 concentration to adsorption exhaust gas storage tank H3, and adsorption exhaust gas is stored in the storage tank. It is discharged out through H3 (adsorption step). In the meantime, the second adsorption tower 1B performs the desorption step and the third adsorption tower 1C performs the cleaning step. After the adsorption step is completed, the low pressure clean exhaust gas higher than the CO 2 concentration in the source gas discharged from the second adsorption tower 1B in the adsorption exhaust gas low pressure cleaning step is discharged to the tube 8, the valve 29, the low pressure clean gas storage tank H1, the tube 9, the valve 30, The valve 10 is introduced into the first adsorption tower 1A to adsorb the CO 2 , and the remaining gas is sent to the adsorption exhaust gas storage tank H3 through the valve 19 (low pressure washing gas adsorption step). During this time, the third adsorption tower 1C performs a cleaning step. After the valves 10 and 19 are locked and the low pressure clean flue gas adsorption step is completed, high-purity CO 2 gas is introduced from the product gas reservoir H2 through the tube 7, valve 13, and other adsorption such as CO 2 is adsorbed to the first adsorption tower 1A. At the same time, the gas is replaced with desorption, and at the same time, gases other than CO 2 in the adsorption tower pores are washed out to increase the concentration of CO 2 in the adsorption tower. While the first adsorption tower 1A performs the cleaning step, the second adsorption tower 1B receives the adsorption exhaust gas reverse pressure step-up step-adsorption step-low pressure clean exhaust gas adsorption step and the third adsorption tower 1C performs the desorption step-adsorption exhaust gas low pressure cleaning step. Each is performed sequentially. In the first adsorption tower 1A having the cleaning step, the valves 13 and 25 are closed and the valve 16 is opened to enter the desorption step. In this desorption step, the vacuum pump V1 drops the pressure of the first adsorption tower, desorbs the adsorbed CO 2 , and sends it to the product gas storage tank H2 through tube 6 and valve 28, and some of the CO 2 gas sent to the product gas storage tank is removed. It is used as the cleaning gas of the two adsorption tower 1B, and the rest is obtained as product gas (desorption step). While the first adsorption tower 1A performs the desorption step, the second adsorption tower 1B sequentially performs the cleaning step, and the third adsorption tower 1C performs the adsorption exhaust gas reverse pressure step-up step-adsorption step. In the first adsorption tower 1A where the valve 28 is closed and the desorption step is completed, the adsorption exhaust gas is introduced from the adsorption exhaust gas storage tank H3 through the tube 4 and the valve 22 to replace and desorb the remaining CO 2 to the tower 1A. It is exhausted by the vacuum pump through the tube 8, valve 29 is sent to the low pressure wash gas storage tank H1, and then supplied to the third adsorption tower 1C in the low pressure wash gas suction step through the tube 9, valve 30, valve 12 (adsorbed exhaust gas). Low pressure cleaning step). During this time, the second adsorption tower 1B performs a cleaning step.

[발명의 효과][Effects of the Invention]

이와같이 탈착스텝 후에 탑내에 남아있는 CO2를 탈착, 회수하기 위하여 흡착배가스 저압세정스텝을 도입하고 이 스텝에서 배기되는 원료가스 보다 CO2농도, 높은 가스를 저압세정배가스 흡착스텝으로 도입하여 CO2를 흡착시켜 회수함과 함께 흡착배가스 역축압스텝을 도입하여 흡착스텝에서 배출되는 배가스 중의 CO2농도를 낮춤에 의하여 고순도의 CO2를 높은 회수율로 얻을 수 있다.Thus desorption to remove the CO 2 remaining in the column after the step, introduction of the suction-gas low-pressure washing step to recover and introduce in this step the CO 2 concentration, high gas a low-pressure cleaning exhaust gas absorption step than the raw material gas that is discharged from the CO 2 It is possible to obtain high purity CO 2 at a high recovery rate by adsorbing and recovering and introducing an adsorption exhaust gas reverse compression step to lower the concentration of CO 2 in the exhaust gas discharged from the adsorption step.

[실시예 1]Example 1

흡착제로서 제올라이트 13X를 0.5리터 충진한 3탑식 PSA장치에 25 vol.% CO2/74 vol.% N2/1 vol.% O2로 이루어진 혼합가스를 공급하여 제3도에 나타난 본 발명의 공정구성으로 운전하였을 때와 승압스텝-흡착스텝-세정스텝-탈착스텝으로 구성된 기존공정으로 운전하였을 경우의 결과를 표 1에 나타내었다. 표 1에서 보는 바와 같이 CO2농도 99 vol.%에서 기존공정은 회수율 60%, 생산성 0.948 N1/(kg.min)인데 반하여 본 발명의 공정은 회수율 80%, 생산성 1.087 N1(kg.min)으로서 회수율과 생산성이 각각 33%와 14.7% 증가하였다. CO2농도 95 vol.%에서는 기존공정은 회수율 71%, 생산성 1.146 N1(kg.min)이고, 본 발명의 공정은 회수율 90%, 생산성 1.25 N1(kg.min) 정도로 역시 회수율 27%, 생산성 5.4% 정도의 개선 효과가 있었다.Zeolite 13X as the adsorbent in a 0.5 liter filling 3 tapsik PSA unit 25 vol.% CO 2/74 vol.% N 2/1 vol. By supplying a mixed gas consisting of% O 2 The process of the present invention shown in FIG. 3 Table 1 shows the results when operating with the configuration and when operating with the conventional process consisting of the boost step, the adsorption step, the cleaning step and the desorption step. As shown in Table 1, at a CO 2 concentration of 99 vol.%, The conventional process yields 60% recovery and productivity 0.948 N1 / (kg.min), whereas the process of the present invention yields 80% recovery and productivity 1.087 N1 (kg.min). Recovery and productivity increased by 33% and 14.7%, respectively. At 95 vol.% Of CO 2 concentration, the existing process has a recovery of 71% and a productivity of 1.146 N1 (kg.min). The process of the present invention has a recovery of 90%, a productivity of 1.25 N1 (kg.min) and a recovery of 27% and a productivity of 5.4. There was an improvement of about%.

