JP2001279267A - Method for producing industrial gas by using pressure- varied adsorptive separation apparatus - Google Patents

Method for producing industrial gas by using pressure- varied adsorptive separation apparatus

Info

Publication number
JP2001279267A
JP2001279267A JP2000090866A JP2000090866A JP2001279267A JP 2001279267 A JP2001279267 A JP 2001279267A JP 2000090866 A JP2000090866 A JP 2000090866A JP 2000090866 A JP2000090866 A JP 2000090866A JP 2001279267 A JP2001279267 A JP 2001279267A
Authority
JP
Japan
Prior art keywords
pressure
adsorption
gas
load
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000090866A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayano
博史 早野
Yukihiro Kamakura
幸弘 鎌倉
Tetsuya Tsuruta
哲也 鶴田
Ryohei Kusaka
亮平 日下
Tomoki Sugaya
智樹 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2000090866A priority Critical patent/JP2001279267A/en
Publication of JP2001279267A publication Critical patent/JP2001279267A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an industrial gas by using PSA apparatus, capable of more correctly controlling load of PSA apparatus, following used amount of gas of a gas user. SOLUTION: In this method for producing an industrial gas by using PSA apparatus, pressure fluctuation in a product gas holclet is measured and pressure (Pn) after correction of average value of variation of the product gas holder is obtained based on the measured value and apparatus load on PSA apparatus is obtained based on pressure after correction of average value of variation and preceding variation of apparatus load on PSA apparatus is obtained based on measured value of pressure fluctuation of the product gas holder and weight coefficient in operation of apparatus load and preceding variation of the apparatus load is added to the apparatus load obtained based on the pressure (Pn) after correction of average value of variation to provide preceding apparatus load, and introduction amount of raw material gas to the PSA apparatus and required time of each step are controlled based on the preceding apparatus load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧力変動吸着分離
装置を用いた工業ガスの製造方法に関し、特に、ガス使
用先装置におけるガス使用量の変動を予測し、該予測量
に基いて圧力変動吸着分離装置の装置負荷を先行制御す
ることができる、圧力変動吸着分離装置を用いた工業ガ
ス製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing industrial gas using a pressure fluctuation adsorption / separation apparatus, and more particularly to predicting fluctuations in gas usage in a gas destination apparatus, and performing pressure fluctuation based on the predicted amount. The present invention relates to an industrial gas production method using a pressure-fluctuation adsorption / separation device capable of preliminarily controlling the device load of the adsorption / separation device.

【0002】[0002]

【従来の技術】工業ガスとしての、例えば水素は、例え
ば都市ガス、LPG、ナフサ等の炭化水素を、例えばニ
ッケル系の改質触媒の存在下で水蒸気改質し、発生する
水素リッチの改質ガスを、水素以外の成分を高圧下で選
択的に吸着し、減圧下で脱着する吸着剤、例えばゼオラ
イトを充填した複数の吸着塔を有する圧力変動吸着分離
装置(以下、PSA装置ともいう)の前記吸着塔に導入
し、例えば吸着工程、減圧工程、ブローダウン工程、パ
ージ工程、昇圧工程等の処理工程を順次繰り返すことに
より製造され、その純度は、例えば99.999vol
%以上である。
2. Description of the Related Art Hydrogen, for example, as an industrial gas, is obtained by steam reforming hydrocarbons such as city gas, LPG and naphtha in the presence of, for example, a nickel-based reforming catalyst, and reforming hydrogen-rich gas. A pressure fluctuation adsorption separation device (hereinafter also referred to as a PSA device) having a plurality of adsorption columns filled with an adsorbent that selectively adsorbs a gas under a high pressure and a desorber under a reduced pressure, for example, a component other than hydrogen. It is manufactured by introducing into the adsorption tower and sequentially repeating processing steps such as an adsorption step, a decompression step, a blowdown step, a purge step, and a pressure increase step, and the purity thereof is, for example, 99.999 vol.
% Or more.

【0003】図6は、原料改質装置を備えたPSA装置
を用いた水素製造装置の系統を示す図である。図におい
て、この水素製造装置は、改質原料61を改質する原料
改質装置62と、該原料改質装置62で発生する水素リ
ッチの改質ガス63を原料ガスとして高純度の水素を分
離回収するPSA装置64とに大別され、PSA装置6
4は吸着剤として、例えばゼオライトが充填された吸着
塔A、BおよびCと、これら吸着塔を連結する配管およ
び該配管に設けられたバルブ類等とから主として構成さ
れている。65は、製品ガス66としての水素を貯留す
る製品ガスホルダである。
FIG. 6 is a diagram showing a system of a hydrogen production apparatus using a PSA apparatus having a raw material reforming apparatus. In this figure, this hydrogen production apparatus separates a high-purity hydrogen using a raw material reforming device 62 for reforming a reforming raw material 61 and a hydrogen-rich reformed gas 63 generated in the raw material reforming device 62 as a raw material gas. The PSA device 64 is roughly divided into a PSA device 64 to be collected,
Reference numeral 4 denotes an adsorbent mainly composed of, for example, adsorption towers A, B and C filled with zeolite, pipes connecting these adsorption towers, valves and the like provided in the pipes. Reference numeral 65 denotes a product gas holder for storing hydrogen as the product gas 66.

【0004】都市ガス、LPG、ナフサ等の改質原料6
1は、必要に応じて公知の方法で脱硫処理されたのち、
原料改質装置62に導入され、例えばニッケル系の改質
触媒の存在下、800℃前後の高温域で水蒸気67と接
触し、水蒸気改質反応によって水素濃度の高い改質ガス
63となる。改質ガス63は、後流のPSA装置64の
吸着塔Aに流入し、例えば吸着、減圧、ブローダウン、
パージ、昇圧の各工程を経て水素が分離され、製品ガス
66として製品ガスホルダ65に貯留される。吸着塔B
およびCにおいても順次同様の圧力変動吸着分離操作が
行われ、高濃度の水素が製品ガスホルダ65に一時貯留
されたのち、製品ガス66として図示省略したガス使用
先装置に供給される。68および69は、それぞれ改質
装置62に供給される燃料および燃焼用空気、70は、
PSA装置64から排出されるオフガスである。
[0004] Reforming raw material 6 such as city gas, LPG, naphtha, etc.
1 is desulfurized by a known method if necessary,
The reformed gas is introduced into the raw material reforming device 62 and, in the presence of, for example, a nickel-based reforming catalyst, comes into contact with steam 67 in a high temperature range of about 800 ° C., and becomes a reformed gas 63 having a high hydrogen concentration by a steam reforming reaction. The reformed gas 63 flows into the adsorption tower A of the downstream PSA device 64 and, for example, adsorbs, decompresses, blows down,
Hydrogen is separated through purging and pressurizing steps, and is stored as product gas 66 in product gas holder 65. Adsorption tower B
The same pressure fluctuation adsorption / separation operation is sequentially performed also in steps C and C, and high-concentration hydrogen is temporarily stored in the product gas holder 65, and then supplied as a product gas 66 to a gas use device (not shown). 68 and 69 are fuel and combustion air supplied to the reformer 62, respectively, and 70 is
Off-gas discharged from the PSA device 64.

【0005】このようなPSA装置を用いた工業ガス製
造方法において、製品ガスの使用先装置におけるガス使
用量の変動に追従して装置負荷を制御することは重要、
かつ困難であり、従来は、送出ガス(製品ガス)ホルダ
内の圧力を実測し、この圧力の変動に基いて直接装置負
荷を決定する方法が採用されていた。図7は、このよう
な従来の、PSA装置を用いた水素製造方法における水
素ホルダ圧力とPSA装置負荷量との関係を示す説明図
である。図において、PSAの装置負荷量は、水素ホル
ダ圧力の実測値に基いて直接制御しているために、ホル
ダ圧力に対応して大きく変動していることが分かる。
[0005] In such an industrial gas production method using a PSA device, it is important to control the load on the device in accordance with the fluctuation of the gas consumption in the device where the product gas is used.
Conventionally, a method has been adopted in which the pressure in the delivery gas (product gas) holder is actually measured, and the apparatus load is directly determined based on the fluctuation of the pressure. FIG. 7 is an explanatory diagram showing the relationship between the hydrogen holder pressure and the load on the PSA device in such a conventional hydrogen production method using a PSA device. In the figure, it can be seen that the apparatus load of the PSA is directly controlled based on the actual measured value of the hydrogen holder pressure, and therefore greatly fluctuates in accordance with the holder pressure.

