JP2002355519A - Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification - Google Patents

Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification

Info

Publication number
JP2002355519A
JP2002355519A JP2001164655A JP2001164655A JP2002355519A JP 2002355519 A JP2002355519 A JP 2002355519A JP 2001164655 A JP2001164655 A JP 2001164655A JP 2001164655 A JP2001164655 A JP 2001164655A JP 2002355519 A JP2002355519 A JP 2002355519A
Authority
JP
Japan
Prior art keywords
tower
hydrogen
pressure
gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001164655A
Other languages
Japanese (ja)
Other versions
JP4531291B2 (en
Inventor
Hirotaka Furuta
博貴 古田
Toru Takahashi
徹 高橋
Kenichi Nakamura
健一 中村
Koji Aida
広司 会田
Ryohei Kusaka
亮平 日下
Yukihiro Kamakura
幸弘 鎌倉
Kumiko Moriguchi
久美子 森口
Hideki Miyajima
秀樹 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Chemicals Co Ltd, Mitsubishi Kakoki Kaisha Ltd, Tokyo Gas Co Ltd filed Critical Tokyo Gas Chemicals Co Ltd
Priority to JP2001164655A priority Critical patent/JP4531291B2/en
Publication of JP2002355519A publication Critical patent/JP2002355519A/en
Application granted granted Critical
Publication of JP4531291B2 publication Critical patent/JP4531291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the flow rate of product gas, the purity of product hydrogen and the recovery rate of the product hydrogen corresponding to the temperature of the outside air environment in wintertime, summertime or the like in a four-tower-type pressure-swing adsorption equipment for hydrogen purification. SOLUTION: The method of stably operating the four tower-type pressure- swing adsorption equipment for hydrogen purification is characterized in that, by measuring and detecting the temperature of the product hydrogen gas, and then changing the cycle time according to the measured value, the flow amount of the product gas, the purity of the product hydrogen and the recovery rate of the product hydrogen can be stabilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素精製用4塔式
圧力スイング吸着装置の安定運転方法に関する。
The present invention relates to a method for stably operating a four-column pressure swing adsorption apparatus for hydrogen purification.

【0002】[0002]

【従来の技術】水素は不飽和結合への水素添加用、酸水
素炎用その他各種用途に供される基礎原料であり、燃料
電池用の燃料としても利用される。水素の工業的製造方
法として炭化水素ガスの水蒸気改質法や部分燃焼法があ
る。水蒸気改質法では改質器が用いられ、炭化水素ガス
が接触反応により改質ガスへ変えられる。得られる改質
ガスには主成分である水素のほか、CO、CO2等の副
生成分や余剰H2O、また未改質の炭化水素が含まれて
いる。このため改質ガスを例えば燃料電池にそのまま使
用したのでは電池性能を阻害してしまう。
2. Description of the Related Art Hydrogen is a basic raw material used for adding hydrogen to unsaturated bonds, for oxyhydrogen flames, and for various other uses, and is also used as a fuel for fuel cells. Industrial methods for producing hydrogen include a steam reforming method and a partial combustion method for hydrocarbon gas. In the steam reforming method, a reformer is used, and a hydrocarbon gas is converted into a reformed gas by a catalytic reaction. The obtained reformed gas contains by-products such as CO and CO 2 , surplus H 2 O, and unreformed hydrocarbons, in addition to hydrogen as a main component. Therefore, if the reformed gas is used as it is in a fuel cell, for example, the cell performance will be impaired.

【0003】例えば、燃料電池のうちリン酸型燃料電池
(PAFC)で用いる水素ガス中のCOは1%(容量
%、以下同じ)、固体高分子型燃料電池(PEFC)で
は100ppm(容量ppm)が限度であり、これらを
越えると電池性能が著しく劣化する。したがって改質ガ
スは、燃料電池へ導入する前に精製し、それら副生成分
を除去しておく必要がある。また不飽和結合への水素添
加用或いは酸水素炎用の水素は通常ボンベに詰めたもの
が使用されており、その純度は5N(99.999%)
以上が要求されている。
[0003] For example, among fuel cells, CO in hydrogen gas used in a phosphoric acid fuel cell (PAFC) is 1% (capacity%, the same applies hereinafter), and in a polymer electrolyte fuel cell (PEFC), 100 ppm (capacity ppm). Is the limit, and when these are exceeded, the battery performance is remarkably deteriorated. Therefore, it is necessary to purify the reformed gas before introducing it into the fuel cell and to remove those by-products. The hydrogen for adding hydrogen to the unsaturated bond or for the oxyhydrogen flame is usually used in a cylinder, and its purity is 5N (99.999%).
The above is required.

【0004】そのような高純度の水素を得るための水素
精製法の一つとして圧力スイング吸着法(PSA法:Pr
essure Swing Adsorption Method)がある。PSA法で
は、改質器で生成しCO変成器を経た改質ガス中の不純
物を吸着剤層に加圧下で吸着させて分離し、常圧付近ま
で減圧して吸着不純物を脱着させる。
As one of the hydrogen purification methods for obtaining such high-purity hydrogen, a pressure swing adsorption method (PSA method: Pr
essure Swing Adsorption Method). In the PSA method, impurities in the reformed gas generated in the reformer and passed through the CO converter are adsorbed and separated into the adsorbent layer under pressure, and the adsorbed impurities are desorbed by reducing the pressure to around normal pressure.

【0005】図1は、本発明において前提とする水素精
製用の4塔式圧力スイング吸着装置における各吸着塔A
〜D、配管(ライン)、各バルブ、オフガス貯蔵タンク
(オフガスタンク)等の配置関係を示す図である。図1
に示すような4塔式圧力スイング吸着装置においては吸
着、均圧減圧、均圧保持、減圧、ブローダウン、パー
ジ、均圧昇圧、H2昇圧(水素による昇圧)の各工程が
繰り返され、ブローダウンおよびパージの工程において
はオフガスが発生する。
[0005] Fig. 1 shows each adsorption tower A in a four-column pressure swing adsorption apparatus for hydrogen purification which is premised in the present invention.
FIG. 4 is a diagram showing an arrangement relationship of a pipe (line), each valve, an off-gas storage tank (off-gas tank), and the like. FIG.
Adsorption in 4-column pressure swing adsorption apparatus as shown in, equalization depressurization pressure equalization holding, vacuum, blowdown, purge, each step of the equalization repressurization, H 2 boosted (boosted by hydrogen) are repeated, blown Off gas is generated in the down and purge steps.

