JPH03131317A - Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption - Google Patents

Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption

Info

Publication number
JPH03131317A
JPH03131317A JP1270051A JP27005189A JPH03131317A JP H03131317 A JPH03131317 A JP H03131317A JP 1270051 A JP1270051 A JP 1270051A JP 27005189 A JP27005189 A JP 27005189A JP H03131317 A JPH03131317 A JP H03131317A
Authority
JP
Japan
Prior art keywords
pressure
flow rate
gas
adsorption
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1270051A
Other languages
Japanese (ja)
Other versions
JPH0693966B2 (en
Inventor
Shoji Urano
浦野 昌治
Hiroshi Ota
太田 啓
Chikashi Nishino
西野 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBU GAS KK, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical SEIBU GAS KK
Priority to JP1270051A priority Critical patent/JPH0693966B2/en
Publication of JPH03131317A publication Critical patent/JPH03131317A/en
Publication of JPH0693966B2 publication Critical patent/JPH0693966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To minimize the fluctuation of pressure and that of a flow rate in pressure swing adsorption continuously performing the refining of gas by setting the rising pressure of an adsorbing tower to predetermined pressure during a predetermined time and controlling the flow rate of raised pressure gas so as to perform continuous quantification. CONSTITUTION:An operation means 14 always continuously operates a raised pressure gas flow rate set value from the values read by respective reading means 11a-11c, 12, 13, 18, 19 and the pressure raising process setting time and pressure raising process advance time set according to an adsorbing process change over sequence program. A raised gas flow rate controller 15 compares the raised pressure gas flow rate set value operated by the operation means 14 with the raised pressure gas real flow rate read by a raised pressure gas flow rate reading means 16 and controls the opening degree of a flow rate control valve 17 so that the raised pressure gas real flow rate becomes same to the raised pressure gas flow rate set value. As a result, the fluctuation of pressure and that of a flow rate can be minimized without arranging a surge tank.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧力スイング吸着(以下PSAという)にJ、
る混合ガスの連続精製において、精製ガスの流量変動お
よび圧ツノ変動を微小にする装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention applies pressure swing adsorption (hereinafter referred to as PSA) to J,
The present invention relates to a device that minimizes flow rate fluctuations and pressure horn fluctuations of purified gas in continuous purification of mixed gases.

(発明の背景及び従来の技術) 連続精製PSAにお&プる流量変動および圧力変動は、
昇圧ガス流量が連続的に−・定流量でないためと、PS
AのJ押切M−IJイクル時間で所定の圧力に昇圧され
てないことが原因となって生じてくる。
(Background of the invention and prior art) Fluctuations in flow rate and pressure in continuous purification PSA are
This is because the pressurized gas flow rate is not continuous and constant, and PS
This occurs because the pressure is not increased to a predetermined level in the J push-off M-IJ cycle time of A.

R圧ガスの流ff1調節は、昇圧の進行に伴って精製ガ
スの圧力ど昇圧■稈を行っている吸着塔の差圧が減少す
るリイクルを繰り返し行っているため流量調節弁にJ、
って流部制御を行わない限り一定流量にすることが困難
である。しかし、昇圧ガス流量を一定流量にするため流
量調節弁を設置し制御を行ったとしCも、所定の時間よ
り早く所定の圧力に昇圧された場合は、昇圧ガスが流れ
ず精製ガスの圧力と流量がh rfl−する。また、所
定の時間までに所定の圧力に昇圧できない場合は、次の
吸着ユ]稈のりt)詩点で精製ガスどの圧力の差により
精製ガスは大きな流量変動と圧力変動を起こす。
The flow rate ff1 of the R pressure gas is adjusted by repeatedly performing recycling in which the pressure of the refined gas increases and the differential pressure of the adsorption tower performing the culm decreases as the pressure increases.
It is difficult to maintain a constant flow rate unless flow control is performed. However, even if a flow control valve is installed and controlled to maintain the pressurized gas flow rate at a constant flow rate, if the pressure is increased to a predetermined pressure earlier than the predetermined time, the pressurized gas will not flow and the pressure of the refined gas will change. The flow rate is h rfl-. In addition, if the pressure cannot be raised to a predetermined pressure within a predetermined time, the purified gas causes large flow rate fluctuations and pressure fluctuations due to the difference in the pressure of the purified gas at the next adsorption point.

