JP2010209036A - Methane concentration method - Google Patents

Methane concentration method Download PDF

Info

Publication number
JP2010209036A
JP2010209036A JP2009059231A JP2009059231A JP2010209036A JP 2010209036 A JP2010209036 A JP 2010209036A JP 2009059231 A JP2009059231 A JP 2009059231A JP 2009059231 A JP2009059231 A JP 2009059231A JP 2010209036 A JP2010209036 A JP 2010209036A
Authority
JP
Japan
Prior art keywords
pressure
adsorption tower
methane
adsorption
biogas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009059231A
Other languages
Japanese (ja)
Other versions
JP5244658B2 (en
Inventor
Takeshi Mizuno
全 水野
Tatsuhisa Saito
達央 斎藤
Kenji Iwamoto
建次 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009059231A priority Critical patent/JP5244658B2/en
Publication of JP2010209036A publication Critical patent/JP2010209036A/en
Application granted granted Critical
Publication of JP5244658B2 publication Critical patent/JP5244658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently concentrate methane contained in a biogas largely changing component concentrations by a PSA method to give a product gas. <P>SOLUTION: The methane concentration method includes, by alternately changing an adsorption process for increasing pressure of an adsorption tower packed with an adsorbent to a relatively high pressure and a regeneration process having a relatively low pressure, concentrating methane contained in a biomass by a pressure swing adsorption separation method for carrying out gas separation, deriving concentrated methane from the adsorption tower to store it in a product tank and supplying concentrated methane from the adsorption tower to a user. In the method, pressure of the adsorption tower or the product tank is measured to obtain a maximum pressure and the amount of the biogas to be introduced to the adsorption tower is adjusted on the basis of the obtained maximum pressure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メタン濃縮方法に関し、詳しくは、家畜糞尿、下水処理場、食品廃棄物などの嫌気性醗酵で得られる消化ガス(バイオガス)中のメタンを圧力変動吸着分離法によって濃縮する方法に関する。   The present invention relates to a methane concentration method, and more particularly, to a method for concentrating methane in digestion gas (biogas) obtained by anaerobic fermentation such as livestock manure, sewage treatment plant, food waste, etc., by a pressure fluctuation adsorption separation method. .

混合ガス中の特定の成分を濃縮する方法として、吸着剤を充填した吸着塔を相対的に高い圧力の吸着工程と相対的に低い圧力の再生工程とに切り替えて混合ガス中の特定の成分を濃縮して製品ガスを製造する圧力変動吸着分離法(PSA法)が知られている。このPSA法において、原料ガスとなる混合ガスの組成や流量が変化しても製品ガスの品質を一定に保つため、吸着塔の出口で少なくとも1種類のガスの濃度をガス濃度検出器により検出し、該ガス濃度検出器をPLCに連結してPLCにより吸着塔の切替周期を自動的に変化させる方法が提案されている(例えば、特許文献1参照。)。   As a method of concentrating specific components in the mixed gas, the adsorption tower packed with the adsorbent is switched between a relatively high pressure adsorption step and a relatively low pressure regeneration step so that the specific component in the mixed gas is A pressure fluctuation adsorption separation method (PSA method) in which product gas is produced by concentration is known. In this PSA method, the concentration of at least one kind of gas is detected by a gas concentration detector at the outlet of the adsorption tower in order to keep the quality of the product gas constant even if the composition and flow rate of the mixed gas as the raw material gas changes. A method has been proposed in which the gas concentration detector is connected to a PLC and the switching cycle of the adsorption tower is automatically changed by the PLC (see, for example, Patent Document 1).

特開2003−19415号公報JP 2003-19415 A

しかしながら、バイオガスのように組成が変動する混合ガスを原料ガスとする場合には、組成の変動で吸着工程時の圧力(吸着圧力)が十分に上昇しないことがあり、製品ガスの純度が変動してしまうことがあった。また、前記ガス濃度検出器は一般に高価であり、圧力計や流量計に比べて応答性が劣っていたり、信頼性が低かったりするという問題があり、設備コストや保守コストが上昇し、製品ガスの価格にも影響を与えていた。   However, when a mixed gas whose composition varies, such as biogas, is used as the raw material gas, the pressure during the adsorption process (adsorption pressure) may not increase sufficiently due to the composition variation, and the purity of the product gas varies. I had to do it. In addition, the gas concentration detector is generally expensive and has problems such as poor responsiveness and low reliability compared to a pressure gauge and a flow meter, resulting in an increase in equipment cost and maintenance cost. The price was also affected.

そこで本発明は、バイオガスに含まれるメタンをPSA法により濃縮して製品ガスとするメタン濃縮方法において、安価で応答性や信頼性にも優れた圧力計を用いることによって安定した品質の製品ガス(濃縮メタン)を低コストで製造することができるメタン濃縮方法を提供することを目的としている。   Therefore, the present invention provides a product gas of stable quality by using a pressure gauge that is inexpensive and excellent in responsiveness and reliability in a methane concentration method in which methane contained in biogas is concentrated by the PSA method to obtain a product gas. It aims at providing the methane concentration method which can manufacture (concentrated methane) at low cost.

上記目的を達成するため、本発明のメタン濃縮方法は、吸着剤を充填した吸着塔の圧力を相対的に高い圧力とした吸着工程と相対的に低い圧力とした再生工程とに交互に切り換えてガス分離を行う圧力変動吸着分離法によってバイオガスに含まれるメタンを濃縮し、濃縮したメタンを前記吸着塔から導出して製品槽に貯留し、該製品槽から使用先に濃縮メタンを供給するメタン濃縮方法において、前記吸着塔又は前記製品槽の圧力を測定して最大圧力を求め、求めた最大圧力に基づいて前記吸着塔に導入するバイオガス量を調整することを特徴としている。   In order to achieve the above object, the methane concentration method of the present invention switches alternately between an adsorption step in which the pressure of the adsorption tower packed with the adsorbent is relatively high and a regeneration step in which the pressure is relatively low. Methane contained in biogas is concentrated by a pressure fluctuation adsorption separation method that performs gas separation, the condensed methane is led out from the adsorption tower and stored in a product tank, and the concentrated methane is supplied from the product tank to the user In the concentration method, the pressure in the adsorption tower or the product tank is measured to obtain a maximum pressure, and the amount of biogas introduced into the adsorption tower is adjusted based on the obtained maximum pressure.

また、本発明のメタン濃縮方法は、吸着剤を充填した吸着塔の圧力を相対的に高い圧力とした吸着工程と相対的に低い圧力とした再生工程とに交互に切り換えてガス分離を行う圧力変動吸着分離法によってバイオガスに含まれるメタンを濃縮し、濃縮したメタンを前記吸着塔から導出して製品槽に貯留し、該製品槽から使用先に濃縮メタンを供給するメタン濃縮方法において、前記吸着塔又は前記製品槽の圧力を測定して最大圧力を求め、求めた最大圧力とあらかじめ設定した目標最大圧力とを比較し、前記最大圧力が前記目標最大圧力より低いときには吸着塔に導入するバイオガス量が増加するように調整し、前記最大圧力が前記目標最大圧力より高いときには、吸着塔に導入するバイオガス量が減少するように調整することを特徴としている。   Further, the methane concentration method of the present invention is a pressure at which gas separation is performed by alternately switching between an adsorption step in which the pressure of the adsorption tower packed with the adsorbent is relatively high and a regeneration step in which the pressure is relatively low. In the methane concentration method of concentrating methane contained in biogas by a variable adsorption separation method, deriving the concentrated methane from the adsorption tower and storing it in a product tank, and supplying the concentrated methane from the product tank to a user, The maximum pressure is determined by measuring the pressure in the adsorption tower or the product tank, the calculated maximum pressure is compared with a preset target maximum pressure, and the bio to be introduced into the adsorption tower when the maximum pressure is lower than the target maximum pressure. The gas amount is adjusted to increase, and when the maximum pressure is higher than the target maximum pressure, the amount of biogas introduced into the adsorption tower is adjusted to decrease. That.