【0006】図2は、図1に示す水素精製用4塔式圧力
スイング吸着装置における各吸着塔の工程フローおよび
運転シーケンスの概略を示す図である。図2には併せて
各工程の進行に伴う各吸着塔内における圧力変化を示し
ている。都市ガス等の原料ガス、すなわち炭化水素を改
質する水蒸気改質器(燃焼部+改質部)からCO変成器
を経て得られる改質ガスはA塔に供給され、ここでH2
O、CO2、CO、CH 4等の不純物の吸着が行われ、吸
着されない水素が精製水素(製品水素)となる。
FIG. 2 shows the four-column pressure for hydrogen purification shown in FIG.
Process flow of each adsorption tower in swing adsorption equipment and
It is a figure which shows the outline of an operation sequence. FIG. 2 also shows
This shows the pressure change in each adsorption tower as each process progresses.
ing. Reforming raw material gas such as city gas, that is, hydrocarbons
Steam reformer (combustion unit + reforming unit) to CO converter
Is supplied to the tower A, where HTwo
O, COTwo, CO, CH FourAdsorption of impurities such as
Uncharged hydrogen becomes purified hydrogen (product hydrogen).

【0007】その間、B塔ではブローダウンからパージ
の工程が行われ、C塔では均圧減圧から均圧保持、これ
に続く減圧の工程が行われ、D塔では均圧昇圧からH2
(水素)昇圧の工程が行われる。改質ガスの供給は、A
塔において不純物が飽和して破過する前に、自動的にD
塔に切り換えられる。この時点で、A塔は均圧減圧から
減圧保持、これに続く減圧の工程へ切り換えられ、また
B塔は均圧昇圧からH 2昇圧の工程へ切り換えられ、C
塔はブローダウンからパージの工程へ切り換えられ、D
塔は吸着の工程へ切り換えられる。以降、これら工程を
図2に示すように順次自動的に切り換え、繰り返して連
続的に操作される。
Meanwhile, the tower B is purged from blowdown.
Is carried out. In the tower C, the pressure is reduced from
Is performed following the pressure reduction in the tower D.Two
A (hydrogen) pressurization step is performed. The supply of reformed gas is A
Before the impurities are saturated in the column and break through, D
Switched to a tower. At this point, the tower A
It is switched to the process of decompression holding and the following decompression,
Tower B is H TwoSwitching to the step of boosting, C
The tower is switched from blowdown to purging,
The column is switched to the adsorption step. Hereafter, these processes
As shown in FIG.
Operated continuously.

【0008】その間、ブローダウン工程およびパージ工
程で発生するオフガスはオフガス貯蔵タンクTへ送られ
る。これらの工程において、ブローダウン工程時のオフ
ガスは、加圧下で吸着した不純物を常圧付近まで減圧し
て脱着させる工程で発生し、オフガス導管(オフガスラ
イン)を介してオフガス貯蔵タンクに貯えられた後、水
素製造用改質器のバーナに供給される。
During that time, off-gas generated in the blow-down step and the purge step is sent to the off-gas storage tank T. In these steps, off-gas during the blow-down step was generated in a step of desorbing impurities adsorbed under pressure to near normal pressure and desorbing them, and was stored in an off-gas storage tank via an off-gas conduit (off-gas line). Then, it is supplied to the burner of the reformer for hydrogen production.

【0009】[0009]

【発明が解決しようとする課題】前記のとおり、水素精
製用4塔式圧力スイング吸着装置は吸着、均圧減圧、均
圧保持、減圧、ブローダウン、パージ、均圧昇圧、H2
(水素)昇圧のサイクルで運転が行われる。ところが、
水素精製用4塔式圧力スイング吸着装置は、その運転に
際して、外的環境温度の如何により性能の差が生じる。
すなわちPSA操作温度すなわち吸着塔内吸着剤の温度
分布は、外気温度(気温差)により影響を受け、製品水
素の純度に悪影響を及ぼすだけでなく、製品水素の回収
率にも影響を及ぼしてしまう。
As described above, the four-column pressure swing adsorption apparatus for hydrogen purification employs adsorption, pressure equalization, pressure reduction, pressure equalization, pressure reduction, blowdown, purge, pressure equalization, H 2
The operation is performed in a (hydrogen) pressurization cycle. However,
During operation of the four-column pressure swing adsorption apparatus for hydrogen purification, a difference in performance occurs depending on the external environmental temperature.
That is, the PSA operation temperature, that is, the temperature distribution of the adsorbent in the adsorption tower is affected by the outside air temperature (temperature difference), and not only adversely affects the purity of the product hydrogen, but also affects the recovery rate of the product hydrogen. .

【0010】上記のような問題を回避するための方法と
して流量制御法がある。流量制御法は、外気温度が大き
く影響するのは昇圧工程であることから、原料ガス(吸
着塔へ供給する改質ガス等の被処理ガス)の温度に応じ
て昇圧工程時間内に所定圧力まで昇圧できるように流量
設定値を調整する方法である。しかし、この方法では、
昇圧流量だけが変動するため、製品水素ガス量の変動が
大きく、回収率が安定しない。また、操作温度が高い場
合には、吸着剤の吸着能力も低下するため、製品水素の
純度を低下させその品質が悪化してしまう。
As a method for avoiding the above problem, there is a flow control method. In the flow rate control method, since the outside air temperature has a great influence on the pressure increasing step, the pressure increases to a predetermined pressure within the time of the pressure increasing step according to the temperature of the raw material gas (the gas to be treated such as the reformed gas supplied to the adsorption tower). This is a method of adjusting the flow rate set value so that the pressure can be increased. But with this method,
Since only the pressurized flow rate fluctuates, the product hydrogen gas amount fluctuates greatly and the recovery rate is not stable. In addition, when the operating temperature is high, the adsorbing ability of the adsorbent is also reduced, so that the purity of the product hydrogen is reduced and its quality is deteriorated.