여기서 회수율=(제품가스 중의 CO2양/원료가스 중의 CO2양)×100이고 생산성은 단위흡착제당 단위시간에 생산하는 제품가스의 양이다.The recovery rate = (CO 2 amount in the product gas / raw material gas in the CO 2 amount) × 100 and the productivity is the amount of product gas produced per unit time per unit adsorbent.

Claims (2)

CO2를 선택적으로 흡착하는 흡착제를 충진한 흡착탑을 사용하여 압력변동흡착법으로 CO2를 포함한 혼합가스로부터 고순도의 CO2를 분리, 회수하는 방법에 있어서, (1) : 상기 혼합가스를 원료가스로 하여 흡착탑의 입구쪽으로 공급하여 강흡착성가스인 CO2를 흡착시키고 약흡착성가스를 탑의 출구쪽으로 배출하는 흡착스텝. (2) : 흡착스텝이 끝난 흡착탑의 입구쪽으로 하기 (5)의 흡착배가스 저압세정스텝에서 배출되는 원료가스 보다 CO2농도 높은 배가스를 도입하여 CO2를 흡착시키고 탑의 출구쪽으로 약흡착성가스를 배출하는 저압세정배가스 흡착스텝. (3) : 저압세정배가스 흡착스텝이 끝난 흡착탑의 입구쪽으로 하기 (4)의 탈착스텝에서 배출된 고순도의 CO2가스 일부를 도입하여 탑내에 남아있는 CO2이외의 가스를 씻어내어 탑의 출구쪽으로 배출하면서 탑내의 CO2농도를 높이는 세정스텝. (4) : 세정스텝이 끝난 흡착탑의 압력을 탑의 입구쪽으로부터 떨어뜨림에 의해 흡착되어 있던 CO2를 탈착하여 고순도의 CO2를 회수하여서 일부는 세정스텝의 세정가스로 사용하고 나머지는 제품가스로 취하는 탈착스텝. (5) : 탈착스텝이 끝난 흡착탑의 출구쪽으로 상기 (1) 또는 (2)의 스텝에서 배출되는 CO2농도 낮은 흡착배가스를 도입하여 탈착스텝이 끝난 후에 남아있는 CO2를 치환, 탈착시켜 탑의 입구쪽으로 배출하는 흡착배가스 저압세정스텝. (6) : 흡착배가스 저압세정스텝이 끝난 흡착탑의 출구쪽으로부터 상기 (1) 또는 (2) 또는 (3)의 스텝에서 배출되는 배가스를 도입하여 탑내의 CO2흡착전선을 탑의 입구쪽으로 보내면서 탑의 압력을 높이는 흡착배가스 역축압스텝, (7) : 흡착배가스 역축압스텝이 끝난 탑의 입구쪽으로 원료가스를 도입하여 탑의 압력을 흡착스텝 압력 근방까지 높이는 승압스텝으로 이루어진 공정을 되풀이 하면서 연속적으로 고순도 CO2를 회수하는 것을 특징으로 하는 압력변동흡착식 고순도 CO2제조방법.From a mixed gas containing CO 2 to a pressure change adsorption using adsorption towers packed with an adsorbent which selectively adsorbs the CO 2 A method for separation and recovery of high purity CO 2, (1): the mixed gas as a raw material gas Adsorption step of supplying to the inlet of the adsorption tower to adsorb CO 2 , a strongly adsorbent gas, and discharge the weakly adsorbent gas to the exit of the tower. (2): Adsorption flue gas to the inlet of the adsorption tower after the adsorption step is completed Adsorption flue gas (2) is introduced with a flue gas having a higher CO 2 concentration than the source gas discharged from the low pressure cleaning step to adsorb CO 2 and discharge the weak adsorbent gas toward the exit of the tower. Low pressure wash gas adsorption step. (3): To the inlet of the adsorption tower where the low pressure clean exhaust gas adsorption step is completed, a portion of the high-purity CO 2 gas discharged from the desorption step shown in (4) is introduced to wash out the gas other than the CO 2 remaining in the tower to the exit of the tower. A washing step to increase the CO 2 concentration in the tower while discharging. (4): Desorb the CO 2 adsorbed by dropping the pressure of the adsorption tower after the cleaning step is removed from the inlet side of the tower to recover high purity CO 2 , and use some of it as the cleaning gas for the cleaning step. Desorption step to take. (5): Adsorbent exhaust gas having a low CO 2 concentration discharged from the step (1) or (2) is introduced to the outlet of the adsorption tower after the desorption step is completed, and the remaining CO 2 is replaced and desorbed after the desorption step is completed. Low pressure cleaning step for adsorption exhaust gas discharged to the inlet. (6): Adsorbent exhaust gas The exhaust gas discharged in the step (1) or (2) or (3) is introduced from the outlet side of the adsorption tower after the low pressure cleaning step, and the CO 2 adsorption wire in the tower is directed to the inlet of the tower. Adsorption flue gas reverse pressure step to increase the pressure of the tower, (7): Continuous process while repeating the process consisting of the stepping up step of raising the pressure of the tower to near the suction step pressure by introducing raw gas to the inlet of the column where the adsorption flue gas reverse pressure step is completed. a pressure swing adsorption process for producing high purity CO 2, characterized in that the recovery of high purity CO 2. 제1항에 있어서, 원료가스에 의한 승압스텝(7) 대신에 세정스텝(3)에서 배출되는 배가스를 도입하여 흡착탑의 압력을 흡착스텝 압력 근방으로 높이는, 세정배가스 승압스텝으로 이루어진 공정을 사용하여 CO2를 회수하는 방법.The process according to claim 1, wherein the exhaust gas discharged from the cleaning step 3 is introduced instead of the boosting step 7 by the source gas to raise the pressure of the adsorption tower to the vicinity of the adsorption step pressure. Method of recovering CO 2 .
KR1019960035941A 1996-08-28 1996-08-28 Method for manufacturing carbon dioxide by pressure swing absorption KR0173399B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019960035941A KR0173399B1 (en) 1996-08-28 1996-08-28 Method for manufacturing carbon dioxide by pressure swing absorption
JP09037615A JP3101225B2 (en) 1996-08-28 1997-02-21 Pressure fluctuation adsorption type high purity carbon dioxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960035941A KR0173399B1 (en) 1996-08-28 1996-08-28 Method for manufacturing carbon dioxide by pressure swing absorption