さらに、本発明のメタン濃縮方法は、前記吸着塔に導入するバイオガス量の調整を、吸着塔に導入するバイオガスを圧縮する圧縮機の回転数を制御して行うことを特徴としている。また、前記吸着塔又は前記製品槽の圧力をあらかじめ設定した時間間隔で測定し、測定した現時点の測定圧力(P0)と、一つ前の測定圧力(P1)及び二つ前の測定圧力(P2)とを比較し、(P0)<(P1)かつ(P0)<(P2)を満たしたときに、一つ前の測定圧力(P1)を前記最大圧力とすることを特徴としている。さらに、前記最大圧力を、前記製品槽の圧力を測定して求めることを特徴としている。   Furthermore, the methane concentration method of the present invention is characterized in that the amount of biogas introduced into the adsorption tower is adjusted by controlling the rotational speed of a compressor that compresses the biogas introduced into the adsorption tower. Further, the pressure in the adsorption tower or the product tank is measured at a preset time interval, and the current measurement pressure (P0), the previous measurement pressure (P1), and the two previous measurement pressures (P2) are measured. ), And when (P0) <(P1) and (P0) <(P2) are satisfied, the previous measured pressure (P1) is set as the maximum pressure. Furthermore, the maximum pressure is obtained by measuring the pressure in the product tank.

本発明のメタン濃縮方法によれば、原料となるバイオガスの組成が変動しても製品ガスとなる濃縮メタン中のメタン濃度の変動を抑えることができる。また、バイオガス中のメタン濃度が上昇したときには、バイオガス導入量を減少させるので、圧縮機の消費電力量を削減することができ、必要以上に濃縮メタンのメタン濃度を上げないことで回収率の低下を防止できる。   According to the methane concentration method of the present invention, even if the composition of the biogas as a raw material varies, the variation in the methane concentration in the concentrated methane as the product gas can be suppressed. In addition, when the methane concentration in biogas increases, the amount of biogas introduced is reduced, so the power consumption of the compressor can be reduced, and the recovery rate can be reduced by not increasing the methane concentration of concentrated methane more than necessary. Can be prevented.

本発明のメタン濃縮方法を適用した圧力変動吸着分離装置の一例を示す系統図である。It is a systematic diagram showing an example of a pressure fluctuation adsorption separation device to which the methane concentration method of the present invention is applied. 圧力変動吸着分離装置の各工程を示す説明図である。It is explanatory drawing which shows each process of a pressure fluctuation adsorption separation apparatus. 吸着塔内の圧力変化を示す図である。It is a figure which shows the pressure change in an adsorption tower. メタン濃度と圧力変化との関係を示す図である。It is a figure which shows the relationship between a methane density | concentration and a pressure change. 最大圧力を判断する手順の説明図である。It is explanatory drawing of the procedure which judges a maximum pressure. 実施例1で使用した圧力変動吸着分離装置の系統図である。1 is a system diagram of a pressure fluctuation adsorption separation device used in Example 1. FIG. 実施例2における原料メタン濃度、インバータ回転数及び製品純度の変化を示す図である。It is a figure which shows the change of the raw material methane density | concentration in Example 2, an inverter rotation speed, and product purity.

図1に示す圧力変動吸着分離装置(PSA装置)は、原料ガスであるバイオガス中のメタンを濃縮して使用先に供給するためのものであって、吸着剤として分子篩炭素を充填した2つの吸着塔A,Bと、原料ガスであるバイオガスを圧縮する圧縮機11と、圧縮熱により高温となったバイオガスを冷却して含有水分を除去する冷却器12と、製品ガスである濃縮メタンを貯留する製品槽13と、PLC等により開閉のタイミングをプログラムされた入口弁14a,14b(以下、吸着塔A側の弁には「a」を、吸着塔B側の弁には「b」を付す。),排気弁15a,15b,均圧弁16,17,パージ弁18a,18b,出口弁19a,19bと、パージガスの流量を所定流量に調整する流量調整弁20と、製品ガス流量を調整する圧力調整器21及び流量調整器22とを備えるとともに、前記製品槽13の圧力を測定する圧力計23と、該圧力計23で測定した圧力の変化から最大圧力を求めるPLC24と、該PLC24で求めた最大圧力に基づいてインバータ周波数をPID制御するデジタル指示調整計25と、該デジタル指示調整計25の指示により前記圧縮機11の回転数を制御するインバータ26とを備えている。なお、前記圧縮機11には、圧縮機吐出圧力があらかじめ設定された圧力を超えないように調整する背圧調整弁27が設けられている。   A pressure fluctuation adsorption separation apparatus (PSA apparatus) shown in FIG. 1 is for concentrating methane in a biogas, which is a raw material gas, and supplying it to a user, and includes two molecules packed with molecular sieve carbon as an adsorbent. Adsorption towers A and B, a compressor 11 that compresses biogas that is a raw material gas, a cooler 12 that cools the biogas that has been heated to high temperature by compression heat, and removes moisture, and concentrated methane that is a product gas Product tank 13 and inlet valves 14a and 14b programmed for opening and closing timing by PLC or the like (hereinafter referred to as “a” for the adsorption tower A side valve and “b” for the adsorption tower B side valve) Exhaust valves 15a and 15b, pressure equalizing valves 16 and 17, purge valves 18a and 18b, outlet valves 19a and 19b, a flow rate adjusting valve 20 for adjusting the flow rate of the purge gas to a predetermined flow rate, and a product gas flow rate are adjusted. Pressure adjustment 21 and a flow rate regulator 22, a pressure gauge 23 for measuring the pressure in the product tank 13, a PLC 24 for obtaining a maximum pressure from a change in pressure measured by the pressure gauge 23, and a maximum pressure obtained by the PLC 24 Is provided with a digital indicating adjuster 25 for PID control of the inverter frequency, and an inverter 26 for controlling the rotational speed of the compressor 11 in accordance with an instruction from the digital indicating adjuster 25. The compressor 11 is provided with a back pressure adjusting valve 27 for adjusting the compressor discharge pressure so as not to exceed a preset pressure.

このPSA装置は、図2に示す各工程を繰り返すことによってバイオガス中のメタンと二酸化炭素とを分離してメタンを濃縮し、メタンを主成分とする製品ガスを採取して使用先に供給する。なお、図2では、各工程においてガスが流れている経路のみを図示している。以下、工程順に各工程をそれぞれ説明する。   This PSA device separates methane and carbon dioxide in biogas by repeating each step shown in FIG. 2, concentrates methane, collects product gas mainly composed of methane, and supplies it to the user. . In FIG. 2, only the path through which the gas flows in each step is shown. Hereinafter, each process is demonstrated in order of a process.