【0006】すなわち、PSA装置を用いた工業ガス製
造方法には、各工程サイクルに基いて生成ガス量、換言
すれば製品ガスホルダ内の圧力がある一定の波形にした
がって変動するという特質があるため、製品ガスホルダ
(以下、単にホルダともいう)の圧力変動に基いて直接
装置負荷を制御する上記従来技術では、製品ガスの圧力
変動が外乱要素となり、使用先装置のガス使用量が一定
であるにもかかわらず、ガス製造装置の負荷が大きく変
動するという欠点があった。このため、ガス使用先装置
のガス使用量の変化に追従して必要量の製品ガスを製造
することは困難であった。このような問題を解決するた
め、近年、例えば製品ガスホルダの容量を大きくし、該
製品ガスホルダの容量でPSA装置の圧力変動を吸収す
る方法、使用先のガス使用量を測定し、該ガス使用量に
基いてPSA装置の負荷を算出する方法、装置負荷の応
答性を遅らして移動平均化することにより外乱要素を吸
収する方法等が採用されていた。
That is, the industrial gas production method using the PSA apparatus has the characteristic that the amount of generated gas, in other words, the pressure in the product gas holder, fluctuates according to a certain waveform based on each process cycle. In the above-described conventional technology in which the device load is directly controlled based on the pressure fluctuation of a product gas holder (hereinafter, also simply referred to as a holder), even if the pressure fluctuation of the product gas becomes a disturbance element and the gas usage amount of the used device is constant. Regardless, there is a drawback that the load of the gas production apparatus fluctuates greatly. For this reason, it has been difficult to produce a required amount of product gas by following a change in the gas usage of the gas usage destination device. In order to solve such a problem, in recent years, for example, a method of increasing the capacity of a product gas holder, absorbing a pressure fluctuation of a PSA device by the capacity of the product gas holder, measuring a gas usage amount of a use destination, and measuring the gas usage amount. A method of calculating the load of the PSA device based on the above, a method of absorbing the disturbance element by delaying the response of the device load and performing moving average, etc. have been adopted.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術は、装置の大型化、設備費の高騰につなが
るうえ、その負荷追従性は決して満足できるものではな
かった。そこで、ガス使用先装置におけるガス使用量に
追従してPSA装置の負荷量をより正確に制御すること
ができるPSA装置を用いた工業ガス製造方法の開発が
望まれていた。本発明の課題は、上記従来技術の問題点
を解決し、PSA装置の制御外乱をなくし、ガス使用先
装置のガス使用量の変化に対する装置負荷の追従性を大
幅に改善することができるうえ、装置の小型化、設備費
の低減を図ることができる、PSA装置を用いた工業ガ
ス製造方法を提供することにある。
However, such a conventional technique leads to an increase in the size of the apparatus and a rise in equipment costs, and its load following ability has never been satisfactory. Therefore, there has been a demand for the development of an industrial gas production method using a PSA device that can more accurately control the load of the PSA device in accordance with the amount of gas used in the gas destination device. An object of the present invention is to solve the above-mentioned problems of the prior art, eliminate the control disturbance of the PSA device, and significantly improve the ability of the device load to follow a change in the gas usage of the gas destination device. An object of the present invention is to provide an industrial gas production method using a PSA device, which can reduce the size of the device and reduce equipment costs.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、製品ガスホルダに連結されたガス使用
先装置におけるガス使用量の変動とPSA装置のガスホ
ルダ内圧力および装置負荷変動等との関係について鋭意
研究した結果、吸着剤を充填した、少なくとも3塔の吸
着塔を有するPSA装置の、製品ガスホルダにおける圧
力変動を測定し、該測定値に基いて前記製品ガスホルダ
の変化量平均値補正後の圧力(Pn )を求め、求めた変
化量平均値補正後の圧力に相当するPSA装置の装置負
荷を求めるとともに、前記製品ガスホルダにおける圧力
変動の測定値と装置負荷演算時の重み係数とに基いてP
SA装置の装置負荷の先行変動量を求め、該装置負荷先
行変動量を、前記変化量平均値補正後の圧力(Pn )に
基いて求めた装置負荷に加えて先行装置負荷とし、該先
行装置負荷に基いてPSA装置への原料ガスの導入量お
よび各工程の所要時間を制御することにより、PSA装
置の製品ガスホルダに連結されたガス使用先装置のガス
使用量に追従して製品ガスを製造し、供給できることを
見出し、本発明に到達した。
In order to solve the above-mentioned problems, the present inventor has proposed a method for measuring the fluctuation of the gas usage in a gas use destination device connected to a product gas holder, the pressure in the gas holder of the PSA device, the fluctuation of the device load, and the like. As a result of diligent research on the relationship, the pressure fluctuation in the product gas holder of a PSA device filled with an adsorbent and having at least three adsorption towers was measured, and the average value of the variation of the product gas holder was corrected based on the measured value. The pressure (P n ) after the change is obtained, the device load of the PSA device corresponding to the obtained pressure after the correction of the average value of the change amount is obtained, and the measured value of the pressure fluctuation in the product gas holder and the weight coefficient at the time of the device load calculation are calculated. Based on P
A preceding fluctuation amount of the device load of the SA device is obtained, and the preceding device load fluctuation amount is added to the device load obtained based on the pressure (P n ) after the correction of the average value of the change amount, thereby obtaining a preceding device load. By controlling the amount of source gas introduced into the PSA device and the time required for each process based on the device load, the product gas can be controlled in accordance with the gas usage of the gas destination device connected to the product gas holder of the PSA device. They found that they could be manufactured and supplied and arrived at the present invention.

【0009】すなわち、本願で特許請求する発明は以下
のとおりである。 (1)吸着剤を充填した、少なくとも3塔の吸着塔を有
する圧力変動吸着分離(PSA)装置に原料ガスを導入
し、前記各吸着塔で、前記原料ガス中の易吸着成分を吸
着剤に吸着させて難吸着成分を分離、回収する吸着工程
と、該吸着工程が終了した吸着塔を減圧して吸着塔から
流出するオフガスを他の吸着塔のパージガスとして用い
る減圧工程と、該減圧工程が終了した吸着塔をさらに減
圧して吸着剤から離脱するオフガスを回収するブローダ
ウン工程と、該ブローダウン工程が終了した吸着塔に、
他の吸着塔の減圧工程時に該吸着塔から流出するオフガ
スを導入して塔内をパージするパージ工程と、該パージ
工程が終了した吸着塔に製品ガスを導入して昇圧する昇
圧工程とを有する一連の圧力変動吸着分離操作を所定の
インターバルで順次繰り返して前記原料ガス中の特定成
分を回収し、製品ガスホルダを介してガス使用先の装置
に送出する、圧力変動吸着分離装置を用いた工業ガス製
造方法において、前記製品ガスホルダにおける圧力変動
を測定し、該測定値に基いて前記製品ガスホルダの変化
量平均値補正後の圧力(Pn )を求め、該変化量平均値
補正後の圧力に基いて前記圧力変動吸着分離装置の装置
負荷を求めるとともに、前記製品ガスホルダの圧力変動
の測定値と装置負荷演算時の重み係数とに基いて前記圧
力変動吸着分離装置の装置負荷の先行変動量を求め、該
装置負荷先行変動量を、前記変化量平均値補正後の圧力
(Pn )に基いて求めた装置負荷に加えて先行装置負荷
とし、該先行装置負荷に基いて前記圧力変動吸着分離装
置への原料ガスの導入量および前記各工程の所要時間を
制御することを特徴とする、圧力変動吸着分離装置を用
いた工業ガス製造方法。
That is, the invention claimed in the present application is as follows. (1) A raw material gas is introduced into a pressure fluctuation adsorption separation (PSA) apparatus having at least three adsorption towers filled with an adsorbent, and the easily adsorbable components in the raw material gas are converted into adsorbents in the respective adsorption towers. An adsorption step of separating and recovering the hardly adsorbable components by adsorption, a pressure reduction step of depressurizing the adsorption tower after the adsorption step and using an off-gas flowing out of the adsorption tower as a purge gas of another adsorption tower, and a pressure reduction step. A blowdown step of collecting the off-gas released from the adsorbent by further reducing the pressure of the completed adsorption tower, and an adsorption tower after the blowdown step has been completed,
It has a purging step of introducing off gas flowing out of the adsorption tower during the pressure reducing step of another adsorption tower to purge the inside of the tower, and a pressure increasing step of introducing product gas to the adsorption tower after the purging step and increasing the pressure. A series of pressure fluctuation adsorption / separation operations are sequentially repeated at predetermined intervals to collect a specific component in the raw material gas, and send it to a device where the gas is to be used via a product gas holder. In the manufacturing method, a pressure fluctuation in the product gas holder is measured, a pressure (P n ) of the product gas holder after the correction of the average of the change is determined based on the measured value, and the pressure (P n ) is corrected based on the pressure after the correction of the average of the change. The apparatus load of the pressure fluctuation adsorption / separation apparatus is obtained, and the pressure fluctuation adsorption / separation apparatus is determined based on the measured value of the pressure fluctuation of the product gas holder and the weight coefficient at the time of the apparatus load calculation. Calculated prior variation of the device load, the device loads the preceding variation to the preceding device load in addition to the device load calculated based on the pressure (P n) after the variation average value correction, said prior apparatus a load Controlling the amount of the raw material gas introduced into the pressure fluctuation adsorption / separation apparatus and the time required for each of the steps on the basis of the pressure fluctuation adsorption / separation apparatus.

【0010】(2)前記減圧工程とブローダウン工程と
の間に、減圧工程が終了した吸着塔と前記パージ工程が
終了した他の吸着塔とを連通して塔内圧力を等しくする
均圧工程を有し、前記パージ工程と昇圧工程との間に、
パージ工程が終了した吸着塔と前記減圧工程が終了した
他の吸着塔とを連通して塔内圧力を等しくする均圧工程
を有することを特徴とする上記(1)に記載の、圧力変
動吸着分離装置を用いた工業ガス製造方法。 (3)前記原料ガスが水素含有ガスであり、原料ガスか
らの回収成分が水素であることを特徴とする上記(1)
または(2)に記載の、圧力変動吸着分離装置を用いた
工業ガス製造方法。
(2) Between the pressure reducing step and the blow-down step, a pressure equalizing step in which the adsorption tower in which the pressure reducing step has been completed communicates with the other adsorption tower in which the purging step has been completed to equalize the pressure in the tower. Between the purge step and the pressure increase step,
(1) The pressure fluctuation adsorption according to the above (1), further comprising a pressure equalizing step of connecting the adsorption tower after the purging step and another adsorption tower after the depressurizing step to equalize the pressure in the tower. Industrial gas production method using a separation device. (3) The raw material gas is a hydrogen-containing gas, and a component recovered from the raw material gas is hydrogen.
Or the industrial gas production method using the pressure fluctuation adsorption separation device according to (2).