【0011】本発明は、水素精製用の4塔式圧力スイン
グ吸着装置における上記問題を解決するためになされた
ものであり、夏期や冬季などによる外気環境温度に対応
して、製品水素ガスの温度を測定、検知することによ
り、その測定値を基にサイクル時間を変更する。これに
より、製品水素ガス流量を安定化させると同時に、製品
水素の純度を安定化させ、且つ、回収率を安定化してな
る4塔式圧力スイング吸着装置の安定運転方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem in a four-column pressure swing adsorption apparatus for hydrogen purification, and the temperature of product hydrogen gas is adjusted in accordance with the outside air temperature in summer or winter. , The cycle time is changed based on the measured value. Accordingly, it is an object of the present invention to provide a stable operation method of a four-column pressure swing adsorption apparatus which stabilizes the product hydrogen gas flow rate, stabilizes the purity of the product hydrogen, and stabilizes the recovery rate. I do.

【0012】[0012]

【課題を解決するための手段】本発明は、水素精製用4
塔式圧力スイング吸着装置の安定運転方法であって、製
品水素ガスの温度を測定、検知し、その測定値を基にサ
イクル時間を変更することにより、製品ガス流量を安定
化させると同時に、製品水素の純度を安定化させ、且
つ、回収率を安定化させることを特徴とする4塔式圧力
スイング吸着装置の安定運転方法である。
SUMMARY OF THE INVENTION The present invention relates to a hydrogen purification device for hydrogen purification.
A stable operation method of a tower-type pressure swing adsorption device that measures and detects the temperature of product hydrogen gas and changes the cycle time based on the measured value to stabilize the product gas flow rate and simultaneously A stable operation method for a four-column pressure swing adsorption apparatus, characterized by stabilizing the purity of hydrogen and the recovery rate.

【0013】[0013]

【発明の実施の形態】本発明においては、水素精製用4
塔式圧力スイング吸着装置の運転に際して、製品水素の
温度を測定、検知し、その測定、検知値を基にサイクル
時間を変更する。これにより、製品水素流量を安定化さ
せると同時に、製品水素の純度を安定化させ且つ回収率
を安定化させる。またこれにより、夏場や冬場、あるい
は昼夜などの気温差により目標とする装置性能に達しな
いケースを未然に防ぐことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a hydrogen purification 4
During the operation of the tower pressure swing adsorption device, the temperature of the product hydrogen is measured and detected, and the cycle time is changed based on the measured and detected value. This stabilizes the flow rate of the product hydrogen, stabilizes the purity of the product hydrogen, and stabilizes the recovery rate. In addition, it is possible to prevent a case in which the target apparatus performance does not reach the target performance due to a temperature difference in summer, winter, or day and night.

【0014】その具体的態様としては、測定、検知され
た製品水素の温度が高い場合は、サイクル時間を短くす
る。これは、吸着操作において、温度が高い場合、平衡
吸着量が低くなるため、製品水素の純度をキープするた
めには、単位吸着剤当りの処理容量を減少させることが
必須であるからである。この場合、昇圧工程に用いられ
る製品水素の一部は、実流量で所定圧力まで昇圧され
る。このため、理想状態における必要水素量としては減
少し、回収率は向上する方向となる。サイクル時間が短
くなるほど、水素回収率は低下する傾向にあるが、上記
二つの効果が相殺され、製品水素純度、回収率が安定す
る。
As a specific embodiment, when the temperature of the product hydrogen measured and detected is high, the cycle time is shortened. This is because, in the adsorption operation, when the temperature is high, the equilibrium adsorption amount is low, so that it is essential to reduce the processing capacity per unit adsorbent in order to keep the purity of the product hydrogen. In this case, a part of the product hydrogen used in the pressure increasing step is increased to a predetermined pressure at an actual flow rate. For this reason, the required amount of hydrogen in an ideal state decreases, and the recovery rate tends to improve. As the cycle time becomes shorter, the hydrogen recovery rate tends to decrease, but the above two effects are offset, and the product hydrogen purity and the recovery rate are stabilized.

【0015】上記とは逆に、測定、検知された製品水素
の温度が低い場合は、サイクル時間を長くする。製品水
素の温度が低い場合は、昇圧工程に用いられる製品水素
の一部は、実流量で所定圧力まで昇圧されるために、理
想状態における必要水素量が増加し、回収率が低下して
しまう。このためサイクル時間を長くし、回収率を向上
させる必要がある。反面、温度が低いと、平衡吸着量は
増加し、製品水素の純度は、サイクル時間を長くしても
キープされる。こうして製品水素純度、回収率が安定す
る。本発明によれば、そのようにして水素精製用4塔式
圧力スイング吸着装置の運転に際して、夏場、冬場、あ
るいは昼、夜などの気温差に応じて常に安定した運転が
できるものである。
Conversely, if the temperature of the product hydrogen measured and detected is low, the cycle time is lengthened. When the temperature of the product hydrogen is low, a part of the product hydrogen used in the pressurization step is pressurized to a predetermined pressure at an actual flow rate, so that the required amount of hydrogen in an ideal state increases and the recovery rate decreases. . Therefore, it is necessary to increase the cycle time and improve the recovery rate. On the other hand, when the temperature is low, the equilibrium adsorption amount increases, and the purity of the product hydrogen is maintained even when the cycle time is increased. Thus, the product hydrogen purity and the recovery rate are stabilized. According to the present invention, in the operation of the four-column pressure swing adsorption apparatus for hydrogen purification in this manner, stable operation can always be performed in accordance with the temperature difference in summer, winter, or day or night.