図2(A)は、吸着塔Aが加圧工程、吸着塔Bが再生工程の前半を行っている状態であり、吸着塔Aの入口弁14aが開き、吸着塔A内に圧縮機11で所定圧力に圧縮されたバイオガスが導入されて塔内が加圧されている状態である。このとき、吸着塔Bのパージ弁18bと排気弁15bとが開となり、製品槽13内の製品ガスの一部が流量調整弁20で流量調整されてパージ弁18bから吸着塔Bの出口側に導入され、吸着塔B内のガスがパージされて入口側から排気弁15bを経て系外に排出される。   FIG. 2A shows a state in which the adsorption tower A is in the pressurizing step and the adsorption tower B is in the first half of the regeneration step, the inlet valve 14a of the adsorption tower A is opened, and the compressor 11 is placed in the adsorption tower A. The biogas compressed to a predetermined pressure is introduced and the inside of the tower is pressurized. At this time, the purge valve 18b and the exhaust valve 15b of the adsorption tower B are opened, and the flow rate of part of the product gas in the product tank 13 is adjusted by the flow rate adjusting valve 20 so that the purge valve 18b is moved to the outlet side of the adsorption tower B. The gas in the adsorption tower B is purged and discharged from the inlet side to the outside through the exhaust valve 15b.

図2(B)は、吸着塔Aが吸着(製品取出)工程、吸着塔Bが再生工程の後半を行っている状態であり、出口弁19aが開いて吸着塔Aの出口ガスが出口弁19aを通って製品槽13に送られるとともに、出口ガスの一部は流量調整弁20側に分かれて吸着塔Bのパージガスとして用いられる。吸着塔Aの出口ガスは、塔内に充填された分子篩炭素によってバイオガス中の二酸化炭素が吸着され、バイオガス中のメタンが所定濃度に濃縮されたガスとなっている。   FIG. 2B shows a state in which the adsorption tower A is in the adsorption (product take-out) step and the adsorption tower B is in the latter half of the regeneration step, the outlet valve 19a is opened, and the outlet gas of the adsorption tower A is the outlet valve 19a. In addition to being sent to the product tank 13, a part of the outlet gas is divided into the flow rate adjusting valve 20 side and used as the purge gas for the adsorption tower B. The exit gas of the adsorption tower A is a gas in which carbon dioxide in the biogas is adsorbed by molecular sieve carbon packed in the tower, and methane in the biogas is concentrated to a predetermined concentration.

図2(C)は、吸着塔Aが吸着工程から減圧均圧工程に切り替わり、吸着塔Bが再生工程から加圧均圧工程に切り替わった状態であり、吸着塔Aの入口弁14a及び出口弁19aと、吸着塔Bの排気弁15b及びパージ弁18bとがそれぞれ閉じ、上下の均圧弁16,17がそれぞれ開く。この均圧工程では、吸着工程が終了して塔内圧力が相対的に高い吸着塔A内のメタンに富むガスが、再生工程が終了して塔内圧力が相対的に低い吸着塔Bに回収され、結果的に吸着塔Aは減圧され、吸着塔Bは加圧されることになる。   FIG. 2C shows a state in which the adsorption tower A is switched from the adsorption process to the decompression and pressure equalization process, and the adsorption tower B is switched from the regeneration process to the pressure and pressure equalization process, and the inlet valve 14a and the outlet valve of the adsorption tower A 19a, the exhaust valve 15b and the purge valve 18b of the adsorption tower B are closed, and the upper and lower pressure equalizing valves 16, 17 are opened. In this pressure equalization process, the gas rich in methane in the adsorption tower A having a relatively high pressure in the tower after completion of the adsorption process is recovered in the adsorption tower B having a relatively low pressure in the tower after the regeneration process is finished. As a result, the adsorption tower A is depressurized and the adsorption tower B is pressurized.

図2(D)は、吸着塔Aが再生工程に切り替わり、吸着塔Bが加圧工程に切り替わった状態であり、吸着塔Aの排気弁15aが開き、塔内のガスが大気に放出されて塔内の圧力が低くなることにより、分子篩炭素に吸着した二酸化炭素が脱着して塔外に排出される。また、パージ弁18aが開き、製品槽13内の製品ガスの一部が流量調整弁20で流量調整されて吸着塔Aの出口に導入され、塔内に残留する二酸化炭素をパージする。吸着塔Bでは入口弁14bが開いて塔内に所定圧力のバイオガスが導入されて加圧される。   FIG. 2D shows a state in which the adsorption tower A is switched to the regeneration process and the adsorption tower B is switched to the pressurization process, the exhaust valve 15a of the adsorption tower A is opened, and the gas in the tower is released to the atmosphere. When the pressure in the tower is lowered, the carbon dioxide adsorbed on the molecular sieve carbon is desorbed and discharged out of the tower. Further, the purge valve 18a is opened, and a part of the product gas in the product tank 13 is adjusted in flow rate by the flow rate adjusting valve 20 and introduced into the outlet of the adsorption tower A to purge carbon dioxide remaining in the tower. In the adsorption tower B, the inlet valve 14b is opened, and a biogas having a predetermined pressure is introduced into the tower and pressurized.

図2(E)は、出口弁19bが開き、吸着塔Aが再生工程を継続しながら吸着塔Bが加圧工程から吸着工程に切り替わった状態であり、吸着塔Aの出口側には、吸着塔Bの出口ガスの一部がパージガスとして導入され、吸着塔Aの入口側からは、排気弁15aを通って塔内ガスが継続して排出されている。また、吸着塔Bの出口ガスは、その大部分が製品ガスとして製品槽13に送られる。   FIG. 2E shows a state in which the outlet valve 19b is opened and the adsorption tower A is switched from the pressurizing process to the adsorption process while the adsorption tower A continues the regeneration process. A part of the outlet gas of the tower B is introduced as a purge gas, and the gas in the tower is continuously discharged from the inlet side of the adsorption tower A through the exhaust valve 15a. Further, most of the outlet gas of the adsorption tower B is sent to the product tank 13 as product gas.

図2(F)は、吸着塔Aが再生工程から加圧均圧工程に切り替わり、吸着塔Bが吸着工程から減圧均圧工程に切り替わった状態であり、吸着塔Aの排気弁15a及びパージ弁18aと、吸着塔Bの入口弁14b及び出口弁19bとがそれぞれ閉じるとともに、均圧弁16,17がそれぞれ開き、吸着工程が終了した吸着塔B内のメタンに富むガスが、再生工程が終了した吸着塔Aに回収される。   FIG. 2F shows a state in which the adsorption tower A is switched from the regeneration process to the pressurization and pressure equalization process, and the adsorption tower B is switched from the adsorption process to the decompression and pressure equalization process, and the exhaust valve 15a and purge valve of the adsorption tower A are shown. 18a, the inlet valve 14b and the outlet valve 19b of the adsorption tower B are closed, and the pressure equalizing valves 16 and 17 are opened, and the methane-rich gas in the adsorption tower B after the adsorption process is finished, the regeneration process is finished. It is recovered in the adsorption tower A.