【0011】(4)吸着剤を充填した、少なくとも第
1、第2および第3の吸着塔を有する圧力変動吸着分離
(PSA)装置に原料ガスを導入し、前記各吸着塔で、
前記原料ガス中の易吸着成分を吸着剤に吸着させて難吸
着成分を分離、回収する吸着工程と、該吸着工程が終了
した吸着塔を減圧して前記吸着塔から流出するオフガス
を他の吸着塔のパージガスとして用いる減圧工程と、該
減圧工程が終了した吸着塔とパージ工程が終了した前記
他の吸着塔を連通して塔内圧力を等しくする均圧工程
と、該均圧工程が終了した吸着塔をさらに減圧して吸着
剤から離脱するオフガスを回収するブローダウン工程
と、該ブローダウン工程が終了した吸着塔に、他の吸着
塔の減圧工程時に該吸着塔から流出するオフガスを導入
して塔内をパージするパージ工程と、該パージ工程が終
了した吸着塔と前記減圧工程が終了した他の吸着塔とを
連通して塔内圧力を等しくする均圧工程と、該均圧工程
が終了した吸着塔に製品ガスを導入して昇圧する昇圧工
程とを有する一連の圧力変動吸着分離操作を所定のイン
ターバルで順次繰り返して前記原料ガス中の特定成分を
回収し、製品ガスホルダを介してガス使用先の装置に送
出する、圧力変動吸着分離装置を用いた工業ガス製造方
法において、前記製品ガスホルダの圧力を測定し、該製
品ガスホルダにおける、第2吸着塔の減圧工程時の平均
圧力(P1a)と第3吸着塔の昇圧工程時の平均圧力(P
1b)との平均値(Pn-2 )と、第1吸着塔の減圧工程時
の平均圧力(P2a)と第2吸着塔の昇圧工程時の平均圧
力(P2b)との平均値(Pn-1 )に基いて下記式(1)
により変化量平均値補正後の製品ガスホルダ圧力
(Pn )を求め、 Pn (MPa)=〔(Pn-2 )+(Pn-1 )〕/2 ・・・(1) 該変化量平均値補正後の製品ガスホルダ圧力(Pn )に
基いて下記式(2)により前記圧力変動吸着分離装置の
装置負荷(Yn )を求め、 Yn (%)=A・Pn +B ・・・(2) (ここで、AおよびBは、製品ガスホルダ圧力値から装
置負荷を求めるための一次近似式の係数であり、Aは、
ゲイン、Bは、バイアスである。)次いで、前記製品ガ
スホルダの、前記平均圧力の平均値(Pn-2 )と(P
n-1)の差分(Pn-2 −Pn-1 )と装置負荷演算時の重
み係数(K)に基いて下記(3)式により前記圧力変動
吸着分離装置の装置負荷の先行変動量(Zn )を予測
し、 Zn =(Pn-2 −Pn-1 )・K ・・・(3) (K=重み係数) 該予測した装置負荷先行変動量(Zn )を、下記式
(4)により、前記変化量平均値補正後のホルダ圧力に
基いて求めた装置負荷量(Yn )に加えて先行装置負荷
(Xn )とし、 Xn =Yn +Zn ・・・(4) 以下、同様の操作を順次繰り返して先行装置負荷を求
め、求めた先行装置負荷(Xn )に基いて前記圧力変動
吸着分離装置への原料ガス導入量および各吸着塔におけ
る前記各処理工程の所要時間を制御することを特徴とす
る、圧力変動吸着分離装置を用いた工業ガス製造方法。
(4) A raw material gas is introduced into a pressure swing adsorption / separation (PSA) apparatus having at least first, second and third adsorption towers filled with an adsorbent.
An adsorption step in which the easily adsorbable components in the raw material gas are adsorbed by the adsorbent to separate and recover the hardly adsorbable components; and an off-gas flowing out of the adsorption tower is decompressed by depressurizing the adsorption tower after the adsorption step. A pressure reduction step used as a purge gas for the column, a pressure equalization step of communicating the adsorption tower after the pressure reduction step with the other adsorption tower after the purge step to equalize the pressure in the tower, and the pressure equalization step. A blowdown step of collecting the offgas released from the adsorbent by further reducing the pressure of the adsorption tower, and introducing the offgas flowing out of the adsorption tower during the pressure reduction step of another adsorption tower to the adsorption tower after the blowdown step has been completed. A purging step of purging the inside of the tower by pressure, a pressure equalizing step of communicating the adsorption tower after the purging step with another adsorption tower after the depressurizing step to equalize the pressure in the tower, and a pressure equalizing step. Finished adsorption tower A series of pressure fluctuation adsorption / separation operations having a pressure increasing step of introducing and increasing the pressure of a gas are sequentially repeated at predetermined intervals to collect a specific component in the raw material gas and send it to a device where the gas is used via a product gas holder. In the industrial gas production method using the pressure fluctuation adsorption / separation apparatus, the pressure of the product gas holder is measured, and the average pressure (P 1a ) of the product gas holder during the pressure reduction step of the second adsorption tower and the third adsorption tower are measured. Average pressure (P
1b) the average value of (the P n-2), the average value of the average pressure during depressurization step of the first adsorption tower (P 2a) and the average pressure during boosting step of the second adsorption tower (P 2b) ( P n-1 ) and the following formula (1)
To obtain the product gas holder pressure (P n ) after the correction of the average value of the variation, and P n (MPa) = [(P n−2 ) + (P n−1 )] / 2 (1) Based on the product gas holder pressure (P n ) after the average value correction, the device load (Y n ) of the pressure fluctuation adsorption separation device is obtained by the following equation (2), and Y n (%) = A · P n + B ··· (2) (where A and B are coefficients of a first-order approximation formula for obtaining an apparatus load from a product gas holder pressure value, and A is
The gain, B, is the bias. Then, the average value (P n−2 ) of the average pressure of the product gas holder and (P n−2 )
n-1 ) based on the difference ( Pn-2- Pn-1 ) and the weighting coefficient (K) at the time of calculating the device load, the following equation (3) is used to calculate the preceding fluctuation amount of the device load of the pressure fluctuation adsorption / separation device. (Z n ) is predicted, and Z n = (P n−2 −P n−1 ) · K (3) (K = weight coefficient) The predicted device load preceding fluctuation amount (Z n ) by the following equation (4), a device load amount determined on the basis of the holder pressure after the variation average value correction (Y n) in addition to the preceding device load (X n), X n = Y n + Z n ·· (4) Hereinafter, the same operation is sequentially repeated to obtain the preceding apparatus load, and based on the obtained preceding apparatus load (X n ), the amount of the raw material gas introduced into the pressure fluctuation adsorption / separation apparatus and the above-mentioned respective values in each adsorption tower. An industrial gas production method using a pressure-fluctuation adsorption / separation apparatus, characterized by controlling the time required for a treatment step.

【0012】(5)前記原料ガスが水素含有ガスであ
り、原料ガスからの回収成分が水素であることを特徴と
する上記(4)に記載の、圧力変動吸着分離装置を用い
た工業ガス製造方法。
(5) The industrial gas production using a pressure fluctuation adsorption separation apparatus as described in (4) above, wherein the raw material gas is a hydrogen-containing gas, and a component recovered from the raw material gas is hydrogen. Method.

【0013】本発明において、製品ガスホルダの変化量
平均値補正後の圧力とは、単位工程内における、二つの
ホルダ内平均圧力の平均値と、前記単位工程に続く別の
単位工程内における、二つのホルダ内平均圧力の平均値
を、さらに平均した平均圧力をいい、吸着工程、減圧工
程、ブローダウン工程、パージ工程、昇圧工程等を順次
繰り返すPSA装置特有の性質に起因するホルダ内の圧
力変動を補正した実質的なホルダ内圧力をいう。この製
品ガスホルダの変化量平均値補正後の圧力は、該製品ガ
スホルダが製品ガス使用先装置に連結されていることか
ら、使用先装置のガス使用量を求める指標となる。本発
明において、装置負荷演算時の重み係数(K)は、PS
A装置の定格負荷、製品ガスホルダ容量、ガス使用先装
置のガス使用量の変動に対するききぐあいである先行制
御率(フィードフォワードゲイン)等によって補正され
る値であって、実際の装置運転状態により最適値を算出
するチューニングパラメータであり、通常1.0〜1.
5の範囲の定数が用いられる。
In the present invention, the pressure after the correction of the average value of the variation of the product gas holder is defined as the average value of the average pressures in the two holders in the unit process and the average value of the pressure in another unit process following the unit process. The average value of the average pressure in two holders is further averaged, and the pressure fluctuation in the holder due to the unique characteristics of the PSA device that repeats the adsorption step, depressurization step, blowdown step, purge step, pressure increase step, etc. sequentially Means the actual pressure in the holder corrected for The pressure after correcting the change amount average value of the product gas holder is an index for calculating the gas usage amount of the usage destination device since the product gas holder is connected to the product gas usage destination device. In the present invention, the weight coefficient (K) at the time of calculating the device load is PS
This value is corrected by the advance control rate (feed forward gain), which is a threshold for fluctuations in the rated load of the A device, the product gas holder capacity, and the gas usage amount of the gas destination device, and is an optimal value depending on the actual device operation state. Is a tuning parameter for calculating 1.0.
A constant in the range of 5 is used.