ところが、所定の時間で所定の圧力に昇圧し、かつ、一
定の昇任ガス流量の値を求めることは、精製ガスの圧力
の変更、吸着塔の吸着工程切り替え期間の変更、外気温
石にJ:って吸着剤の吸着量の変化にJ:って昇圧ガス
mが変動するため、困難であった。
However, increasing the pressure to a predetermined pressure in a predetermined time and finding a constant value of the gas flow rate requires changing the pressure of the purified gas, changing the adsorption process switching period of the adsorption tower, and changing the outside temperature. This was difficult because the pressurized gas m changes with changes in the adsorption amount of the adsorbent.

そこで、昇圧ガス流量を制御する装置どしては、例えば
特17fl昭64−63019に記載されている。この
装置によると、屓圧ガス流量の制御を吸着塔の出口に撓
続された精製ガスの出口の切H弁を調節弁にすることに
にって、昇圧工程時に精製ガスの一部を昇圧■稈を行う
吸着塔に逆流させ、吸着塔の圧力または精製ガスの流量
の変化に応じて前記調節弁を動作させて、昇圧ガス流量
な一定にするものである。
Accordingly, a device for controlling the pressurized gas flow rate is described, for example, in Japanese Patent Application No. 17fl 1983-63019. According to this device, the pressurized gas flow rate is controlled by using the H valve at the outlet of purified gas connected to the outlet of the adsorption tower as a control valve, so that part of the purified gas is pressurized during the pressurization process. (2) The flow is made to flow back to the adsorption tower where the culm is processed, and the control valve is operated according to changes in the pressure of the adsorption tower or the flow rate of the purified gas to maintain a constant flow rate of the pressurized gas.

(発明が解決しようとする課題) しかし、上記従来の昇圧ガス流h1を制御する装置にあ
っては、調節弁が吸着工程において、流動抵抗をなるべ
く小さくする必要がある切替弁の機能と、昇圧工程にお
いて、小流量の昇圧ガスを流量調節弁の1次側圧力と2
次側圧力の差圧が昇圧工程の初期と末期で大幅に異なっ
ても一定流量で調節できる機能の両方を兼備しなGJれ
ばならないが、現状では上記の両方の機能を満足する弁
の入手が困難である。また、昇圧工程を連続的に打つて
ないので昇圧ガス工程を行っていない期間は精製ガスの
急激な流量増加が起こる。さらに、所定の時間で所定の
圧力に昇圧する方法がないので、吸着工程の切り替え時
に圧力、流量変動を生じる。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional device for controlling the pressurized gas flow h1, the control valve has the function of a switching valve that requires the flow resistance to be as small as possible in the adsorption process, and In the process, a small flow rate of pressurized gas is mixed with the primary side pressure of the flow rate control valve.
A GJ must have both the ability to adjust the flow rate at a constant rate even if the differential pressure on the next side differs significantly between the initial and final stages of the pressure increase process, but currently valves that satisfy both of the above functions are available. is difficult. Furthermore, since the pressurization process is not performed continuously, the flow rate of purified gas rapidly increases during the period when the pressurization gas process is not performed. Furthermore, since there is no method for increasing the pressure to a predetermined pressure in a predetermined time, pressure and flow rate fluctuations occur when switching between adsorption steps.

従って、圧力、流量の変動を嫌うプロセスの中に連続精
製を行うPSAを組み込む場合においでは、PSA前後
に圧力変動と流17.変動を低減さUる非常に大きな4
ノージタンクが必要どなり、建設コス1〜の増大と、設
置のための敷地の確保が太きな問題となる。
Therefore, when incorporating a PSA that performs continuous purification into a process that dislikes fluctuations in pressure and flow rate, pressure fluctuations and flow rate 17. Very large 4 to reduce fluctuations
Noge tanks are required, which increases the construction cost by 1~ and secures the site for installation, which becomes a big problem.