このような加圧、吸着、減圧均圧、再生、加圧均圧を1サイクルとして両塔A,Bで交互に繰り返すことにより、バイオガスから二酸化炭素を分離しメタンを濃縮した製品ガスが得られる。なお、出口弁19a,19bに代えて逆止弁を用いたり、流量調整弁22に代えてオリフィスを用いたりすることもできる。また、吸着塔を3塔以上設けた多塔式PSA装置とすることもでき、1塔式のPSA装置を使用することもできる。さらに、再生工程では、必要に応じて真空ポンプで塔内を減圧排気するようにしてもよい。また、吸着剤は、分子篩炭素が最適であるが、ゼオライトや活性炭等を用いることも可能である。   By repeating such pressurization, adsorption, decompression pressure equalization, regeneration, and pressure equalization in both towers A and B, a product gas obtained by separating carbon dioxide from biogas and concentrating methane is obtained. It is done. A check valve may be used instead of the outlet valves 19a and 19b, or an orifice may be used instead of the flow rate adjustment valve 22. Moreover, it can also be set as the multi-column type PSA apparatus provided with 3 or more adsorption towers, and a 1-column type PSA apparatus can also be used. Furthermore, in the regeneration step, the inside of the tower may be evacuated by a vacuum pump as necessary. As the adsorbent, molecular sieve carbon is optimal, but zeolite, activated carbon and the like can also be used.

1サイクルにおける両塔A,B及び製品槽13の圧力変化を図3に示す。均圧工程は、両塔A,Bの圧力を略均等にする工程であり、一方の塔が減圧状態、他方の塔が加圧状態になる。この均圧工程では、両塔A,Bの圧力に比べて製品槽13の圧力が高いため、製品槽13への製品ガスの流入はなく、製品槽13内の製品ガスが一定流量で使用先へ供給されることから、製品槽13の圧力は次第に低下する。このとき、圧縮機11で圧縮されたバイオガスは、背圧調整弁27を通って圧縮機11の吸入側に循環しており、両塔A,Bへのバイオガスの導入は中断している。   FIG. 3 shows changes in pressure in both towers A and B and the product tank 13 in one cycle. The pressure equalization step is a step of making the pressures of both the towers A and B substantially equal, and one of the towers is in a reduced pressure state and the other tower is in a pressurized state. In this pressure equalization process, since the pressure in the product tank 13 is higher than the pressure in both towers A and B, the product gas does not flow into the product tank 13, and the product gas in the product tank 13 is used at a constant flow rate. Therefore, the pressure in the product tank 13 gradually decreases. At this time, the biogas compressed by the compressor 11 is circulated to the suction side of the compressor 11 through the back pressure regulating valve 27, and the introduction of the biogas to both towers A and B is interrupted. .

均圧工程が終了して吸着工程に移行しても、吸着塔の圧力が製品槽13の圧力より高くなるまでの間は加圧段階であり、この加圧段階の間も、製品槽13の圧力は次第に低下している。吸着工程にある吸着塔の圧力が製品槽13の圧力より高くなると、該吸着塔の出口ガスが製品ガスとして製品槽13に流入するので、製品槽13の圧力は、吸着工程を行っている吸着塔の圧力とともに上昇する。   Even if the pressure equalization process is completed and the process proceeds to the adsorption process, the pressure is maintained until the pressure in the adsorption tower becomes higher than the pressure in the product tank 13. The pressure is gradually decreasing. When the pressure of the adsorption tower in the adsorption process becomes higher than the pressure of the product tank 13, the outlet gas of the adsorption tower flows into the product tank 13 as the product gas, so that the pressure of the product tank 13 is the adsorption which is performing the adsorption process. Rise with tower pressure.

一方、発酵槽で家畜糞尿を処理して得られるバイオガスの組成は、一般的にメタン約60%(体積%、以下同じ)で、残部のほとんどが二酸化炭素であるが、発酵槽への糞尿以外の廃棄物の投入、発酵槽の温度管理のトラブル、糞尿の投入頻度、季節による廃棄物の温度の違いなどにより、発酵槽から得られるバイオガスの組成が変動し、これらの要因によってバイオガス中のメタン濃度が変動する。   On the other hand, the composition of biogas obtained by processing livestock manure in a fermenter is generally about 60% methane (volume%, the same applies hereinafter), and most of the remainder is carbon dioxide. The composition of the biogas obtained from the fermenter fluctuates due to the input of waste other than the above, troubles in temperature control of the fermenter, the frequency of manure and urine input, and the temperature difference of the waste according to the season. The methane concentration in the inside fluctuates.

原料となるバイオガス中のメタン濃度が低下すると、相対的に吸着剤に吸着される二酸化炭素の量が増加し、製品槽13に流入する濃縮メタン(製品ガス)の量が減少するため、バイオガスの吸着塔導入量と製品槽13からの製品ガス供給量とが一定の場合、原料となるバイオガスのメタン濃度が低下した場合は、図4に示すように、製品槽13の圧力は、メタン濃度の低下に伴って低下する。さらに、吸着剤に吸着される二酸化炭素の量が増加することから、吸着剤が短時間で破過してしまい、吸着塔の圧力も十分に上昇しないので、バイオガス中の二酸化炭素を十分に吸着できなくなり、製品槽13に流入する製品ガスのメタン濃度が低下し、所定純度の製品ガスを供給できなくなってしまう。   When the concentration of methane in the raw biogas decreases, the amount of carbon dioxide adsorbed by the adsorbent increases relatively, and the amount of concentrated methane (product gas) flowing into the product tank 13 decreases. When the gas adsorption tower introduction amount and the product gas supply amount from the product tank 13 are constant, when the methane concentration of the biogas used as a raw material is lowered, as shown in FIG. Decreases with decreasing methane concentration. Furthermore, since the amount of carbon dioxide adsorbed by the adsorbent increases, the adsorbent breaks through in a short time, and the pressure in the adsorption tower does not rise sufficiently. It becomes impossible to adsorb, and the methane concentration of the product gas flowing into the product tank 13 decreases, so that the product gas with a predetermined purity cannot be supplied.

PSA装置の性能にかかわる最大の要因は吸着圧力であることから、バイオガス中のメタン濃度が低下した場合には、吸着塔の圧力を所定の吸着圧力まで十分に上昇させて吸着剤の吸着容量を増大させ、バイオガス中の二酸化炭素を吸着剤に十分に吸着させることにより、吸着塔から製品槽に向かう濃縮メタンの濃度低下を抑えることが可能となる。   The biggest factor related to the performance of the PSA device is the adsorption pressure. Therefore, when the methane concentration in the biogas decreases, the adsorption capacity of the adsorbent is increased by sufficiently increasing the pressure of the adsorption tower to the predetermined adsorption pressure. It is possible to suppress the decrease in the concentration of concentrated methane from the adsorption tower toward the product tank by sufficiently adsorbing the carbon dioxide in the biogas to the adsorbent.