【0016】[0016]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。本実施例では図3に示す装置を使用
した。各吸着塔A、B、C、Dに混合床として活性炭、
ゼオライトを充填した。吸着塔へ供給する被処理ガスと
して、都市ガス(脱硫済み)を水蒸気改質器で改質し、
改質器からCO変成器を経て得られる改質ガスを用い
た。改質器は概略バーナを備える燃焼部と改質部からな
り、燃焼部からの熱(ΔH)が改質部に供給され、改質
部で原料ガスが接触反応により改質ガスへ変えられる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. In this embodiment, the apparatus shown in FIG. 3 was used. Activated carbon as a mixed bed in each of the adsorption towers A, B, C, D;
Zeolite was charged. As a gas to be supplied to the adsorption tower, city gas (desulfurized) is reformed with a steam reformer,
The reformed gas obtained from the reformer through the CO converter was used. The reformer includes a combustion section having a burner and a reforming section. Heat (ΔH) from the combustion section is supplied to the reforming section, and the raw material gas is converted into reformed gas by a catalytic reaction in the reforming section.

【0017】図3中、Tはオフガス貯蔵タンク、Fはバ
ーナ燃料ガス導管であり、バーナ燃料としてオフガスの
みでは不足の場合には適宜都市ガス等が添加補充され
る。Kはバーナ燃焼用空気導管である。THは、製品水
素ラインにセットした温度センサーである。なお、図3
中改質器に続くCO変成器およびガスクーラーの記載は
省略している。
In FIG. 3, T is an off-gas storage tank, and F is a burner fuel gas conduit. If only off-gas is not enough as a burner fuel, city gas or the like is appropriately supplemented and supplemented. K is a burner combustion air conduit. TH is a temperature sensor set in the product hydrogen line. Note that FIG.
The description of the CO converter and the gas cooler following the middle reformer is omitted.

【0018】改質ガスは、水素が主成分であるが、C
O、CH4、CO2、N2などが含まれている。これら水
素以外のガスが吸着塔で吸着除去されるガスであるが、
改質ガスの吸着塔への導入温度は20〜40℃程度であ
る。CO変成器を経た改質ガスの温度はそれより高温で
あるので、ガスクーラーによりそのような温度に冷却し
て吸着塔に供給される。
[0018] The reformed gas is mainly composed of hydrogen.
O, CH 4 , CO 2 , N 2 and the like are contained. These gases other than hydrogen are gases that are adsorbed and removed in the adsorption tower,
The temperature at which the reformed gas is introduced into the adsorption tower is about 20 to 40 ° C. Since the temperature of the reformed gas passed through the CO converter is higher than that, the reformed gas is cooled to such a temperature by a gas cooler and supplied to the adsorption tower.

【0019】本発明で対象とする水素精製用4塔式圧力
スイング吸着装置の各ステップの操作時間については、
ステップ1は5〜60秒、好ましくは20〜30秒、ス
テップ2は5〜60秒、好ましくは10〜20秒、ステ
ップ3は110〜300秒、好ましくは120〜190
秒の範囲である。したがってステップ1〜3での吸着時
間は120〜420秒、好ましくは150〜240秒の
範囲で実施される。
Regarding the operation time of each step of the four-column pressure swing adsorption apparatus for hydrogen purification targeted in the present invention,
Step 1 is 5 to 60 seconds, preferably 20 to 30 seconds, Step 2 is 5 to 60 seconds, preferably 10 to 20 seconds, Step 3 is 110 to 300 seconds, preferably 120 to 190
Range of seconds. Therefore, the adsorption time in steps 1 to 3 is set in the range of 120 to 420 seconds, preferably 150 to 240 seconds.

【0020】本実施例においては、ステップ1は30
秒、ステップ2は20秒、ステップ3は190秒とし
た。したがってステップ1〜3での吸着時間は240秒
である。ステップ4〜6、6〜9および10〜12は、
それぞれ、ステップ1〜3と同様である。ステップ1〜
3、ステップ4〜6、ステップ7〜9、ステップ10〜
12がそれぞれサブサイクルであり、ステップ1〜12
で1サイクルとなる。
In this embodiment, step 1 is 30 steps.
Second, step 2 was 20 seconds, and step 3 was 190 seconds. Therefore, the adsorption time in steps 1 to 3 is 240 seconds. Steps 4-6, 6-9 and 10-12
These are the same as steps 1 to 3, respectively. Step 1
3, step 4-6, step 7-9, step 10
12 is a subcycle, and steps 1 to 12
Is one cycle.

【0021】運転圧力は吸着工程時(吸着工程終了時ま
で同じ)0.7MPaG、均圧減圧、減圧保持および減
圧終了時0.6MPaG、ブローダウン終了時0.02
MPaG、パージ終了時0.22MPaG、昇圧終了時
0.68MPaとした。吸着工程の吸着圧力は精製水素
ラインに配置された制御バルブにより制御されるが、図
示は省略している。以下の操作において、弁Vはステッ
プ1〜12を通して開の状態である。ブローダウン(工
程)は適宜ブロー(工程)と略記している。
The operating pressure is 0.7 MPaG at the time of the adsorption step (the same until the end of the adsorption step), 0.6 MPaG at the time of uniform pressure reduction, pressure reduction hold and pressure reduction end, and 0.02 at the end of blowdown.
MpaG, 0.22 MPaG at the end of purge, and 0.68 MPa at the end of pressure increase. The adsorption pressure in the adsorption step is controlled by a control valve arranged in the purified hydrogen line, but is not shown. In the following operation, the valve V is open through steps 1 to 12. Blowdown (step) is abbreviated as blow (step) as appropriate.