【0014】本発明において、装置負荷の先行変動量と
は、単位工程内における、二つのホルダ内平均圧力の平
均値と、前記単位工程に続く別の単位工程内における、
二つのホルダ内平均圧力の平均値との差分に、装置負荷
演算時の重み係数(K)を掛けた積として表される、装
置負荷の予測変動量をいう。この予測した変動量(先行
変動量)を、変化量平均値補正後のホルダ内圧力に相当
する装置負荷に加えることにより、装置全体の先行装置
負荷が求まる。本発明において、減圧工程とブローダウ
ン工程との間に、減圧工程が終了した吸着塔とパージ工
程が終了した他の吸着塔とを連通して塔内圧力を等しく
する均圧工程を有し、パージ工程と昇圧工程との間に、
パージ工程が終了した吸着塔と減圧工程が終了した他の
吸着塔とを連通して塔内圧力を等しくする均圧工程を有
することが好ましい。これによって各成分ガスの分離性
が向上し、目的成分の回収率が向上する。均圧工程に要
する時間および塔内圧力は、他の工程における時間およ
び塔内圧力等によって適宜決定される。
In the present invention, the preceding fluctuation amount of the apparatus load is defined as the average value of the average pressures in the two holders in a unit process and the average value of the average pressure in another unit process following the unit process.
The predicted fluctuation amount of the device load is expressed as a product obtained by multiplying the difference between the two average values of the average pressure in the holder by the weight coefficient (K) at the time of calculating the device load. By adding the predicted fluctuation amount (preceding fluctuation amount) to the apparatus load corresponding to the pressure in the holder after the correction of the change amount average value, the preceding apparatus load of the entire apparatus is obtained. In the present invention, between the pressure-reducing step and the blow-down step, the pressure-reducing step has a pressure equalizing step to equalize the pressure inside the column by communicating the adsorption tower and the other adsorption tower after the purge step has been completed, Between the purge step and the pressure increase step,
It is preferable to have a pressure equalizing step of making the column pressure equal by connecting the adsorption tower after the purging step and another adsorption tower after the depressurizing step. Thereby, the separation property of each component gas is improved, and the recovery rate of the target component is improved. The time required for the pressure equalizing step and the pressure in the column are appropriately determined by the time in other steps, the pressure in the column, and the like.

【0015】本発明において、減圧工程で吸着塔から流
出するオフガスを他の吸着塔のパージガスとして用いる
ことなく、その他の目的で使用するか、または系外に排
出することもできる。また、パージ工程におけるパージ
ガスとして、他の吸着塔における減圧工程時に吸着塔か
ら流出するオフガス以外のガスを使用することもでき
る。本発明において、原料ガスから回収する目的成分
は、水素の他、例えば酸素、窒素、一酸化炭素等であっ
てもよい。
In the present invention, the off-gas flowing out of the adsorption tower in the depressurization step can be used for another purpose or discharged out of the system without using it as a purge gas for another adsorption tower. Further, as the purge gas in the purge step, a gas other than the off-gas flowing out of the adsorption tower during the pressure reduction step in another adsorption tower can be used. In the present invention, the target component to be recovered from the raw material gas may be, for example, oxygen, nitrogen, carbon monoxide, or the like, in addition to hydrogen.

【0016】[0016]

【発明の実施の形態】次に、本発明を、原料ガスとして
水素含有ガスを用い、該水素含有ガス中の前記水素を分
離、回収する、PSA装置を用いた水素の製造方法を例
にとって詳細に説明する。図1および図2は、本発明の
原理を示す説明図であり、図1は、水素ホルダ圧力と、
該水素ホルダ圧力の単位工程内の平均圧力(以下、変化
量平均値ともいう)と、変化量平均値補正後の水素ホル
ダ圧力(Pn )に基いて求めた装置負荷量(Yn )の関
係を示す図、図2は、水素ホルダ内圧力と、該水素ホル
ダ内圧力の変化量平均値と、経時的間隔をもった二つ
の、変化量平均値の平均値(Pn-2 )、(Pn-1 )の差
分(Pn-2 −Pn-1 )と装置負荷演算時の重み係数
(K)とに基いて求めた装置負荷先行変動量(Zn )と
の関係を示す図である。
Next, the present invention will be described in detail by taking, as an example, a method for producing hydrogen using a PSA apparatus, in which a hydrogen-containing gas is used as a raw material gas, and the hydrogen in the hydrogen-containing gas is separated and recovered. Will be described. 1 and 2 are explanatory views showing the principle of the present invention. FIG.
The average pressure in the unit process of the hydrogen holder pressure (hereinafter also referred to as the average change amount) and the device load amount (Y n ) obtained based on the hydrogen holder pressure (P n ) after the correction of the average change amount. FIG. 2 is a diagram showing the relationship. FIG. 2 shows the hydrogen holder pressure, the average change amount of the hydrogen holder pressure, and the average value (P n−2 ) of the two change average values with a time interval. The relationship between the difference (P n−1 ) of (P n−1 ) (P n−2 −P n−1 ) and the device load preceding variation (Z n ) obtained based on the weight coefficient (K) at the time of the device load calculation is shown. FIG.

【0017】図1において、A、B、C3塔からなるP
SA装置において、3ステップ分の吸着工程と、1ステ
ップ分の減圧工程、均圧工程、ブローダウン工程、パー
ジ工程、均圧工程および昇圧工程の9ステップからなる
一連の圧力変動吸着分離操作を、前記吸着塔A、B、C
でそれぞれ3ステップづつずらして順次繰り返した場合
の、水素ホルダ内圧力をモニタし、B塔減圧工程時の水
素ホルダ圧力の変化量平均値:P1a=(P11+P12)/
2と、C塔昇圧工程時の水素ホルダ圧力の変化量平均
値:P1b=(P13+P21)/2との平均値:Pn-2
(P1a+P1b)/2が、A塔の吸着工程(ステップ1〜
3)時の平均水素ホルダ圧力:Pn-2 として表されてい
る。
In FIG. 1, a P comprising A, B and C3 towers
In the SA device, a series of pressure-fluctuation adsorption / separation operations including nine steps of a three-step adsorption step and a one-step pressure reduction step, a pressure equalization step, a blowdown step, a purge step, a pressure equalization step, and a pressure increase step are performed. The adsorption towers A, B, C
, The pressure in the hydrogen holder is monitored in a case where the pressure is repeatedly shifted by three steps, and the average value of the change in the hydrogen holder pressure during the decompression step of the tower B: P 1a = (P 11 + P 12 ) /
2 and the average value of the change in the hydrogen holder pressure during the C tower pressure step: P 1b = (P 13 + P 21 ) / 2: P n−2 =
(P 1a + P 1b ) / 2 corresponds to the adsorption step of the tower A (steps 1 to 5).
3) Average hydrogen holder pressure at time: expressed as P n-2 .

【0018】一方、A塔減圧工程時の水素ホルダ圧力の
変化量平均値:P2a=(P21+P22)/2とB塔昇圧工
程時の水素ホルダ圧力の変化量平均値:P2b=(P23
31)/2の平均値:Pn-1 =(P2a+P2b)/2が、
C塔の吸着工程(ステップ4〜6)時の平均水素ホルダ
圧力:Pn-1 として表されている。ここで下記式(1)
により変化量平均値補正後の水素ホルダ内圧力(Pn
を求め、 Pn (MPa)=(Pn-2 +Pn-1 )/2 ・・・(1) 求めた変化量平均値補正後の水素ホルダ内圧力(Pn
に基いて下記の一次近似式(2)により前記水素ホルダ
内圧力(Pn )に相当する、PSA装置の装置負荷(Y
n )を求めることができる。
On the other hand, the average value of the change in the hydrogen holder pressure during the pressure reduction step of the tower A: P 2a = (P 21 + P 22 ) / 2, and the average value of the change in the hydrogen holder pressure during the pressure increase step of the tower B: P 2b = (P 23 +
Average value of P 31 ) / 2: P n-1 = (P 2a + P 2b ) / 2
The average hydrogen holder pressure during the adsorption step (steps 4 to 6) of the column C is expressed as P n-1 . Here, the following equation (1)
Pressure in the hydrogen holder (P n )
P n (MPa) = (P n−2 + P n−1 ) / 2 (1) The obtained pressure in the hydrogen holder (P n ) after correction of the average value of the variation.
The device load (Y) of the PSA device corresponding to the hydrogen holder internal pressure (P n ) according to the following linear approximation (2) based on
n ) can be determined.

【0019】 Yn (%)=A・Pn +B ・・・(2) (ここで、AおよびBは、製品ガスホルダ圧力値から装
置負荷を求めるための一次近似式の係数であり、Aは、
ゲイン、Bは、バイアスである。)また、図2におい
て、水素ホルダ内圧力と、水素ホルダ内圧力の変化量平
均値と、所定工程内における二つの変化量平均値の平均
値(Pn-2 )、(Pn-1 )の差分(Pn-2 −Pn-1 )に
装置負荷演算時の重み係数(K)を乗じて下記(3)式
により予測した装置負荷の先行変動量(Zn )との関係
が示されている。 Zn =(Pn-2 −Pn-1 )・K ・・・(3) この予測した装置負荷先行変動量(Zn )と前記変化量
平均値補正後のホルダ圧力に基いて求めた装置負荷(Y
n )の和がPSA装置の先行装置負荷(Xn )となる。
Y n (%) = A · P n + B (2) (where A and B are coefficients of a first-order approximation formula for obtaining an apparatus load from a product gas holder pressure value, and A is ,
The gain, B, is the bias. 2) In FIG. 2, the pressure in the hydrogen holder, the average value of the change in the pressure in the hydrogen holder, and the average value (P n−2 ), (P n−1 ) of the two average values of the change in the predetermined process. Is obtained by multiplying the difference (P n−2 −P n−1 ) by the weight coefficient (K) at the time of the device load calculation, and shows the relationship with the preceding fluctuation amount (Z n ) of the device load predicted by the following equation (3). Have been. Z n = (P n−2 −P n−1 ) · K (3) Determined based on the predicted device load preceding fluctuation (Z n ) and the holder pressure after the correction of the average of the change. Equipment load (Y
n ) is the preceding device load (X n ) of the PSA device.