吸着塔の圧力を上昇させるためには、吸着塔への原料ガス導入量を増加させればよいことから、原料ガスとなるバイオガス中のメタン濃度の変動に応じて原料ガス導入量を変化させればよいが、バイオガス中のメタン濃度を測定するためにはガス濃度検出器を用いなければならず、ガス濃度検出器は、前述のように高価で、応答性や信頼性に問題があることから、安価で、応答性や信頼性に優れた圧力計を使用し、バイオガス中のメタン濃度の変動に応じて変化する吸着塔圧力や製品槽圧力を測定して最大圧力を求め、求めた最大圧力に基づいて吸着塔に導入するバイオガス量を調整することにより、製品ガスのメタン濃度の変動を最小限に抑制することができる。   In order to increase the pressure in the adsorption tower, it is only necessary to increase the amount of raw material gas introduced into the adsorption tower. Therefore, the amount of raw material gas introduced is changed according to the variation in the methane concentration in the biogas that is the raw material gas. However, in order to measure the methane concentration in the biogas, a gas concentration detector must be used. As described above, the gas concentration detector is expensive and has problems with responsiveness and reliability. Therefore, using a pressure gauge that is inexpensive and excellent in responsiveness and reliability, obtain the maximum pressure by measuring the adsorption tower pressure and product tank pressure that change according to the fluctuation of the methane concentration in biogas. By adjusting the amount of biogas introduced into the adsorption tower based on the maximum pressure, fluctuations in the methane concentration of the product gas can be minimized.

最大圧力を求めるための圧力計を設置する位置は、バイオガス中のメタン濃度の変動に応じて圧力が変化する位置ならば任意に選定することができるが、吸着塔に比べて圧力変動幅が狭い製品槽を選定することがこのましい。また、最大圧力を求める手順も適宜選択することができるが、図5に示すように、吸着塔又は製品槽の圧力をあらかじめ設定した時間間隔で測定し、測定した現時点の測定圧力(P0)と、一つ前の測定圧力(P1)及び二つ前の測定圧力(P2)とを比較し、(P0)<(P1)かつ(P0)<(P2)を満たしたときに、一つ前の測定圧力(P1)を前記最大圧力(Pmax)と判断することにより、測定ノイズの影響を回避して最大圧力を確実に求めることができる。   The position where the pressure gauge for obtaining the maximum pressure is installed can be arbitrarily selected as long as the pressure changes according to the fluctuation of the methane concentration in the biogas, but the pressure fluctuation range is larger than that of the adsorption tower. It is recommended to select a narrow product tank. Moreover, although the procedure for obtaining the maximum pressure can be selected as appropriate, as shown in FIG. 5, the pressure in the adsorption tower or the product tank is measured at a preset time interval, and the measured current pressure (P0) is measured. The previous measured pressure (P1) and the previous measured pressure (P2) are compared, and when (P0) <(P1) and (P0) <(P2) are satisfied, By determining the measurement pressure (P1) as the maximum pressure (Pmax), it is possible to avoid the influence of measurement noise and reliably determine the maximum pressure.

例えば、本形態例に示すように、製品槽13の圧力を圧力計23で連続的に測定し、測定した圧力をPLC24で1秒間隔で読み込み、読み込んだ時点の圧力(P0)と、1秒前に読み込んだ圧力(P1)と、2秒前に読み込んだ圧力(P2)とを常に比較し、(P0)<(P1)かつ(P0)<(P2)を満たしたときに、1秒前に読み込んだ圧力(P1)を最大圧力(Pmax)と判断する。   For example, as shown in the present embodiment, the pressure in the product tank 13 is continuously measured by the pressure gauge 23, the measured pressure is read by the PLC 24 at intervals of 1 second, and the pressure (P0) at the time of reading is 1 second. When the previously read pressure (P1) and the pressure read (P2) two seconds ago are always compared, and (P0) <(P1) and (P0) <(P2) are satisfied, one second before The pressure (P1) read in is determined as the maximum pressure (Pmax).

求めた最大圧力(Pmax)は、PLC24からデジタル指示調整計25に送られ、最大圧力(Pmax)に基づいてインバータ周波数をPID制御し、デジタル指示調整計25からの指示によってインバータ26が前記圧縮機11の回転数を制御する。すなわち、製品槽13の最大圧力が低下したときには、バイオガス中のメタン濃度が低下したと判定して圧縮機11の回転数を上昇させ、吸着塔に導入するバイオガス量を増加させる。また、製品槽13の最大圧力が上昇したときには、バイオガス中のメタン濃度が上昇(復帰)したと判定して圧縮機11の回転数を下降させ、吸着塔に導入するバイオガス量を減少させる。これにより、バイオガス中のメタン濃度に応じて吸着塔に導入するバイオガス量を最適な量に調整することができ、吸着塔から製品槽13に流入する濃縮メタン、すなわち原料ガス中のメタン濃度が変動しても、製品ガス中のメタン濃度の変動を最小限に抑制でき、比較的安定したメタン濃度の製品ガスを使用先に供給することができる。   The obtained maximum pressure (Pmax) is sent from the PLC 24 to the digital indicator / regulator 25, and the inverter frequency is PID controlled based on the maximum pressure (Pmax). 11 is controlled. That is, when the maximum pressure in the product tank 13 decreases, it is determined that the methane concentration in the biogas has decreased, and the number of rotations of the compressor 11 is increased to increase the amount of biogas introduced into the adsorption tower. Further, when the maximum pressure in the product tank 13 increases, it is determined that the methane concentration in the biogas has increased (returned), and the rotation speed of the compressor 11 is decreased to reduce the amount of biogas introduced into the adsorption tower. . Thereby, the amount of biogas introduced into the adsorption tower can be adjusted to the optimum amount according to the methane concentration in the biogas, and the concentrated methane flowing into the product tank 13 from the adsorption tower, that is, the methane concentration in the raw material gas Even if fluctuates, fluctuations in the methane concentration in the product gas can be minimized, and a product gas having a relatively stable methane concentration can be supplied to the user.

例えば、原料となるバイオガスの基準組成をあらかじめ設定し、例えば基準組成をメタン濃度60%に設定したときのPSA装置の性能や構成、製品ガス仕様等に応じた製品槽13の目標最大圧力(Ps)をあらかじめ設定し、例えば0.6MPa(ゲージ圧、以下同じ)に設定し、測定した製品槽13の最大圧力(Pmax)と目標最大圧力(Ps)とを比較し、最大圧力(Pmax)が目標最大圧力(Ps)より低いときには吸着塔に導入するバイオガス量が増加するようにインバータ周波数を高く、また、前記最大圧力が前記目標最大圧力より高いときには、吸着塔に導入するバイオガス量が減少するようにインバータ周波数を低く調整することにより、安定した純度(メタン濃度)の製品ガスを連続的に供給することができる。   For example, a reference composition of biogas as a raw material is set in advance. For example, when the reference composition is set to a methane concentration of 60%, the target maximum pressure of the product tank 13 according to the performance and configuration of the PSA device, the product gas specification, etc. Ps) is set in advance, for example, 0.6 MPa (gauge pressure, the same applies hereinafter), the measured maximum pressure (Pmax) of the product tank 13 is compared with the target maximum pressure (Ps), and the maximum pressure (Pmax) When the pressure is lower than the target maximum pressure (Ps), the inverter frequency is set high so that the amount of biogas introduced into the adsorption tower increases, and when the maximum pressure is higher than the target maximum pressure, the amount of biogas introduced into the adsorption tower By adjusting the inverter frequency to be low, product gas having a stable purity (methane concentration) can be continuously supplied.