Publications (2)

Publication Number Publication Date
KR19980016382A KR19980016382A (en) 1998-05-25
KR0173399B1 true KR0173399B1 (en) 1999-02-01

Family

ID=19471077

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960035941A KR0173399B1 (en) 1996-08-28 1996-08-28 Method for manufacturing carbon dioxide by pressure swing absorption

Country Status (2)

Country Link
JP (1) JP3101225B2 (en)
KR (1) KR0173399B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817560B2 (en) * 2001-09-21 2011-11-16 三井造船プラントエンジニアリング株式会社 Carbon dioxide recovery method from carbon dioxide dry cleaning equipment
JP4627571B2 (en) * 2010-08-20 2011-02-09 住友精化株式会社 Carbon monoxide separation method and carbon monoxide separation apparatus
JP5675505B2 (en) * 2011-06-07 2015-02-25 住友精化株式会社 Target gas separation method and target gas separation device
CN102327725B (en) * 2011-07-01 2013-08-28 无锡国赢科技有限公司 Method for adsorbing and trapping CO2 by using steric effect
CN105617817B (en) * 2016-03-08 2018-06-12 镇江东辰环保科技工贸有限公司 For the device and method of acetate acid tail gas recycling CO
CN108236829B (en) * 2016-12-26 2021-06-08 戴莫尔科技有限公司 From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus

Also Published As

Publication number Publication date
JP3101225B2 (en) 2000-10-23
KR19980016382A (en) 1998-05-25
JPH10101318A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
KR960004606B1 (en) Process for producing high purity oxygen gas from air
KR910004122B1 (en) Adsorptive nitrogen generation utilizing multiple adsorption beds
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
FI85953B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
KR100260001B1 (en) Pressure swing adsorption process
CA2189232C (en) Method of recovering oxygen-rich gas
KR100353673B1 (en) Oxygen generation process and system using single adsorber and single blower
JP3902416B2 (en) Gas separation method
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
JPS6362522A (en) Adsorptive separation of gaseous mixture
US5395427A (en) Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
EP1101522B1 (en) Pressure swing adsorption process
JPH0257972B2 (en)
CA2160846A1 (en) Natural gas enrichment process
JPH11239711A (en) Psa method using simultaneous evacuation of top and bottom of adsorbent bed
JPH0577604B2 (en)
JP2005504626A (en) PSA process for co-production of nitrogen and oxygen
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
KR0173399B1 (en) Method for manufacturing carbon dioxide by pressure swing absorption
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPWO2020105242A1 (en) Gas separation device and gas separation method
JPH10194708A (en) Oxygen enricher
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
KR102439732B1 (en) Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen
PL191724B1 (en) Method of separating from each other the constituents of gaseous mixtures of oxygen, nitrogen and argon

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131008

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141023

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20151027

Year of fee payment: 18