【0020】 Xn =Yn +Zn ・・・(4) 以下、同様の操作を繰り返して先行装置負荷を連続的に
求め、求めた先行装置負荷(Xn )に応じてPSA装置
への原料ガスの導入量および各吸着塔における吸着工
程、減圧工程、均圧工程、ブローダウン工程、パージ工
程、均圧工程および昇圧工程の設定時間を決定し、制御
することにより、水素ホルダ内の圧力が大きく変動して
も、ガス使用先装置のガス使用量を予測して該ガス使用
量に追従した量の製品ガス、例えば水素を製造し、使用
先装置に確実に供給することができる。
X n = Y n + Z n (4) Hereinafter, the same operation is repeated to continuously obtain the preceding apparatus load, and the raw material to the PSA apparatus is determined according to the obtained preceding apparatus load (X n ). By determining and controlling the amount of gas introduced and the set times of the adsorption step, pressure reduction step, pressure equalization step, blowdown step, purge step, pressure equalization step and pressure increase step in each adsorption tower, the pressure in the hydrogen holder is reduced. Even if it fluctuates greatly, it is possible to predict the gas usage of the gas use destination device, produce a product gas, for example, hydrogen in an amount that follows the gas usage amount, and reliably supply it to the use destination device.

【0021】本発明において、吸着塔の数は3塔または
それ以上であり、3の整数倍であることが好ましい。吸
着剤は、回収する目的成分によって異なるが、例えばゼ
オライト、活性炭、活性アルミナ等が使用される。本発
明において、PSA装置に導入する原料ガスは、目的成
分を含有するガスであれば、特に限定されるものではな
いが、例えば、都市ガス、LPG、ナフサ等を水蒸気改
質した改質ガスが用いられる。改質原料として、メタノ
ールを使用することもできる。
In the present invention, the number of adsorption towers is three or more, and preferably an integer multiple of three. The adsorbent varies depending on the target component to be recovered. For example, zeolite, activated carbon, activated alumina and the like are used. In the present invention, the source gas introduced into the PSA apparatus is not particularly limited as long as it is a gas containing the target component. For example, a reformed gas obtained by steam reforming city gas, LPG, naphtha, or the like is used. Used. Methanol can also be used as a reforming raw material.

【0022】本発明において、圧力変動吸着分離操作の
各工程の所要時間は、PSA装置への原料ガスの導入
量、原料ガス中の目的成分濃度、吸着塔における目的成
分の吸着量等によって変動するが、例えば吸着工程は、
300〜360秒、減圧工程は、120〜180秒、ブ
ローダウン工程は、120〜180秒、パージ工程は、
120〜180秒、昇圧工程は、120〜180秒であ
る。また、吸着塔内の吸着工程時の圧力等は、各工程時
間、原料ガス導入量等によって変動するが、例えば吸着
工程時の圧力は、0.7〜0.8MPa、減圧工程時の
圧力は、0.4〜0.7MPa、ブローダウン工程時の
圧力は、0.05〜0.4MPa、パージ工程時の圧力
は、0.0〜0.05Mpa、昇圧工程時の圧力は、
0.2〜0.7MPaである。
In the present invention, the time required for each step of the pressure fluctuation adsorption / separation operation varies depending on the amount of the source gas introduced into the PSA apparatus, the concentration of the target component in the source gas, the adsorption amount of the target component in the adsorption tower, and the like. However, for example, the adsorption step
300-360 seconds, the depressurization step is 120-180 seconds, the blowdown step is 120-180 seconds, the purge step is
120 to 180 seconds, and the pressurization step is 120 to 180 seconds. Further, the pressure and the like during the adsorption step in the adsorption tower fluctuate depending on each process time, the amount of raw material gas introduced, and the like. For example, the pressure during the adsorption step is 0.7 to 0.8 MPa, and the pressure during the depressurization step is , 0.4 to 0.7 MPa, the pressure during the blowdown step is 0.05 to 0.4 MPa, the pressure during the purge step is 0.0 to 0.05 MPa, and the pressure during the pressure increase step is:
0.2 to 0.7 MPa.

【0023】[0023]

【実施例】次に本発明の具体的実施例を説明する。図3
は、本発明の一実施例に適用されるPSA装置の説明
図、図4は、先行装置負荷量を求める負荷量算出演算方
法のフローを示す図である。図3において、このPSA
装置は、吸着剤としてゼオライトが充填された、容量8
00リットルの吸着塔A、BおよびCと、該吸着塔で分
離、回収された製品ガスである水素を貯留する水素ホル
ダ2と、前記吸着塔から排出されたオフガスを貯留する
オフガスホルダ3と、前記吸着塔A、B、C、水素ホル
ダ2およびオフガスホルダ3をそれぞれ連結する配管類
4および該配管類4に設けられた図示省略したバルブ類
とから主として構成されており、定格負荷は、例えば1
00Nm3 /hrである。なお、1は、原料ガス5の供
給源である。また、水素ホルダ2は、図示省略したガス
使用先装置に連結されている。
Next, specific embodiments of the present invention will be described. FIG.
FIG. 4 is an explanatory diagram of a PSA device applied to an embodiment of the present invention, and FIG. 4 is a diagram showing a flow of a load amount calculation method for obtaining a preceding device load amount. In FIG. 3, this PSA
The device was filled with zeolite as adsorbent, capacity 8
00 liters of adsorption towers A, B and C, a hydrogen holder 2 for storing hydrogen which is a product gas separated and recovered in the adsorption tower, an off-gas holder 3 for storing off-gas discharged from the adsorption tower, It mainly comprises pipes 4 for connecting the adsorption towers A, B, and C, the hydrogen holder 2 and the off-gas holder 3, and valves (not shown) provided on the pipes 4. The rated load is, for example, 1
00Nm 3 / hr. Reference numeral 1 denotes a source of the source gas 5. Further, the hydrogen holder 2 is connected to a gas destination device not shown.

【0024】図3の装置を用い、原料ガス供給源1から
都市ガスを改質した、水素:76vol%、CO:2v
ol%、CO2 :19vol%、CH4 :3vol%の
水素リッチの原料ガス5をPSA装置の吸着塔A、Bお
よびCに導入し、該吸着塔A、B、Cで3ステップの吸
着工程と、1ステップの減圧工程、均圧工程、ブローダ
ウン工程、パージ工程、均圧工程、および昇圧工程から
なる9ステップを1サイクルとする、一連の圧力変動吸
着分離操作(図1および2参照)を、前記A、B、Cの
吸着塔でそれぞれ3ステップづつずらして順次行い、図
4に示した負荷量算出演算フローに従って製品ガスホル
ダ2における、工程間圧力を測定し(図4のA)、吸着
塔Bの減圧工程時のホルダ圧力の変化量平均値(P1a
と吸着塔Cの昇圧工程時の変化量平均値(P1b)との平
均値(Pn-2 )と、吸着塔Aの減圧工程時のホルダ圧力
の変化量平均値(P2a)と吸着塔Bの昇圧工程時の変化
量平均値(P2b)との平均値(Pn-1 )に基いて下記式
(1)により変化量平均値演算して(図4のB)変化量
平均値補正後の製品ガスホルダ圧力(Pn )を求め、 Pn (MPa)=〔(Pn-2 )+(Pn-1 )〕/2 ・・・(1) 求めた変化量平均値補正後の製品ガスホルダ圧力
(Pn )に基いて下記式(2)により装置負荷演算して
(図4のD)変化量平均値補正後のホルダ圧力に相当す
るPSA装置の装置負荷(Yn )を求めた。
Using the apparatus shown in FIG. 3, city gas is reformed from a raw material gas supply source 1, hydrogen: 76 vol%, CO: 2 v
ol%, CO 2 : 19 vol%, CH 4 : 3 vol% A hydrogen-rich raw material gas 5 is introduced into adsorption towers A, B and C of a PSA apparatus, and the adsorption towers A, B and C perform three steps of adsorption process. And a series of pressure-fluctuation adsorption / separation operations in which one cycle includes nine steps consisting of a pressure reduction step, a pressure equalization step, a blowdown step, a purge step, a pressure equalization step, and a pressure increase step (see FIGS. 1 and 2). Are sequentially performed in the adsorption towers of A, B, and C by shifting three steps, and the inter-process pressure in the product gas holder 2 is measured in accordance with the load calculation calculation flow shown in FIG. 4 (A in FIG. 4). Average value of change in holder pressure during pressure reduction step of adsorption tower B (P 1a )
Adsorption and variation average value of voltage step-up process of the adsorption tower C average of (P 1b) and (P n-2), pressure reduction step variation average value of the holder pressure during the adsorption tower A and (P 2a) The average change amount is calculated by the following equation (1) based on the average value (P n-1 ) with the average change amount (P 2b ) during the pressure raising step of the tower B (B in FIG. 4). The product gas holder pressure (P n ) after the value correction is obtained, and P n (MPa) = [(P n−2 ) + (P n−1 )] / 2 (1) Correction of the calculated variation average value The apparatus load is calculated by the following equation (2) based on the product gas holder pressure (P n ) after that (D in FIG. 4), and the apparatus load (Y n ) of the PSA apparatus corresponding to the holder pressure after the change amount average value is corrected. I asked.

【0025】 Yn (%)=A・Pn +B ・・・(2) (Pn :MPa) 図5は、図3に示した装置におけるガスホルダ内圧力値
(MPa)に基いて、対応する装置負荷を求めるための
一次近似式を図示したものであり、図において、図3の
装置における一次近似式のゲインAは、−500、バイ
アスBは、350である。従って上記式(2)は、 Yn (%)=−500・Pn +350 ・・・(2)′ となる。
Y n (%) = A · P n + B (2) (P n : MPa) FIG. 5 corresponds to the pressure value (MPa) in the gas holder in the apparatus shown in FIG. FIG. 4 illustrates a first-order approximation formula for obtaining the device load. In the drawing, the gain A of the first-order approximation formula in the device of FIG. 3 is −500, and the bias B is 350. Therefore, the above equation (2) is as follows: Y n (%) = − 500 · P n +350 (2) ′.