しかしながら、バイオガス中のメタン濃度が低下した場合、つまり二酸化炭素濃度が増えた場合には、バイオガス導入量を増加させることで圧力が上がり、二酸化炭素の吸着量が上がる反面、吸着剤の二酸化炭素の吸着容量には限界があるため、二酸化炭素が破過してしまうので、製品ガスの純度を一定に保つことは困難であるが、純度の変動幅を数%の範囲内にすることができる。   However, when the methane concentration in the biogas decreases, that is, when the carbon dioxide concentration increases, increasing the amount of biogas introduced increases the pressure and increases the amount of carbon dioxide adsorbed. Since the carbon adsorption capacity is limited, carbon dioxide breaks through, so it is difficult to keep the purity of the product gas constant, but the purity fluctuation range should be within a range of several percent. it can.

なお、PLC24からデジタル指示調整計25に送るデータは、求めた最大圧力(Pmax)に対応するデータであってもよく、目標最大圧力(Ps)と最大圧力(Pmax)との差(Ps−Pmax又はPmax−Ps)に対応するデータであってもよい。また、吸着塔に導入するバイオガス量の調整は、圧縮機のインバータ制御がコストや精度の面から最適であるが、圧縮機の構成などに応じて他の周知の方法で行うことも可能である。   The data sent from the PLC 24 to the digital indicating adjuster 25 may be data corresponding to the obtained maximum pressure (Pmax), and the difference (Ps−Pmax) between the target maximum pressure (Ps) and the maximum pressure (Pmax). Alternatively, data corresponding to (Pmax−Ps) may be used. In addition, the adjustment of the amount of biogas introduced into the adsorption tower is optimal in terms of cost and accuracy by controlling the inverter of the compressor, but it can also be performed by other known methods depending on the configuration of the compressor. is there.

図6に示す実験装置を用いて実験を行った。なお、図1に示したPSA装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明を省略する。この実験装置では、メタンガスと二酸化炭素とをそれぞれのボンベ51,52から混合槽53に所定量で導入し、混合槽53にて所定の組成のバイオガスを模擬した混合ガスとし、この混合ガスを、圧力調整弁54にて所定の圧力に調整し、原料ガス流量調節器55にて所定の流量に調整して原料ガスとした。各吸着塔A,B内には、吸着剤として分子篩炭素を各2リットル充填し、圧力計23a,23bを設けて圧力を監視した。   Experiments were performed using the experimental apparatus shown in FIG. Note that the same components as those of the PSA device shown in FIG. In this experimental apparatus, methane gas and carbon dioxide are introduced into the mixing tank 53 from the respective cylinders 51 and 52 in a predetermined amount, and the mixed gas is used as a mixed gas simulating a biogas having a predetermined composition. Then, the pressure was adjusted to a predetermined pressure by the pressure adjusting valve 54, and the raw material gas was adjusted to a predetermined flow rate by the raw material gas flow controller 55 to obtain the raw material gas. Each adsorption tower A and B was filled with 2 liters of molecular sieve carbon as an adsorbent, and pressure gauges 23a and 23b were provided to monitor the pressure.

原料ガスの圧力は0.6MPa、再生時の圧力は大気圧、均圧時間は2秒、吸着時間は98秒に設定し、原料ガス流量調節器55で原料ガスの導入量を、製品ガス流量調節器56で製品槽13からの製品ガス導出量をそれぞれ一定とした状態で、各ボンベ51,52からのガス量を調整することによって原料ガスのメタン濃度を60%、55%、50%に変化させ、各メタン濃度における吸着塔A,Bの最大吸着圧力を測定するとともに、二酸化炭素濃度計57で測定した二酸化炭素濃度から製品ガスのメタン濃度(製品純度)を算出した。原料メタン濃度に対する吸着圧力及び製品純度の関係を表1に示す。

Figure 2010209036
The pressure of the raw material gas is set to 0.6 MPa, the pressure during regeneration is set to atmospheric pressure, the pressure equalizing time is set to 2 seconds, and the adsorption time is set to 98 seconds. While adjusting the amount of gas from each cylinder 51, 52 while keeping the amount of product gas discharged from the product tank 13 constant by the controller 56, the methane concentration of the raw material gas is reduced to 60%, 55%, and 50%. The maximum adsorption pressure of the adsorption towers A and B at each methane concentration was measured, and the methane concentration (product purity) of the product gas was calculated from the carbon dioxide concentration measured by the carbon dioxide concentration meter 57. Table 1 shows the relationship between the adsorption pressure and the product purity with respect to the raw material methane concentration.
Figure 2010209036

次に、吸着圧力が同じになるように、原料ガスの導入量を原料ガス流量調節器55で調整した。メタン濃度60%のときの原料ガス導入量を1としたときのメタン濃度55%及びメタン濃度50%におけるそれぞれの原料ガス導入量、吸着圧力及び製品純度の関係を表2に示す。

Figure 2010209036
Next, the introduction amount of the source gas was adjusted by the source gas flow rate regulator 55 so that the adsorption pressure was the same. Table 2 shows the relationship between the raw material gas introduction amount, the adsorption pressure, and the product purity when the raw material gas introduction amount when the methane concentration is 60% is 1, and the methane concentration is 55% and the methane concentration is 50%.
Figure 2010209036

表1に示すように、原料メタン濃度が50%にまで低下した場合、本発明を適用しない場合には、製品純度が92.5%まで低下すが、本発明を適用することにより、表2に示すように、原料メタン濃度が50%になっても、製品純度は97%にまでしか低下していないことがわかる。   As shown in Table 1, when the raw material methane concentration is reduced to 50%, when the present invention is not applied, the product purity is decreased to 92.5%. As can be seen from the table, even when the raw material methane concentration is 50%, the product purity is reduced only to 97%.

図1に示したPSA装置を使用し、実際の嫌気性発酵槽から得たバイオガスを原料ガスとした。各吸着塔A,B内には、吸着剤として分子篩炭素を各33リットル充填し、均圧時間を5秒、吸着時間を150秒、再生圧力を大気圧、製品ガス供給量を5.2m/hr(大気圧、0℃換算値)、製品槽13の目標最大圧力(Ps)を0.6MPaにそれぞれ設定し、前述のように、製品槽13の最大圧力(Pmax)の変動に基づいて圧縮機11の回転数をインバータ制御し、最大圧力(Pmax)が目標最大圧力(Ps)の0.6MPaになるようにバイオガスの導入量を自動的に調整できるようにした。実験中、メタン濃度は62〜53%の範囲で変動し、インバータ周波数は、製品槽圧力に応じてインバータ周波数が自動的に変化し、メタン濃度60%以上のときには50Hz、メタン濃度53%のときには60Hzとなった。 The biogas obtained from an actual anaerobic fermentor was used as a raw material gas using the PSA apparatus shown in FIG. Each adsorption tower A and B is filled with 33 liters of molecular sieve carbon as an adsorbent, the pressure equalization time is 5 seconds, the adsorption time is 150 seconds, the regeneration pressure is atmospheric pressure, and the product gas supply amount is 5.2 m 3. / Hr (atmospheric pressure, 0 ° C. converted value), the target maximum pressure (Ps) of the product tank 13 is set to 0.6 MPa, and based on the fluctuation of the maximum pressure (Pmax) of the product tank 13 as described above. The number of revolutions of the compressor 11 is controlled by an inverter so that the amount of biogas introduced can be automatically adjusted so that the maximum pressure (Pmax) is 0.6 MPa, which is the target maximum pressure (Ps). During the experiment, the methane concentration fluctuates in the range of 62 to 53%, and the inverter frequency automatically changes according to the product tank pressure. When the methane concentration is 60% or more, 50 Hz, and when the methane concentration is 53% It became 60 Hz.