本発明は従来技術が右する上記問題点に鑑みてなされた
ものであ−)で、モの目的とするところは昇圧ガスの流
量を、吸着塔の昇圧を所定の時間で所定の圧力にし、か
つ連続定量にするように制御することにより、連続的に
ガス精製を行うPSAにおいでザージタンクを設置する
ことなく圧力変動と流量変動を微小にすることである。
The present invention has been made in view of the above-mentioned problems faced by the prior art.The main purpose of the present invention is to increase the flow rate of pressurized gas to a predetermined pressure in a predetermined period of time, and In addition, by controlling the amount continuously, pressure fluctuations and flow rate fluctuations can be minimized without installing a surge tank in a PSA that continuously performs gas purification.

(課題を達成するための手段) 上記目的を達成するために本発明が講する技術的手段は
、3塔以上の吸着塔をザイクル使用する圧力スイング吸
着により、供給される混合ガスから選択的に1種又はそ
れ以上のガス成分を除去する混合ガスの連続精製装置で
あって、rri製ガスの一部を昇圧に利用するものにお
いて、各吸着塔に夫々設【プられ各々吸着塔の圧力を常
時読み取って電気信号に変換する吸着塔圧力読み取り手
段と、精製ガス管路に設(−Jられ精製ガス圧力を常時
読み取って電気信号に変換する精製ガス圧力読み取り手
段と、処理前ガス管路に設りられ処理面ガス温度から吸
着剤の温度を常時読み取って電気信号に変換りる吸盾剤
渇瓜読み取り手段と、圧力スイング吸着における吸着塔
工程切替シーケンスプログラムにνづいて背圧工程を実
行する吸着塔を識別し、該吸着塔の圧ツノ読み取り手段
の検出値を前記各吸着塔の圧力読み取り手段の検出値の
中から選択して読み取る昇圧吸着塔圧力読み取り手段と
、上記吸着塔工程切替シークンスプ[1グラムに基づい
て昇圧■稈進行時間を読み取る二1′稈進行時間読み取
り手段と、上記の各読み取り手段が読み取った値と吸着
工程切替シーケンスプログラムで設定された昇圧工程設
定時間及び側圧]稈進行時間から昇圧ガス流量設定値を
常時連続的に演算する演算手段と、精製ガス管路から分
岐して昇圧1程を実行する吸着塔に連絡づ−る昇圧ガス
管路に設りられ昇圧ガスの実流量を読み取つC電気信号
に変換する昇圧ガス流量読み取り手段と、上記昇圧ガス
管路に設()られた流量調節弁と、前記演算手段で演算
された昇圧ガス流量設定値と昇圧ガス流量読み取り手段
が読み取った昇圧ガス実流量を比較し、昇圧ガス実流量
が背圧ガス流釘設定値と同じになるにうに流量調節弁の
開度ど制御する昇圧ガス流n1調節器とを具備するもの
である。
(Means for Achieving the Object) The technical means taken by the present invention to achieve the above object is to selectively select from a supplied mixed gas by pressure swing adsorption using three or more adsorption towers in cycles. A continuous purification device for mixed gas that removes one or more gas components and uses a part of the RR gas to boost the pressure. An adsorption tower pressure reading means that constantly reads the pressure and converts it into an electrical signal, a purified gas pressure reading means installed in the purified gas pipe (-J) that constantly reads the purified gas pressure and converts it into an electrical signal, and a purified gas pressure reading means that constantly reads the purified gas pressure and converts it into an electrical signal; A shielding agent depletion reading means is installed that constantly reads the adsorbent temperature from the processing surface gas temperature and converts it into an electrical signal, and the back pressure process is executed according to the adsorption tower process switching sequence program in pressure swing adsorption. boosting adsorption tower pressure reading means for identifying the adsorption tower to be used and reading the detected value of the pressure horn reading means of the adsorption tower by selecting from among the detected values of the pressure reading means of each of the adsorption towers; and the adsorption tower process switching. Sequence sp [21' culm progress time reading means that reads the pressure increase based on 1 gram and the culm progress time, the values read by each of the above reading means, the pressure increase process setting time and side pressure set in the adsorption process switching sequence program] A calculation means is installed to constantly and continuously calculate the pressurized gas flow rate setting value from the culm advancement time, and a pressurizing gas pipe is installed in the pressurizing gas pipe that branches from the purified gas pipe and connects to the adsorption tower that performs the first step of pressurizing. A pressurized gas flow rate reading means for reading the actual flow rate of gas and converting it into an electric signal, a flow rate control valve installed in the pressurized gas pipeline, and a pressurized gas flow rate setting value and pressurization calculated by the calculating means. a booster gas flow n1 regulator that compares the actual booster gas flow rate read by the gas flow reading means and controls the opening degree of the flow rate control valve so that the actual booster gas flow rate becomes the same as the back pressure gas flow setting value; It is equipped with.