【0026】次いで、前記変化量平均値のさらに平均値
である(Pn-2 )と(Pn-1 )の差分(Pn-2
n-1 )と装置負荷演算時の重み係数(K)に基いて下
記(3)式によりガス使用変動量予測(図4のC)によ
り装置負荷の先行変動量(Zn )を予測し、 Zn =(Pn-2 −Pn-1 )・K ・・・(3) (K=重み係数) 求めた装置負荷先行変動量(Zn )と前記変化量平均値
補正後のホルダ圧力に相当する装置負荷量(Yn )に基
いて下記式(4)によって加算(図4のE)し、PSA
装置の先行装置負荷(Xn )を求め、 Xn =Yn +Zn ・・・(4) 以下、同様の操作を繰り返して連続して先行装置負荷を
求め、求めた先行装置負荷(Xn )に基いて装置毎の負
荷量演算(図4のF)により前記圧力変動吸着分離装置
への原料ガス導入量および各吸着塔における前記各処理
工程の所要時間を制御して水素を製造したところ、水素
ホルダ2の後流に連結された使用先装置の水素使用量5
0〜100Nm3 /hrに追従した量の、純度99.9
99vol%の水素を製造し、確実に供給することがで
きた。
Next, the difference (P n−2 −) between (P n− 2 ) and (P n−1 ), which are the average values of the change amount average values, is obtained.
Based on (P n-1 ) and the weight coefficient (K) at the time of calculating the apparatus load, the preceding fluctuation amount (Z n ) of the apparatus load is predicted by the gas use fluctuation amount prediction (C in FIG. 4) by the following equation (3). , Z n = (P n−2 −P n−1 ) · K (3) (K = weight coefficient) The determined device load advance fluctuation amount (Z n ) and the holder after the change amount average value correction. Based on the device load amount (Y n ) corresponding to the pressure, addition (E in FIG. 4) is performed by the following equation (4), and PSA
Prior device obtains load (X n) of the device, X n = Y n + Z n ··· (4) below, obtains the preceding device load continuously by repeating the same operation, obtained prior device load (X n )), Hydrogen was produced by controlling the amount of raw material gas introduced into the pressure fluctuation adsorption separation apparatus and the time required for each processing step in each adsorption tower by calculating the load amount of each apparatus (F in FIG. 4). , The hydrogen usage of the device used 5 connected to the downstream of the hydrogen holder 2
Purity of 99.9 in an amount following 0 to 100 Nm 3 / hr.
99 vol% of hydrogen was produced and could be supplied reliably.

【0027】このとき、重み係数(K)として、水素ホ
ルダ2の容量、フィードフォワードゲイン等によって補
正した、前記図3の装置の運転状況による最適値を算出
するチューニング結果に基いて求めたK=1.3を用い
た。また、このとき原料ガス5の吸着塔への導入量は、
90〜180Nm3 /hrで変動し、吸着工程の時間は
300〜600秒、減圧工程の時間は150〜300
秒、均圧工程の時間は20〜30秒、ブローダウン工程
の時間は150〜300秒、パージ工程の時間は150
〜300秒、均圧工程の時間は20〜30秒、昇圧工程
の時間は150〜300秒でそれぞれ変動した。また、
吸着工程時の吸着塔内圧力は0.7〜0.8MPa、減
圧工程時の塔内圧力は0.4〜0.7MPa、均圧工程
における塔内圧力は0.2〜0.4MPa、ブローダウ
ン工程における塔内圧力は0.0〜0.2MPa、パー
ジ工程の塔内圧力は0.0〜0.05MPa、均圧工程
の塔内圧力は0.2〜0.4MPa、昇圧工程における
塔内圧力は0.2〜0.7MPaでそれぞれ変動し、水
素ホルダ2の圧力は、0.4〜0.7MPaで変動し、
変化量平均値補正後の水素ホルダ内圧力(Pn )は0.
5〜0.6MPaで、変化量平均値補正後のホルダ圧力
に相当する装置負荷は65〜85%でそれぞれ変動し、
水素ホルダ内圧力の変化量平均値を平均した二つの値
(Pn-2 )と(Pn-1 )の差分(Pn-2 −Pn-1 )と装
置負荷演算時の重み係数(K)との積で求まる装置負荷
の先行変動量(Zn )は5〜10で変動し、PSA装置
の先行負荷量は70〜80で変動した。
At this time, as the weighting factor (K), K = K which is corrected based on the capacity of the hydrogen holder 2, feedforward gain, and the like, and is obtained based on the tuning result for calculating the optimum value according to the operating condition of the apparatus of FIG. 1.3 was used. At this time, the amount of the raw material gas 5 introduced into the adsorption tower is
It fluctuates at 90 to 180 Nm 3 / hr, the time of the adsorption step is 300 to 600 seconds, and the time of the pressure reduction step is 150 to 300
Seconds, the time for the pressure equalization step is 20 to 30 seconds, the time for the blowdown step is 150 to 300 seconds, and the time for the purge step is 150.
300300 seconds, the time of the pressure equalizing step varied from 20 to 30 seconds, and the time of the pressure increasing step varied from 150 to 300 seconds. Also,
The pressure in the adsorption tower during the adsorption step is 0.7 to 0.8 MPa, the pressure in the tower during the pressure reduction step is 0.4 to 0.7 MPa, and the pressure in the pressure equalization step is 0.2 to 0.4 MPa. The pressure in the tower in the down step is 0.0 to 0.2 MPa, the pressure in the tower in the purge step is 0.0 to 0.05 MPa, the pressure in the tower in the pressure equalization step is 0.2 to 0.4 MPa, The internal pressure fluctuates at 0.2 to 0.7 MPa, respectively, the pressure of the hydrogen holder 2 fluctuates at 0.4 to 0.7 MPa,
The pressure (P n ) in the hydrogen holder after the correction of the average value of the change amount is 0.1.
At 5 to 0.6 MPa, the apparatus load corresponding to the holder pressure after the change amount average value correction fluctuates at 65 to 85%, respectively.
The difference (P n−2 −P n−1 ) between the two values (P n−2 ) and (P n−1 ) obtained by averaging the average value of the change amount of the pressure in the hydrogen holder, and the weight coefficient ( prior variation of the device load determined by the product of the K) (Z n) varies from 5 to 10, the preceding load of PSA device varied from 70 to 80.

【0028】本実施例によれば、水素ホルダ2の圧力変
化量平均値補正と、変化量平均値を平均した二つの値の
差分と装置負荷算出時の重み係数(K)とで求めた装置
負荷先行変動量に基いてPSA装置の先行負荷を予測
し、この先行負荷に基いてPSA装置に導入される原料
ガス5の導入量およびPSA装置の各吸着塔における前
記各工程の所要時間を制御したことにより、PSA装置
による制御外乱をなくし、装置負荷追従速度が改善さ
れ、水素使用先装置の水素使用量に追従した水素を安定
に製造し、確実に供給することができた。
According to the present embodiment, the apparatus obtained by correcting the average value of the pressure change amount of the hydrogen holder 2, the difference between two values obtained by averaging the average value of the change amount, and the weight coefficient (K) for calculating the apparatus load. Predicting the pre-load of the PSA device based on the pre-load variation, and controlling the amount of the raw material gas 5 introduced into the PSA device and the time required for each of the steps in each adsorption tower of the PSA device based on the pre-load. As a result, the control disturbance by the PSA apparatus was eliminated, the apparatus load following speed was improved, and hydrogen following the amount of hydrogen used by the hydrogen using apparatus could be produced stably and supplied reliably.

【0029】[0029]

【発明の効果】本願の請求項1に記載の発明によれば、
PSA装置における制御外乱をなくし、負荷追従速度を
改善することができる。また、巨大な製品ガスホルダを
必要としないので、装置の小型化および設備費の低減を
図ることができる。本願の請求項2に記載の発明によれ
ば、均圧工程を有することにより、上記発明の効果に加
え、各成分ガスの分離性が向上し、目的成分の回収率が
より向上する。
According to the invention described in claim 1 of the present application,
The control disturbance in the PSA device can be eliminated, and the load following speed can be improved. Further, since a huge product gas holder is not required, the size of the apparatus can be reduced and the equipment cost can be reduced. According to the invention described in claim 2 of the present application, by having the pressure equalizing step, in addition to the effects of the above invention, the separability of each component gas is improved, and the recovery rate of the target component is further improved.

【0030】本願の請求項3に記載の発明によれば、上
記発明の効果に加え、水素使用先装置の使用量に追従し
て水素を安定に製造し、確実に供給することができる。
本願の請求項4に記載の発明によれば、PSA装置にお
ける制御外乱をなくし、負荷追従速度を改善することが
できる。また、巨大な製品ガスホルダを必要としないの
で、装置の小型化および設備費の低減を図ることができ
る。本願の請求項5に記載の発明によれば、上記発明の
効果に加え、水素使用先装置の使用量に追従して水素を
安定に製造し、確実に供給することができる。
According to the third aspect of the present invention, in addition to the effects of the above-described invention, hydrogen can be stably produced and reliably supplied in accordance with the amount of use of the hydrogen destination apparatus.
According to the invention described in claim 4 of the present application, control disturbance in the PSA device can be eliminated, and the load following speed can be improved. Further, since a huge product gas holder is not required, the size of the apparatus can be reduced and the equipment cost can be reduced. According to the invention as set forth in claim 5 of the present application, in addition to the effects of the above-described invention, hydrogen can be stably produced and reliably supplied in accordance with the usage amount of the hydrogen usage destination device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す説明図。FIG. 1 is an explanatory view showing the principle of the present invention.