【0022】以下におけるステップ1〜12のサイクル
を繰り返す操作において、随時、温度センサーTHによ
り製品水素ガスの温度を測定した。比較例では上記吸着
時間を常に240秒と一定として実施した。実施例では
製品水素ガス温度5℃を基準とし、この基準温度と測定
された製品水素の温度との差1℃に対してサイクル時間
を0.6秒変化させた(すなわち、0.6秒/℃の割合
でサイクル時間の増減を行った)。
In the operation of repeating the following steps 1 to 12, the temperature of the product hydrogen gas was measured by the temperature sensor TH as needed. In the comparative example, the above-mentioned adsorption time was always kept constant at 240 seconds. In the example, the product hydrogen gas temperature was set to 5 ° C., and the cycle time was changed by 0.6 seconds with respect to 1 ° C. between the reference temperature and the measured product hydrogen temperature (that is, 0.6 seconds / The cycle time was increased or decreased at a rate of ° C).

【0023】〈ステップ1〉A塔=吸着、B塔=ブロ
ー、C塔=均圧減圧、D塔=均圧昇圧 弁A1、A2を開とし、改質ガスをA塔に供給して吸着
操作を実施した。その間、B塔ではブロー工程、C塔で
は均圧減圧工程、D塔では均圧昇圧工程を行った。他の
弁につていは、弁B5、C4、D3を開とし、バルブ
W、バルブX、バルブY、バルブZの開度を一定とし
た。これら以外の弁は閉状態である。
<Step 1> A tower = adsorption, B tower = blowing, C tower = equalizing pressure reducing, D tower = equalizing pressure increasing valves A1, A2 are opened, and the reformed gas is supplied to the A tower to perform the adsorption operation. Was carried out. In the meantime, the blowing step was performed in the tower B, the equalizing pressure reducing step was performed in the tower C, and the equalizing pressure increasing step was performed in the tower D. As for the other valves, the valves B5, C4, and D3 were opened, and the opening degrees of the valves W, X, Y, and Z were kept constant. Other valves are closed.

【0024】〈ステップ2〉A塔=吸着、B塔=ブロ
ー、C塔=減圧保持、D塔=H2昇圧 弁C4、バルブXを閉に切り換えた以外はステップ1と
同じくして、引続き改質ガスをA塔に供給して吸着操作
を実施した。その間、B塔ではブロー工程、C塔では減
圧保持工程、D塔では均圧昇圧工程を行った。
<Step 2> A tower = adsorption, B tower = blowing, C tower = reduced pressure, D tower = H 2 boosting valve Same as step 1 except that the valve C4 and the valve X were closed. The raw gas was supplied to the tower A to perform the adsorption operation. During that time, a blowing step was performed in the tower B, a pressure reduction step was performed in the tower C, and a pressure equalizing step was performed in the tower D.

【0025】〈ステップ3〉A塔=吸着、B塔=パー
ジ、C塔=減圧、D塔=H2昇圧 弁B4、C4を開とした以外はステップ2と同じくし
て、引続き改質ガスをA塔に供給して吸着操作を実施し
た。その間、B塔ではパージ工程、C塔では減圧工程、
D塔ではH2昇圧工程を行った。
<Step 3> The reformed gas was continuously supplied in the same manner as in step 2 except that the tower A was adsorbed, the tower B was purged, the tower C was depressurized, and the tower D was H 2 booster valves B4 and C4 were opened. The mixture was supplied to the tower A to perform an adsorption operation. Meanwhile, the purging step in the tower B, the depressurizing step in the tower C,
In the tower D, an H 2 pressure increasing step was performed.

【0026】〈ステップ4〉A塔=均圧減圧、B塔=均
圧昇圧、C塔=ブロー、D塔=吸着 弁D1、D2を開とし、改質ガスをD塔に供給して吸着
操作を実施した。その間、A塔では均圧減圧工程、B塔
では均圧昇圧工程、C塔ではブロー工程を行った。他の
弁については、弁A4、B3、C5を開とし、バルブ
W、バルブX、バルブY、バルブZの開度を一定とし
た。これら以外の弁は閉状態である。
<Step 4> A tower = equalization pressure reduction, B tower = equalization pressure increase, C tower = blowing, D tower = adsorption valves D1 and D2 are opened, and reforming gas is supplied to D tower to perform adsorption operation. Was carried out. During that time, the equalizing pressure reducing step was performed in the tower A, the equalizing pressure increasing step was performed in the tower B, and the blowing step was performed in the tower C. With respect to the other valves, the valves A4, B3, and C5 were opened, and the opening degrees of the valves W, X, Y, and Z were kept constant. Other valves are closed.

【0027】〈ステップ5〉A塔=減圧保持、B塔=H
2昇圧、C塔=ブロー、D塔=吸着 弁A4、バルブXを閉に切り換えた以外はステップ4と
同じくして、引続き改質ガスをD塔に供給して吸着操作
を実施した。その間、A塔では減圧保持工程、B塔では
2昇圧工程を行い、C塔ではブロー工程を行った。
<Step 5> Tower A = retained pressure, Tower B = H
(2) Pressurization, C tower = blow, D tower = adsorption In the same manner as in step 4 except that the valve A4 and the valve X were closed, the reforming gas was continuously supplied to the D tower to perform the adsorption operation. In the meantime, the tower A performed the reduced pressure holding step, the tower B performed the H 2 pressure increasing step, and the tower C performed the blowing step.

【0028】〈ステップ6〉A塔=減圧、B塔=H2
圧、C塔=パージ、D塔=吸着 A4、C4を開とした以外はステップ5と同じくして、
引続き改質ガスをD塔に供給して吸着操作を実施した。
その間、A塔では減圧工程、B塔ではH2昇圧工程、C
塔ではパージ工程を行った。
<Step 6> A tower = depressurized, B tower = H 2 increased, C tower = purge, D tower = adsorption Same as step 5 except that A4 and C4 were opened.
Subsequently, the reforming gas was supplied to the tower D to perform an adsorption operation.
In the meantime, the pressure reduction step is performed in the tower A, the H 2 pressure increase step is performed in the tower B,
A purge step was performed in the tower.