12日間連続運転したときのバイオガス中のメタン濃度(原料メタン濃度A)と、インバータ周波数Bと、製品純度Cとの状態を図7に示す。図7から明らかなように、バイオガスの組成(メタン濃度)が変動しても、製品槽13の最大圧力に基づいて圧縮機11の回転数をインバータ制御し、吸着塔へのバイオガスの導入量を調整することにより、製品純度Cを97.5〜98.5%の範囲に制御できたことがわかる。   The state of the methane concentration (raw material methane concentration A), the inverter frequency B, and the product purity C in the biogas when continuously operated for 12 days is shown in FIG. As is clear from FIG. 7, even if the biogas composition (methane concentration) fluctuates, the rotational speed of the compressor 11 is inverter-controlled based on the maximum pressure in the product tank 13, and the biogas is introduced into the adsorption tower. It can be seen that the product purity C could be controlled in the range of 97.5 to 98.5% by adjusting the amount.

11…圧縮機、12…冷却器、13…製品槽、14a,14b…入口弁、15a,15b…排気弁、16,17…均圧弁、18a,18b…パージ弁、19a,19b…出口弁、20…流量調整弁、21…圧力調整器、22…流量調整器、23…圧力計、24…PLC、25…デジタル指示調整計、26…インバータ、27…背圧調整弁、51,52…ボンベ、53…混合槽、54…圧力調整弁、55…原料ガス流量調節器、56…製品ガス流量調節器、57…二酸化炭素濃度計、A,B…吸着塔   DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Cooler, 13 ... Product tank, 14a, 14b ... Inlet valve, 15a, 15b ... Exhaust valve, 16, 17 ... Pressure equalizing valve, 18a, 18b ... Purge valve, 19a, 19b ... Outlet valve, DESCRIPTION OF SYMBOLS 20 ... Flow regulating valve, 21 ... Pressure regulator, 22 ... Flow regulator, 23 ... Pressure gauge, 24 ... PLC, 25 ... Digital indicator regulator, 26 ... Inverter, 27 ... Back pressure regulating valve, 51, 52 ... Cylinder 53 ... Mixing tank, 54 ... Pressure regulating valve, 55 ... Raw material gas flow controller, 56 ... Product gas flow controller, 57 ... Carbon dioxide concentration meter, A, B ... Adsorption tower

Claims (5)

吸着剤を充填した吸着塔の圧力を相対的に高い圧力とした吸着工程と相対的に低い圧力とした再生工程とに交互に切り換えてガス分離を行う圧力変動吸着分離法によってバイオガスに含まれるメタンを濃縮し、濃縮したメタンを前記吸着塔から導出して製品槽に貯留し、該製品槽から使用先に濃縮メタンを供給するメタン濃縮方法において、前記吸着塔又は前記製品槽の圧力を測定して最大圧力を求め、求めた最大圧力に基づいて前記吸着塔に導入するバイオガス量を調整することを特徴とするメタン濃縮方法。   Included in biogas by the pressure fluctuation adsorption separation method in which gas separation is performed by alternately switching between an adsorption step in which the pressure of the adsorption tower packed with the adsorbent is relatively high and a regeneration step in which the pressure is relatively low. Concentrate methane, extract the concentrated methane from the adsorption tower, store it in the product tank, and measure the pressure in the adsorption tower or the product tank in the methane concentration method for supplying concentrated methane from the product tank to the user Then, the maximum pressure is obtained, and the amount of biogas introduced into the adsorption tower is adjusted based on the obtained maximum pressure. 吸着剤を充填した吸着塔の圧力を相対的に高い圧力とした吸着工程と相対的に低い圧力とした再生工程とに交互に切り換えてガス分離を行う圧力変動吸着分離法によってバイオガスに含まれるメタンを濃縮し、濃縮したメタンを前記吸着塔から導出して製品槽に貯留し、該製品槽から使用先に濃縮メタンを供給するメタン濃縮方法において、前記吸着塔又は前記製品槽の圧力を測定して最大圧力を求め、求めた最大圧力とあらかじめ設定した目標最大圧力とを比較し、前記最大圧力が前記目標最大圧力より低いときには吸着塔に導入するバイオガス量が増加するように調整し、前記最大圧力が前記目標最大圧力より高いときには、吸着塔に導入するバイオガス量が減少するように調整することを特徴とするメタン濃縮方法。   Included in biogas by the pressure fluctuation adsorption separation method in which gas separation is performed by alternately switching between an adsorption step in which the pressure of the adsorption tower packed with the adsorbent is relatively high and a regeneration step in which the pressure is relatively low. Concentrate methane, extract the concentrated methane from the adsorption tower, store it in a product tank, and measure the pressure in the adsorption tower or the product tank in the methane concentration method for supplying concentrated methane from the product tank to the user Then, the maximum pressure is determined, the determined maximum pressure is compared with a preset target maximum pressure, and when the maximum pressure is lower than the target maximum pressure, the amount of biogas introduced into the adsorption tower is increased, When the maximum pressure is higher than the target maximum pressure, adjustment is made so that the amount of biogas introduced into the adsorption tower is reduced. 前記吸着塔に導入するバイオガス量の調整は、吸着塔に導入するバイオガスを圧縮する圧縮機の回転数を制御して行うことを特徴とする請求項1又は2記載のメタン濃縮方法。   The method for concentrating methane according to claim 1 or 2, wherein the amount of biogas introduced into the adsorption tower is adjusted by controlling the number of revolutions of a compressor that compresses the biogas introduced into the adsorption tower. 前記吸着塔又は前記製品槽の圧力をあらかじめ設定した時間間隔で測定し、測定した現時点の測定圧力(P0)と、一つ前の測定圧力(P1)及び二つ前の測定圧力(P2)とを比較し、(P0)<(P1)かつ(P0)<(P2)を満たしたときに、一つ前の測定圧力(P1)を前記最大圧力とすることを特徴とする請求項1乃至3いずれか1項記載のメタン濃縮方法。   The pressure of the adsorption tower or the product tank is measured at a preset time interval, and the measured current pressure (P0), the previous measured pressure (P1), and the previous measured pressure (P2) The previous measured pressure (P1) is set as the maximum pressure when (P0) <(P1) and (P0) <(P2) are satisfied. The methane concentration method of any one of Claims. 前記最大圧力は、前記製品槽の圧力を測定して求めることを特徴とする請求項1乃至4いずれか1項記載のメタン濃縮方法。   The methane concentration method according to any one of claims 1 to 4, wherein the maximum pressure is obtained by measuring a pressure in the product tank.
JP2009059231A 2009-03-12 2009-03-12 Methane enrichment method Active JP5244658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059231A JP5244658B2 (en) 2009-03-12 2009-03-12 Methane enrichment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059231A JP5244658B2 (en) 2009-03-12 2009-03-12 Methane enrichment method