【図2】本発明の原理を示す説明図。FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】本発明の一実施例に適用されるPSA装置の説
明図。
FIG. 3 is an explanatory diagram of a PSA device applied to one embodiment of the present invention.

【図4】本発明の一実施例における装置負荷の演算方法
の説明図。
FIG. 4 is an explanatory diagram of an apparatus load calculation method according to an embodiment of the present invention.

【図5】本発明の一実施例におけるガスホルダ内圧力と
これに相当する装置負荷との関係を示す図。
FIG. 5 is a diagram showing the relationship between the pressure inside the gas holder and the device load corresponding to the pressure in the embodiment of the present invention.

【図6】PSA装置の説明図。FIG. 6 is an explanatory diagram of a PSA device.

【図7】従来技術の説明図。FIG. 7 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…原料ガス供給源、2…水素ホルダ、3…オフガスホ
ルダ、4…配管類、5…原料ガス、A、B、C…吸着
塔、61…改質原料、62…原料改質装置、63…改質
ガス、64…PSA装置、65…製品ガスホルダ、66
…製品ガス、67…水蒸気、68…燃料、69…燃焼用
空気、70…オフガス。
DESCRIPTION OF SYMBOLS 1 ... Source gas supply source, 2 ... Hydrogen holder, 3 ... Off gas holder, 4 ... Piping, 5 ... Source gas, A, B, C ... Adsorption tower, 61 ... Reforming raw material, 62 ... Raw material reforming apparatus, 63 ... reformed gas, 64 ... PSA device, 65 ... product gas holder, 66
... product gas, 67 ... water vapor, 68 ... fuel, 69 ... combustion air, 70 ... off gas.

フロントページの続き (72)発明者 菅谷 智樹 神奈川県横浜市鶴見区東寺尾5−2−10 Fターム(参考) 4D012 CA20 CB16 CD07 CE01 CE02 CF01 CF03 CJ01 CJ02 CJ07 4G040 EA02 EA03 EA06 EB16 EB43 EC02 FA04 FB04 FC03 FD01 FD02 FE01 4H060 AA01 BB08 BB22 BB33 CC12 DD01 DD02 DD03 EE03 FF03 FF13 Continued on the front page (72) Inventor Tomoki Sugaya 5-2-10 Higashi Terao, Tsurumi-ku, Yokohama-shi, Kanagawa F-term (reference) 4D012 CA20 CB16 CD07 CE01 CE02 CF01 CF03 CJ01 CJ02 CJ07 4G040 EA02 EA03 EA06 EB16 EB43 EC02 FA04 FB04 FC03 FD01 FD02 FE01 4H060 AA01 BB08 BB22 BB33 CC12 DD01 DD02 DD03 EE03 FF03 FF13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸着剤を充填した、少なくとも3塔の吸
着塔を有する圧力変動吸着分離(PSA)装置に原料ガ
スを導入し、前記各吸着塔で、前記原料ガス中の易吸着
成分を吸着剤に吸着させて難吸着成分を分離、回収する
吸着工程と、該吸着工程が終了した吸着塔を減圧して吸
着塔から流出するオフガスを他の吸着塔のパージガスと
して用いる減圧工程と、該減圧工程が終了した吸着塔を
さらに減圧して吸着剤から離脱するオフガスを回収する
ブローダウン工程と、該ブローダウン工程が終了した吸
着塔に、他の吸着塔の減圧工程時に該吸着塔から流出す
るオフガスを導入して塔内をパージするパージ工程と、
該パージ工程が終了した吸着塔に製品ガスを導入して昇
圧する昇圧工程とを有する一連の圧力変動吸着分離操作
を所定のインターバルで順次繰り返して前記原料ガス中
の特定成分を回収し、製品ガスホルダを介してガス使用
先の装置に送出する、圧力変動吸着分離装置を用いた工
業ガス製造方法において、 前記製品ガスホルダにおける圧力変動を測定し、該測定
値に基いて前記製品ガスホルダの変化量平均値補正後の
圧力(Pn )を求め、該変化量平均値補正後の圧力に基
いて前記圧力変動吸着分離装置の装置負荷を求めるとと
もに、前記製品ガスホルダの圧力変動の測定値と装置負
荷演算時の重み係数とに基いて前記圧力変動吸着分離装
置の装置負荷の先行変動量を求め、該装置負荷先行変動
量を、前記変化量平均値補正後の圧力(Pn )に基いて
求めた装置負荷に加えて先行装置負荷とし、該先行装置
負荷に基いて前記圧力変動吸着分離装置への原料ガスの
導入量および前記各工程の所要時間を制御することを特
徴とする、圧力変動吸着分離装置を用いた工業ガス製造
方法。
1. A raw material gas is introduced into a pressure fluctuation adsorption separation (PSA) device having at least three adsorption columns filled with an adsorbent, and each of the adsorption columns adsorbs easily adsorbable components in the raw material gas. An adsorbing step of separating and recovering the hardly adsorbable components by adsorbing the adsorbent on the adsorbent; a depressurizing step of using the off-gas flowing out of the adsorbing tower by depressurizing the adsorbing tower after the adsorbing step as a purge gas of another adsorbing tower; A blowdown step of collecting the off-gas released from the adsorbent by further reducing the pressure of the adsorption tower after the step is completed, and flowing out of the adsorption tower during the pressure reduction step of another adsorption tower to the adsorption tower after the blowdown step is completed. A purging step of introducing off-gas and purging the inside of the tower,
A series of pressure-fluctuation adsorption / separation operations including a step of introducing a product gas into the adsorption tower after the purging step and a step of increasing the pressure to sequentially increase the pressure-concentration adsorption separation operation at predetermined intervals to collect specific components in the raw material gas, An industrial gas production method using a pressure fluctuation adsorption / separation device, which is sent to a device at a gas use destination via a device, wherein a pressure fluctuation in the product gas holder is measured, and a change amount average value of the product gas holder is measured based on the measured value. The corrected pressure (P n ) is obtained, the device load of the pressure fluctuation adsorption / separation device is obtained based on the pressure after the change amount average value correction, and the measured value of the pressure fluctuation of the product gas holder and the device load calculation time are calculated. Of the apparatus load of the pressure fluctuation adsorption / separation apparatus is calculated based on the weight coefficient of the pressure fluctuation adsorption separation apparatus, and the apparatus load preceding fluctuation amount is calculated as the pressure (P n ) after the correction of the average value of the change amount. In addition to the apparatus load determined based on the preceding apparatus load, the preceding apparatus load is used, and based on the preceding apparatus load, the introduction amount of the raw material gas to the pressure fluctuation adsorption separation apparatus and the time required for each of the steps are controlled. Industrial gas production method using a pressure fluctuation adsorption separation device.
【請求項2】 前記減圧工程とブローダウン工程との間
に、減圧工程が終了した吸着塔と前記パージ工程が終了
した他の吸着塔とを連通して塔内圧力を等しくする均圧
工程を有し、前記パージ工程と昇圧工程との間に、パー
ジ工程が終了した吸着塔と前記減圧工程が終了した他の
吸着塔とを連通して塔内圧力を等しくする均圧工程を有
することを特徴とする請求項1に記載の、圧力変動吸着
分離装置を用いた工業ガス製造方法。
2. A pressure equalizing step between the pressure reducing step and the blow-down step, in which the pressure in the pressure reducing step is communicated with the other adsorption tower in which the purging step has been completed to equalize the pressure in the tower. Having a pressure equalizing step between the purging step and the pressure increasing step to equalize the column pressure by communicating the adsorption tower after the purging step and the other adsorption tower after the depressurizing step. An industrial gas production method using the pressure fluctuation adsorption separation device according to claim 1.
【請求項3】 前記原料ガスが水素含有ガスであり、原
料ガスからの回収成分が水素であることを特徴とする請
求項1または2に記載の、圧力変動吸着分離装置を用い
た工業ガス製造方法。
3. The industrial gas production according to claim 1, wherein the source gas is a hydrogen-containing gas, and a component recovered from the source gas is hydrogen. Method.
【請求項4】 吸着剤を充填した、少なくとも第1、第
2および第3の吸着塔を有する圧力変動吸着分離(PS
A)装置に原料ガスを導入し、前記各吸着塔で、前記原
料ガス中の易吸着成分を吸着剤に吸着させて難吸着成分
を分離、回収する吸着工程と、該吸着工程が終了した吸
着塔を減圧して前記吸着塔から流出するオフガスを他の
吸着塔のパージガスとして用いる減圧工程と、該減圧工
程が終了した吸着塔とパージ工程が終了した前記他の吸
着塔を連通して塔内圧力を等しくする均圧工程と、該均
圧工程が終了した吸着塔をさらに減圧して吸着剤から離
脱するオフガスを回収するブローダウン工程と、該ブロ
ーダウン工程が終了した吸着塔に、他の吸着塔の減圧工
程時に該吸着塔から流出するオフガスを導入して塔内を
パージするパージ工程と、該パージ工程が終了した吸着
塔と前記減圧工程が終了した他の吸着塔とを連通して塔
内圧力を等しくする均圧工程と、該均圧工程が終了した
吸着塔に製品ガスを導入して昇圧する昇圧工程とを有す
る一連の圧力変動吸着分離操作を所定のインターバルで
順次繰り返して前記原料ガス中の特定成分を回収し、製
品ガスホルダを介してガス使用先の装置に送出する、圧
力変動吸着分離装置を用いた工業ガス製造方法におい
て、 前記製品ガスホルダの圧力を測定し、該製品ガスホルダ
における、第2吸着塔の減圧工程時の平均圧力(P1a
と第3吸着塔の昇圧工程時の平均圧力(P1b)との平均
値(Pn-2 )と、第1吸着塔の減圧工程時の平均圧力
(P2a)と第2吸着塔の昇圧工程時の平均圧力(P2b
との平均値(Pn-1 )に基いて下記式(1)により変化
量平均値補正後の製品ガスホルダ圧力(Pn )を求め、 Pn (MPa)=〔(Pn-2 )+(Pn-1 )〕/2 ・・・(1) 該変化量平均値補正後の製品ガスホルダ圧力(Pn )に
基いて下記式(2)により前記圧力変動吸着分離装置の
装置負荷(Yn )を求め、 Yn (%)=A・Pn +B ・・・(2) (ここで、AおよびBは、製品ガスホルダ圧力値から装
置負荷を求めるための一次近似式の係数であり、Aは、
ゲイン、Bは、バイアスである。)次いで、前記製品ガ
スホルダの、前記平均圧力の平均値(Pn-2 )と(P
n-1)の差分(Pn-2 −Pn-1 )と装置負荷演算時の重
み係数(K)に基いて下記(3)式により前記圧力変動
吸着分離装置の装置負荷の先行変動量(Zn )を予測
し、 Zn =(Pn-2 −Pn-1 )・K ・・・(3) (K=重み係数) 該予測した装置負荷先行変動量(Zn )を、下記式
(4)により、前記変化量平均値補正後の製品ガスホル
ダに基いて求めた装置負荷量(Yn )に加えて先行装置
負荷(Xn )とし、 Xn =Yn +Zn ・・・(4) 以下、同様の操作を順次繰り返して先行装置負荷を求
め、求めた先行装置負荷(Xn )に基いて前記圧力変動
吸着分離装置への原料ガス導入量および各吸着塔におけ
る前記各処理工程の所要時間を制御することを特徴とす
る、圧力変動吸着分離装置を用いた工業ガス製造方法。
4. A pressure swing adsorption separation (PS) having at least first, second and third adsorption columns packed with an adsorbent.
A) A raw material gas is introduced into an apparatus, and in each of the adsorption towers, an easily adsorbable component in the raw material gas is adsorbed by an adsorbent to separate and recover hardly adsorbable components, and an adsorption step in which the adsorption step is completed. A decompression step in which the offgas flowing out of the adsorption tower by depressurizing the tower is used as a purge gas for another adsorption tower, and the adsorption tower after the decompression step is communicated with the other adsorption tower after the purge step to communicate with each other. A pressure equalizing step for equalizing the pressure, a blow-down step of further reducing the pressure of the adsorption tower after the pressure equalizing step is completed, and collecting the off-gas released from the adsorbent; A purging step of introducing an off-gas flowing out of the adsorption tower during the depressurization step of the adsorption tower to purge the inside of the tower, and connecting the adsorption tower after the purging step and the other adsorption tower after the depressurization step to one another. Equalize tower pressure A series of pressure fluctuation adsorption / separation operations having a pressure equalizing step and a pressure increasing step of introducing and increasing the pressure of the product gas into the adsorption tower after the pressure equalizing step has been completed are sequentially repeated at predetermined intervals, and specific components in the raw material gas are repeated. Recovering and sending it to a device where gas is used through a product gas holder, using a pressure fluctuation adsorption / separation device, wherein the pressure of the product gas holder is measured, and the second adsorption tower in the product gas holder is measured. Pressure during the pressure reduction step ( P1a )
(P n-2 ) of the average pressure (P 1b ) during the pressure increase step of the third adsorption tower, the average pressure (P 2a ) during the pressure reduction step of the first adsorption tower, and the pressure increase of the second adsorption tower. Average pressure during process ( P2b )
Then, the product gas holder pressure (P n ) after the correction of the average value of the variation is obtained from the following equation (1) based on the average value (P n-1 ) of the following formula: P n (MPa) = [(P n−2 ) + (P n-1 )] / 2 (1) Based on the product gas holder pressure (P n ) after the correction of the average value of the variation, the load (Y) of the pressure fluctuation adsorption / separation apparatus is calculated by the following equation (2). n ), Y n (%) = A · P n + B (2) (where A and B are coefficients of a first-order approximation formula for obtaining an apparatus load from a product gas holder pressure value, A is
The gain, B, is the bias. Then, the average value (P n−2 ) of the average pressure of the product gas holder and (P n−2 )
n-1 ) based on the difference ( Pn-2- Pn-1 ) and the weighting coefficient (K) at the time of calculating the device load, the following equation (3) is used to calculate the preceding fluctuation amount of the device load of the pressure fluctuation adsorption / separation device. (Z n ) is predicted, and Z n = (P n−2 −P n−1 ) · K (3) (K = weight coefficient) The predicted device load preceding fluctuation amount (Z n ) by the following equation (4), a device load the product obtained on the basis of the gas holder after the variation average value correction (Y n) in addition to the preceding device load (X n), X n = Y n + Z n ·· (4) Hereinafter, the same operation is sequentially repeated to obtain the preceding apparatus load, and based on the obtained preceding apparatus load (X n ), the amount of the raw material gas introduced into the pressure fluctuation adsorption / separation apparatus and the above-mentioned respective values in each adsorption tower. An industrial gas production method using a pressure-fluctuation adsorption / separation apparatus, characterized by controlling the time required for a treatment step.
【請求項5】 前記原料ガスが水素含有ガスであり、原
料ガスからの回収成分が、水素であることを特徴とする
請求項4に記載の、圧力変動吸着分離装置を用いた工業
ガス製造方法。
5. The method according to claim 4, wherein the raw material gas is a hydrogen-containing gas, and a component recovered from the raw material gas is hydrogen. .
JP2000090866A 2000-03-29 2000-03-29 Method for producing industrial gas by using pressure- varied adsorptive separation apparatus Pending JP2001279267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090866A JP2001279267A (en) 2000-03-29 2000-03-29 Method for producing industrial gas by using pressure- varied adsorptive separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090866A JP2001279267A (en) 2000-03-29 2000-03-29 Method for producing industrial gas by using pressure- varied adsorptive separation apparatus