【0029】〈ステップ7〉A塔=ブロー、B塔=吸
着、C塔=均圧昇圧、D塔=均圧減圧 弁B1、B2を開とし、改質ガスをB塔に供給して吸着
操作を実施した。その間、A塔ではブロー工程、C塔で
は均圧昇圧工程、D塔では均圧減圧工程を行った。他の
弁については、A5、C3、D4を開とし、バルブW、
バルブX、バルブY、バルブZの開度を一定とした。こ
れら以外の弁は閉状態である。
<Step 7> A tower = blow, B tower = adsorption, C tower = equalizing pressure increase, D tower = equalizing pressure reducing valves B1 and B2 are opened, and reforming gas is supplied to B tower to perform adsorption operation. Was carried out. During that time, the blowing step was performed in the tower A, the equalizing pressure increasing step in the tower C, and the equalizing pressure reducing step in the tower D. With respect to the other valves, A5, C3, and D4 are opened, and valves W,
The opening degrees of the valve X, the valve Y, and the valve Z were made constant. Other valves are closed.

【0030】〈ステップ8〉A塔=ブロー、B塔=吸
着、C塔=H2昇圧、D塔=減圧保持 弁D4、バルブXを閉に切り換えた以外はステップ7と
同じくして、引続き改質ガスをB塔に供給して吸着操作
を実施した。その間、A塔ではブロー工程、C塔ではH
2昇圧工程、D塔では減圧保持工程を行った。
<Step 8> A tower = blow, B tower = adsorption, C tower = H 2 pressurization, D tower = depressurization holding Same as step 7, except that valve D4 and valve X were closed. The raw gas was supplied to the tower B to perform the adsorption operation. In the meantime, the blowing process is performed in the tower A, and the blowing process is performed in the tower C.
(2) The pressure raising step, and the reduced pressure holding step were performed in the tower D.

【0031】〈ステップ9〉A塔=パージ、B塔=吸
着、C塔=H2昇圧、D塔=減圧 A4、D4を開とした以外はステップ8と同じくして、
引続き改質ガスをB塔に供給して吸着操作を実施した。
その間、A塔ではパージ工程、C塔ではH2昇圧工程、
D塔では減圧工程を行った。
<Step 9> A tower = purge, B tower = adsorption, C tower = H 2 pressure increase, D tower = pressure reduction Same as step 8 except that A4 and D4 were opened.
Subsequently, the reforming gas was supplied to the tower B to perform an adsorption operation.
Meanwhile, the tower A has a purge step, the tower C has a H 2 pressure increasing step,
In the tower D, a pressure reduction step was performed.

【0032】〈ステップ10〉A塔=均圧昇圧、B塔=
均圧減圧、C塔=吸着、D塔=ブロー 弁C1、C2を開とし、改質ガスをC塔に供給して吸着
操作を実施した。その間、A塔では均圧昇圧工程、B塔
では均圧減圧工程、D塔ではブロー工程を行った。他の
弁については、A3、B4、D5を開とし、バルブW、
バルブX、バルブY、バルブZの開度を一定とした。こ
れら以外の弁は閉状態である。
<Step 10> Tower A = equalizing pressure increase, Tower B =
Equalization pressure reduction, C tower = adsorption, D tower = blow valves C1 and C2 were opened, and the reforming gas was supplied to the C tower to perform the adsorption operation. In the meantime, the equalizing pressure increasing step was performed in the tower A, the equalizing pressure reducing step was performed in the tower B, and the blowing step was performed in the tower D. With respect to the other valves, A3, B4, and D5 are opened, and valves W,
The opening degrees of the valve X, the valve Y, and the valve Z were made constant. Other valves are closed.

【0033】〈ステップ11〉A塔=H2昇圧、B塔=
減圧保持、C塔=吸着、D塔=ブロー 弁B4、バルブXを閉に切り換えた以外はステップ10
と同じくして、引続き改質ガスをC塔に供給して吸着操
作を実施した。その間、A塔ではH2昇圧工程、B塔で
は減圧保持工程、D塔ではブロー工程を行った。
<Step 11> Tower A = H 2 boost, Tower B =
Step 10 except that the pressure reduction was maintained, the tower C was adsorbed, and the tower D was blow valve B4 and valve X were closed.
In the same manner as described above, the reforming gas was continuously supplied to the column C to perform the adsorption operation. In the meantime, the tower A performed the H 2 pressure increasing step, the tower B performed the reduced pressure holding step, and the tower D performed the blowing step.

【0034】〈ステップ12〉A塔=H2昇圧、B塔=
減圧、C塔=吸着、D塔=パージ B4、D4を開とした以外はステップ11と同じくし
て、引続き改質ガスをC塔に供給して吸着操作を実施し
た。その間、A塔ではH2昇圧工程、B塔では減圧工
程、D塔ではパージ工程を行った。
<Step 12> Tower A = H 2 boost, Tower B =
Depressurization, C tower = adsorption, D tower = purge Except that B4 and D4 were opened, the adsorption operation was performed by continuously supplying the reformed gas to the C tower in the same manner as in step 11. In the meantime, the H 2 pressure increasing step was performed in the tower A, the pressure reducing step was performed in the tower B, and the purge step was performed in the tower D.

【0035】比較例および実施例ともに、以上ステップ
1〜12からなるサイクルを繰り返し実施した。すなわ
ち、比較例として、ステップ1〜3、4〜6、7〜9、
10〜12の各吸着時間を常に240秒と一定として実
施した。また実施例として、製品水素ガス温度5℃を基
準とし、製品水素温度の測定結果を基準温度と比較して
温度差を求め、0.6秒/℃の割合でサイクル時間の増
減を行って実施した。表1はその結果のうち代表例を示
している。
In both the comparative example and the example, the cycle consisting of steps 1 to 12 was repeatedly performed. That is, as comparative examples, steps 1-3, 4-6, 7-9,
Each of the adsorption times 10 to 12 was always performed at a constant value of 240 seconds. In addition, as an example, based on the product hydrogen gas temperature of 5 ° C., the measurement result of the product hydrogen temperature is compared with the reference temperature to determine the temperature difference, and the cycle time is increased and decreased at a rate of 0.6 seconds / ° C. did. Table 1 shows a representative example of the results.