(作用) 以−Fのように構成した圧力スイング吸着における連続
精製の変動を微小にする装置にあっては、昇圧ガス流量
が一定量かつ所定の時間に所定の圧力となる昇圧ガス流
量設定値が演算され、昇圧ガスの実流量が上記設定値に
一致するように制御される。そして、上記昇圧ガス流量
設定値の演算は昇圧工程の初期から終期迄連続的に常時
行なわれ、吸着塔の各工程時間の変更、精製ガスの圧力
の変更、処理前ガスの湿度及び吸着剤の再生の程痕並び
に外気温度等による吸着剤の吸着性能の時間的変動に応
じて逐次p圧ガス流吊設定値を補正し、それに基づいて
背圧ガス流量が連続的に制御される。
(Function) In the device configured as below-F to minimize fluctuations in continuous purification in pressure swing adsorption, the pressurized gas flow rate setting value is set such that the pressurized gas flow rate is a constant amount and a predetermined pressure is reached in a predetermined time. is calculated, and the actual flow rate of the pressurized gas is controlled to match the set value. The calculation of the pressurized gas flow rate setting value is continuously performed from the beginning to the end of the pressurization process, including changing the adsorption tower process time, changing the purified gas pressure, changing the humidity of the gas before treatment, and changing the adsorbent. The p-pressure gas flow setting value is successively corrected in accordance with the regeneration process and temporal fluctuations in adsorption performance of the adsorbent due to outside temperature, etc., and the back pressure gas flow rate is continuously controlled based on the correction.

(実施例〉 以下、本発明の実施例を図に基づいて説明する。(Example> Embodiments of the present invention will be described below based on the drawings.

第1図はA、B、Gと3塔の吸Wt?S (9a>  
(9b)(9C)をザイクル使用して混合ガス、即ち処
理前ガスを連続精製するPSA装置のフ[1−図である
。。
Figure 1 shows the suction Wt of the three towers A, B, and G? S (9a>
FIG. 1 is a diagram of a PSA apparatus that continuously purifies a mixed gas, that is, a pre-processing gas, using cycles of (9b) and (9C). .

図から明らかなJ、うに、各吸着325 (9a)  
(9b)(9C)は各々の下部を処理前ガス管路(1)
に。
It is clear from the figure that J, sea urchin, and each adsorption 325 (9a)
(9b) (9C) connect the lower part of each to the pre-treatment gas pipe (1)
To.

1一部を精製ガス管路(2)に夫々処理前ガス人[1切
替弁(5a>  (5b)  (5c) 、精製ガス出
口切替弁(6a>  <6b)  (6c)を介して連
絡して並列に配置されている。
A part of the purified gas pipe (2) is connected to the pre-processing gas pipe (1) through the switching valve (5a> (5b) (5c) and the purified gas outlet switching valve (6a><6b) (6c), respectively. are arranged in parallel.

また、各吸着塔(9a)  (9b)  (9c)は脱
るガス管路(4)1処理前ガス管路(1)の処理前ガス
入口切替弁(5a)  (5b)  (5c)より下流
側を介して連絡すると共に昇圧ガス管路(3)に精製ガ
ス管路(2)の精製ガス出口切替弁(6a)  (6b
)(6c)にり上流側を介して連絡している。
In addition, each adsorption tower (9a) (9b) (9c) is downstream of the pre-treatment gas inlet switching valve (5a) (5b) (5c) of the gas pipe (4) 1 pre-treatment gas pipe (1). The purified gas outlet switching valves (6a) (6b) of the purified gas pipe (2) communicate with the pressurized gas pipe (3) through the
) (6c) are connected via the upstream side.