Publications (2)

Publication Number Publication Date
JP2010209036A true JP2010209036A (en) 2010-09-24
JP5244658B2 JP5244658B2 (en) 2013-07-24

Family

ID=42969612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059231A Active JP5244658B2 (en) 2009-03-12 2009-03-12 Methane enrichment method

Country Status (1)

Country Link
JP (1) JP5244658B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015200075A1 (en) * 2014-06-26 2015-12-30 Uop Llc Pressure swing adsorption processes and systems for recovery of hydrogen and c2+ hydrocarbons
KR101603432B1 (en) * 2014-09-12 2016-03-15 한국전력공사 System for removing volatile organosiloxane compounds
JP2017510408A (en) * 2014-03-28 2017-04-13 ケア・インコーポレイテッドCaire Inc. Control of oxygen concentrator timing cycle based on flow rate of oxygen output
KR20170087954A (en) * 2014-11-27 2017-07-31 린데 악티엔게젤샤프트 Method and device for checking quantity and purity in pressure swing adsorption plants
WO2017170983A1 (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Pressure swing adsorption type gas manufacturing device
CN114901379A (en) * 2020-01-02 2022-08-12 阿特拉斯·科普柯空气动力股份有限公司 Method for drying compressed gas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118439A (en) * 1996-08-30 1998-05-12 Shigeo Sato Gas separating device based on psa process
JP2001224918A (en) * 2000-01-07 2001-08-21 Praxair Technol Inc Adjusting and equilibrating system for low pressure ratio vpsa plant
JP2001279267A (en) * 2000-03-29 2001-10-10 Mitsubishi Kakoki Kaisha Ltd Method for producing industrial gas by using pressure- varied adsorptive separation apparatus
JP2003019415A (en) * 2001-07-06 2003-01-21 Kuraray Chem Corp Method for separating gaseous mixture
JP2003071233A (en) * 2001-09-06 2003-03-11 Sanyo Electric Co Ltd Concentrated oxygen supply apparatus
JP2006272160A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Control equipment of biogas plant, and control process of biogas plant
JP2008295594A (en) * 2007-05-29 2008-12-11 Ngk Spark Plug Co Ltd Oxygen concentrator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118439A (en) * 1996-08-30 1998-05-12 Shigeo Sato Gas separating device based on psa process
JP2001224918A (en) * 2000-01-07 2001-08-21 Praxair Technol Inc Adjusting and equilibrating system for low pressure ratio vpsa plant
JP2001279267A (en) * 2000-03-29 2001-10-10 Mitsubishi Kakoki Kaisha Ltd Method for producing industrial gas by using pressure- varied adsorptive separation apparatus
JP2003019415A (en) * 2001-07-06 2003-01-21 Kuraray Chem Corp Method for separating gaseous mixture
JP2003071233A (en) * 2001-09-06 2003-03-11 Sanyo Electric Co Ltd Concentrated oxygen supply apparatus
JP2006272160A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Control equipment of biogas plant, and control process of biogas plant
JP2008295594A (en) * 2007-05-29 2008-12-11 Ngk Spark Plug Co Ltd Oxygen concentrator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510408A (en) * 2014-03-28 2017-04-13 ケア・インコーポレイテッドCaire Inc. Control of oxygen concentrator timing cycle based on flow rate of oxygen output
US11116930B2 (en) 2014-03-28 2021-09-14 Caire Inc. Controlling oxygen concentrator timing cycle based on flow rate of oxygen output
WO2015200075A1 (en) * 2014-06-26 2015-12-30 Uop Llc Pressure swing adsorption processes and systems for recovery of hydrogen and c2+ hydrocarbons
US9630138B2 (en) 2014-06-26 2017-04-25 Uop Llc Pressure swing adsorption processes and systems for recovery of hydrogen and C2+ hydrocarbons
KR101603432B1 (en) * 2014-09-12 2016-03-15 한국전력공사 System for removing volatile organosiloxane compounds
KR102127259B1 (en) 2014-11-27 2020-06-26 린데 악티엔게젤샤프트 Method and device for checking quantity and purity in pressure swing adsorption plants
KR20170087954A (en) * 2014-11-27 2017-07-31 린데 악티엔게젤샤프트 Method and device for checking quantity and purity in pressure swing adsorption plants
JP2017177066A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Pressure fluctuation adsorption-type gas production apparatus
CN108778466A (en) * 2016-03-31 2018-11-09 大阪瓦斯株式会社 Pressure swing adsorption formula gas manufacturing plants
PL427936A1 (en) * 2016-03-31 2019-04-23 Osaka Gas Co Ltd Device for production of gas by the pressure swing adsorption method
WO2017170983A1 (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Pressure swing adsorption type gas manufacturing device
CN114901379A (en) * 2020-01-02 2022-08-12 阿特拉斯·科普柯空气动力股份有限公司 Method for drying compressed gas
CN114901379B (en) * 2020-01-02 2024-02-27 阿特拉斯·科普柯空气动力股份有限公司 Method for drying compressed gas

Also Published As

Publication number Publication date
JP5244658B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5244658B2 (en) Methane enrichment method
CA2138180C (en) Tuning of vacuum pressure swing adsorption systems
US9770687B2 (en) Control of gas composition of a gas separation system having membranes
EP0932439B1 (en) Closed-loop feedback control for oxygen concentrator
US11116930B2 (en) Controlling oxygen concentrator timing cycle based on flow rate of oxygen output
US20100024640A1 (en) Adsorbent bed repressurization control method
RU2009115012A (en) IMPROVEMENTS IN THE WAYS OF SHORT-CYCLE ADSORPTION
JP2001224918A (en) Adjusting and equilibrating system for low pressure ratio vpsa plant
US5490871A (en) Gas separation
KR20150060721A (en) Oxygen concentration device
US11959702B2 (en) Air separation device
JP2008155168A (en) Pressure swing adsorption type gas generator
US9649589B2 (en) Oxygen concentrator system and method
JP5065581B2 (en) Pressure swing adsorption oxygen concentrator
CN109896508B (en) Novel pressure swing adsorption nitrogen production device, nitrogen production method thereof and nitrogen production system
TWI592206B (en) Product gas supply method and product gas supply system
JP2653698B2 (en) Gas separation device
KR101498269B1 (en) Nitrogen generator
Das et al. Multi-component adsorption studies on LiLSX and CMS for helium separation
JP6258577B2 (en) Method and apparatus for purifying mixed gas
JP6588265B2 (en) Carbon dioxide separation and recovery method and separation and recovery system
US20230191311A1 (en) Processes and apparatuses for operating a gas compressor
JP2004250240A (en) Manufacturing method and manufacturing apparatus for liquefied carbon dioxide
JP2020099868A (en) Control method of nitrogen gas separation device and nitrogen gas separation device
JPH10286424A (en) Method for controlling operation of pressure-swing adsorption equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5244658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250