【0036】[0036]

【表 1】 [Table 1]

【0037】表1のとおり、比較例においては、製品水
素ガス温度30℃でもサイクル時間を変えず240秒の
ままとした結果、製品水素ガス純度が99.997%に
低下している。これに対して、実施例では、製品水素ガ
ス温度30℃で、サイクル時間を変え、225秒とした
結果、製品水素ガス純度が99.999%に維持するこ
とができた。水素ガス回収率は僅かに低下はするが、本
発明によれば、PEFC用燃料や不飽和結合への水素添
加用或いは酸水素炎用として要求される5N(99.9
99%)以上の純度の水素を常時得ることができる。
As shown in Table 1, in the comparative example, the product hydrogen gas purity was reduced to 99.997% as a result of keeping the cycle time unchanged for 240 seconds even at the product hydrogen gas temperature of 30 ° C. In contrast, in the example, the cycle time was changed to 225 seconds at a product hydrogen gas temperature of 30 ° C., and as a result, the purity of the product hydrogen gas could be maintained at 99.999%. Although the hydrogen gas recovery rate slightly decreases, according to the present invention, 5N (99.9) required for hydrogenation of PEFC fuel or unsaturated bond or for oxyhydrogen flame is used.
Hydrogen having a purity of 99% or more can always be obtained.

【0038】[0038]

【発明の効果】本発明によれば、夏期や冬季、あるいは
昼夜などによる外気環境温度に対応して、製品ガス流量
を安定化させると同時に、製品水素の純度を安定化させ
且つ製品水素の回収率を安定化させることができる。
According to the present invention, it is possible to stabilize the product gas flow rate, stabilize the purity of product hydrogen, and recover product hydrogen in accordance with the outside air temperature during summer, winter, or day and night. The rate can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素精製用4塔式PSA装置における各吸着塔
A〜D、配管、バルブ、オフガス貯蔵タンク等の配置関
係を示す図
FIG. 1 is a diagram showing the arrangement of adsorption towers A to D, piping, valves, off-gas storage tanks, and the like in a four-column PSA apparatus for hydrogen purification.

【図2】図1に示す水素精製用4塔式PSA装置におけ
る各吸着塔の工程フロー及び運転シーケンスの概略を示
す図
FIG. 2 is a diagram schematically showing a process flow and an operation sequence of each adsorption tower in the four-column PSA apparatus for hydrogen purification shown in FIG.

【図3】実施例で用いた水素精製用4塔式PSA装置に
おける各吸着塔A〜D、配管、バルブ、オフガス貯蔵タ
ンク等の配置関係を示す図
FIG. 3 is a diagram showing the arrangement of the adsorption towers A to D, piping, valves, off-gas storage tanks, and the like in the four-column PSA apparatus for hydrogen purification used in Examples.

【符号の説明】[Explanation of symbols]

A〜D 吸着塔 T オフガスタンク F バーナ燃料ガス導管 K バーナ燃焼用空気導管 TH 製品水素ガス温度センサー A to D adsorption tower T off-gas tank F burner fuel gas conduit K burner combustion air conduit TH product hydrogen gas temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古田 博貴 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 高橋 徹 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 中村 健一 東京都新宿区西新宿3ー7ー1 新宿パー クタワー10階 東京ガスケミカル株式会社 内 (72)発明者 会田 広司 東京都新宿区西新宿3ー7ー1 新宿パー クタワー10階 東京ガスケミカル株式会社 内 (72)発明者 日下 亮平 神奈川県横浜市青葉区奈良町1670ー25 (72)発明者 鎌倉 幸弘 東京都八王子市小宮町1064ー15 (72)発明者 森口 久美子 神奈川県川崎市宮前区有馬一丁目8ー13ー 501 (72)発明者 宮島 秀樹 神奈川県横浜市鶴見区東寺尾5ー2ー10 Fターム(参考) 4D012 CA07 CB16 CD07 CE01 CE02 CF01 CF04 CG01 CH10 CJ01 CJ02 CJ05 CJ06  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Furuta 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Tohru Takahashi 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Inside (72) Inventor Kenichi Nakamura 3-7-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Shinjuku Park Tower 10th floor Tokyo Gas Chemical Co., Ltd. Inside (72) Inventor Koji Aida 3-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Shinjuku Park Tower 10F Tokyo Gas Chemical Co., Ltd. Person Kumiko Moriguchi 1-13-501, Arima 1-chome, Miyamae-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Hideki Miyajima 5-2-10 F-Terao, Tsurumi-ku, Yokohama City, Kanagawa Prefecture None (reference) 4D012 CA07 CB16 CD07 CE01 CE02 CF01 CF04 CG01 CH10 CJ01 CJ02 CJ05 CJ06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素精製用4塔式圧力スイング吸着装置の
安定運転方法であって、製品水素ガスの温度を測定、検
知し、その測定値を基にサイクル時間を変更することに
より、製品ガス流量を安定化させると同時に、製品水素
の純度を安定化させ、且つ、回収率を安定化させること
を特徴とする4塔式圧力スイング吸着装置の安定運転方
法。
1. A method for stably operating a four-column pressure swing adsorption apparatus for hydrogen purification, comprising measuring and detecting the temperature of product hydrogen gas, and changing the cycle time based on the measured value. A stable operation method for a four-tower pressure swing adsorption apparatus, characterized by stabilizing a flow rate, stabilizing the purity of product hydrogen, and stabilizing a recovery rate.
【請求項2】上記水素精製用4塔式圧力スイング吸着装
置の安定運転方法が、4塔の各塔において吸着、均圧減
圧、均圧保持、減圧、ブローダウン、パージ、均圧昇
圧、水素昇圧の各工程が繰り返される工程におけるもの
であることを特徴とする請求項1に記載の水素精製用4
塔式圧力スイング吸着装置の安定運転方法。
2. The method for stably operating the four-column pressure swing adsorption apparatus for hydrogen purification includes the steps of adsorbing, equalizing pressure reducing, equalizing pressure holding, reducing pressure, blowdown, purging, equalizing pressure increasing, hydrogen equalizing in each of the four towers. 2. The hydrogen purifying apparatus according to claim 1, wherein the step of increasing the pressure is in a repeated step.
Stable operation method of tower pressure swing adsorption device.
JP2001164655A 2001-05-31 2001-05-31 Stable operation method of 4 tower type pressure swing adsorption equipment for hydrogen purification Expired - Lifetime JP4531291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164655A JP4531291B2 (en) 2001-05-31 2001-05-31 Stable operation method of 4 tower type pressure swing adsorption equipment for hydrogen purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164655A JP4531291B2 (en) 2001-05-31 2001-05-31 Stable operation method of 4 tower type pressure swing adsorption equipment for hydrogen purification