Publications (1)

Publication Number Publication Date
JP2001279267A true JP2001279267A (en) 2001-10-10

Family

ID=18606407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090866A Pending JP2001279267A (en) 2000-03-29 2000-03-29 Method for producing industrial gas by using pressure- varied adsorptive separation apparatus

Country Status (1)

Country Link
JP (1) JP2001279267A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014523A1 (en) * 2002-08-07 2004-02-19 Sumitomo Seika Chemicals Co., Ltd. Method of separating target gas
JP2008524107A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for hydrogen production
JP2010209036A (en) * 2009-03-12 2010-09-24 Taiyo Nippon Sanso Corp Methane concentration method
JP2014509558A (en) * 2011-03-01 2014-04-21 エクソンモービル アップストリーム リサーチ カンパニー Method and related apparatus and system for removing contaminants from hydrocarbon streams by swing adsorption
JP2021030134A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas purification apparatus, control method for the same, and hydrogen production apparatus
JP2021030135A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas purification apparatus, control method for the same, and hydrogen production apparatus
JP2021030136A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas refining apparatus and control method for the same, and hydrogen production apparatus
JP2021133285A (en) * 2020-02-26 2021-09-13 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recover method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014523A1 (en) * 2002-08-07 2004-02-19 Sumitomo Seika Chemicals Co., Ltd. Method of separating target gas
JP2008524107A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for hydrogen production
JP2010209036A (en) * 2009-03-12 2010-09-24 Taiyo Nippon Sanso Corp Methane concentration method
JP2014509558A (en) * 2011-03-01 2014-04-21 エクソンモービル アップストリーム リサーチ カンパニー Method and related apparatus and system for removing contaminants from hydrocarbon streams by swing adsorption
JP2021030134A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas purification apparatus, control method for the same, and hydrogen production apparatus
JP2021030135A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas purification apparatus, control method for the same, and hydrogen production apparatus
JP2021030136A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas refining apparatus and control method for the same, and hydrogen production apparatus
JP2021133285A (en) * 2020-02-26 2021-09-13 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recover method
JP7291649B2 (en) 2020-02-26 2023-06-15 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recovery method

Similar Documents

Publication Publication Date Title
US7390350B2 (en) Design and operation methods for pressure swing adsorption systems
US8298319B2 (en) Pressure swing adsorption apparatus and method for hydrogen purification using the same
US7404846B2 (en) Adsorbents for rapid cycle pressure swing adsorption processes
US6660064B2 (en) Activated carbon as sole absorbent in rapid cycle hydrogen PSA
EP1205433B1 (en) Carbon monoxide /water removal from fuel cell feed gas
JPWO2008056579A1 (en) Method and apparatus for separating hydrogen gas
KR102624566B1 (en) Method for continuous production of gaseous hydrogen stream
US20200368667A1 (en) Pressure swing adsorption (psa) device and pressure swing adsorption method
JPH0359727B2 (en)
EP2938423B1 (en) Method and device for separating a gas mixture by means of pressure swing adsorption
JPWO2008047828A1 (en) Method and apparatus for separating hydrogen gas
JP2001279267A (en) Method for producing industrial gas by using pressure- varied adsorptive separation apparatus
JP2008063152A (en) Psa apparatus for producing high purity hydrogen gas
EP2771094B1 (en) Method for processing fischer-tropsch off-gas
JP2007209868A (en) Stable operation method of pressure swing adsorption device
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
US9539534B2 (en) Method for processing Fischer-Tropsch off-gas
JP4531291B2 (en) Stable operation method of 4 tower type pressure swing adsorption equipment for hydrogen purification
JPH119935A (en) Method for controlling quality of finished product hydrogen gas by psa process
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP2003019415A (en) Method for separating gaseous mixture
JP2010227770A (en) Method of controlling flow rate for pressure swing adsorption equipment
WO2009064169A2 (en) Compact pressure swing adsorption system for hydrogen purification
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JPH06166507A (en) Purification of argon gas