Publications (2)

Publication Number Publication Date
JP2002355519A true JP2002355519A (en) 2002-12-10
JP4531291B2 JP4531291B2 (en) 2010-08-25

Family

ID=19007445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164655A Expired - Lifetime JP4531291B2 (en) 2001-05-31 2001-05-31 Stable operation method of 4 tower type pressure swing adsorption equipment for hydrogen purification

Country Status (1)

Country Link
JP (1) JP4531291B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209868A (en) * 2006-02-08 2007-08-23 Mitsubishi Kakoki Kaisha Ltd Stable operation method of pressure swing adsorption device
JP2007261909A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Method for operating hydrogen refining apparatus
JP2009529410A (en) * 2006-03-06 2009-08-20 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド PSA pressure measurement and control system
KR101192946B1 (en) 2010-07-29 2012-10-18 지에스칼텍스 주식회사 reformation method of hydrogen purification devices
CN112494991A (en) * 2020-12-28 2021-03-16 大连福佳·大化石油化工有限公司 Cold-state adsorption tower system with thermal desorption agent process
CN114146532A (en) * 2021-12-17 2022-03-08 新疆大全新能源股份有限公司 Operation process of active carbon adsorption tower in polycrystalline silicon tail gas recovery process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380823A (en) * 1986-09-26 1988-04-11 Sumitomo Heavy Ind Ltd Operation for separating gas based on variable pressure adsorption
JPH0199627A (en) * 1987-10-09 1989-04-18 Marutani Kakoki Kk Gas adsorption and purification device by pressure swing method
JPH03131317A (en) * 1989-10-16 1991-06-04 Seibu Gas Kk Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption
JPH04156912A (en) * 1990-10-18 1992-05-29 Tokico Ltd Gas separator
JPH119935A (en) * 1997-06-25 1999-01-19 Nippon Steel Corp Method for controlling quality of finished product hydrogen gas by psa process
JP2000317245A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Separation and purification of gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380823A (en) * 1986-09-26 1988-04-11 Sumitomo Heavy Ind Ltd Operation for separating gas based on variable pressure adsorption
JPH0199627A (en) * 1987-10-09 1989-04-18 Marutani Kakoki Kk Gas adsorption and purification device by pressure swing method
JPH03131317A (en) * 1989-10-16 1991-06-04 Seibu Gas Kk Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption
JPH04156912A (en) * 1990-10-18 1992-05-29 Tokico Ltd Gas separator
JPH119935A (en) * 1997-06-25 1999-01-19 Nippon Steel Corp Method for controlling quality of finished product hydrogen gas by psa process
JP2000317245A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Separation and purification of gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209868A (en) * 2006-02-08 2007-08-23 Mitsubishi Kakoki Kaisha Ltd Stable operation method of pressure swing adsorption device
JP2009529410A (en) * 2006-03-06 2009-08-20 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド PSA pressure measurement and control system
JP2007261909A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Method for operating hydrogen refining apparatus
KR101192946B1 (en) 2010-07-29 2012-10-18 지에스칼텍스 주식회사 reformation method of hydrogen purification devices
CN112494991A (en) * 2020-12-28 2021-03-16 大连福佳·大化石油化工有限公司 Cold-state adsorption tower system with thermal desorption agent process
CN112494991B (en) * 2020-12-28 2024-05-14 大连福佳·大化石油化工有限公司 Cold adsorption tower system with thermal desorption agent flow
CN114146532A (en) * 2021-12-17 2022-03-08 新疆大全新能源股份有限公司 Operation process of active carbon adsorption tower in polycrystalline silicon tail gas recovery process
CN114146532B (en) * 2021-12-17 2024-04-26 新疆大全新能源股份有限公司 Operation process of active carbon adsorption tower in polycrystalline silicon tail gas recovery process

Also Published As

Publication number Publication date
JP4531291B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP0750361B1 (en) Method of removing CO from CO + H2 gases and fuel cell system using method
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
US9656202B2 (en) Method and device for separating a gas mixture by means of pressure swing adsorption
AU2008278345B2 (en) Combustable gas processing system and combustable gas processing method
JP3856987B2 (en) Method for controlling off-gas pressure from off-gas tank in three-column PSA system for hydrogen purification
JP6667382B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2007209868A (en) Stable operation method of pressure swing adsorption device
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP6530122B1 (en) Hydrogen production equipment
JP2002355522A (en) Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP3819174B2 (en) Off-gas flow rate control method in pressure swing adsorption device
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP4187569B2 (en) Hydrogen production equipment
JP2001279267A (en) Method for producing industrial gas by using pressure- varied adsorptive separation apparatus
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP5500650B2 (en) Argon gas purification method and purification apparatus
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
US7427304B2 (en) Fuel gas manufacturing apparatus
JP2002355520A (en) Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP4771668B2 (en) Hydrogen production method and apparatus
JP6505306B1 (en) Hydrogen production equipment
JP7129321B2 (en) Hydrogen production device, hydrogen production device operation method, and hydrogen production device operation program
JP6646526B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2004075485A (en) Four-column type pressure swing adsorption apparatus for hydrogen purification

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20010608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4531291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term