そして、脱着ガス管路(4)及び昇任ガス管路(3)に
は各吸着塔(9a)  (9b)  (9c)に対して
一個宛の脱着ガス出口切替弁(8a)  (8b)  
(8c)R圧ガス入口切替弁(7a)  (7b)  
(7c)が設【プられている。そしC1このPSA装置
は上記切替弁の切替により吸着、脱着(減圧)、昇圧の
各工程を繰り返し行う。
The desorption gas pipe (4) and the promotion gas pipe (3) each have a desorption gas outlet switching valve (8a) (8b) for each adsorption tower (9a) (9b) (9c).
(8c) R pressure gas inlet switching valve (7a) (7b)
(7c) is set up. C1 This PSA device repeatedly performs the steps of adsorption, desorption (depressurization), and pressure increase by switching the switching valve.

萌記処理前ガス管路(1)はガス発生装置から延び、該
装置で発生した混合ガス(処理前ガス)をPSA装置に
連絡供給する。
The pre-processing gas pipe (1) extends from the gas generator and connects and supplies the mixed gas (pre-processing gas) generated in the device to the PSA device.

また昇圧ガス管路(3)は精製ガス管路(2)から分岐
されたもので、精製ガスの一部を昇圧ガスとして昇圧]
工程を行う吸着塔に供給する。
In addition, the pressurized gas pipe (3) is branched from the purified gas pipe (2), and uses part of the purified gas as pressurized gas to boost the pressure]
It is fed to the adsorption tower where the process is carried out.

図においてA吸着塔(9a)は吸着工程にあり、処理前
ガス管路(1)より導入した処理前ガスから1種または
それ以」二のガスを吸着剤によって選択的に除去し、精
製ガスとして精製ガス管路(2)を介して連続的に送出
している。
In the figure, the A adsorption tower (9a) is in the adsorption process, in which one or more gases are selectively removed by an adsorbent from the pre-treatment gas introduced from the pre-treatment gas pipe (1), and the purified gas is The purified gas is continuously delivered through the purified gas line (2).

B吸着塔(9b)は脱着工程ぐあり、前工程である吸着
工程にa3いて処即前ガスを吸着剤によって吸着したf
2着ガスを脱6ガス管路(4)を通して排出している。
The B adsorption tower (9b) is in the desorption process, and in the adsorption process, which is the previous process, the gas immediately before the process is adsorbed by the adsorbent.
The second gas is discharged through the de-6 gas pipe (4).

尚、この脱着工程の初期においてB @W j?S(9
b)は吸着工程を終えてまだ高い圧力0 であり、C吸6塔(9C)はI2名工程を終えて低い圧
力になっている。そこでB吸着塔(9b)は脱着ガスの
151出を行う前に屏圧ガス入口切首弁(7b)(7C
)を聞いてC吸着塔(9C)との間で均圧を行う。
In addition, at the beginning of this desorption process, B @W j? S(9
In b), the pressure is still high at 0 after the adsorption step, and the pressure in the 6 C absorption towers (9C) is low after the 12 step. Therefore, before the B adsorption tower (9b) performs the 151 output of desorption gas, the folding gas inlet truncated valve (7b) (7C
) and perform pressure equalization with the C adsorption tower (9C).

C@着塔(9C〉は昇圧工程であり、精製ガス管路(2
)から分岐した昇圧ガス管路(3)より精製ガスの一部
が昇圧用にC吸着塔(9C)に導入される。
C @ Arrival tower (9C) is a pressurization process, and purified gas pipe (2
) A part of the purified gas is introduced into the C adsorption tower (9C) for pressurization through the pressurization gas pipe (3) branched from the pressurization gas pipe (3).

そして、本発明においては、精製ガスの圧力変動及び流
量変動が起きないように上記昇圧ガスを、昇圧ガス管路
(3)に設ける昇圧ガス、流量調節弁(17)で、吸着
塔の昇圧を所定の時間(工程切替ナイクル時間)で所定
の圧力(精製ガス圧力)にし、かつその流量が連続定量
になるように調整する。
In the present invention, the pressure of the adsorption tower is increased using the pressure-boosting gas and flow control valve (17) provided in the pressure-boosting gas pipe (3) so as to prevent pressure fluctuations and flow rate fluctuations of the purified gas. A predetermined pressure (purified gas pressure) is set at a predetermined time (process switching time) and the flow rate is adjusted so that it becomes a continuous fixed amount.

上記昇圧ガスの流量を上記のように制御する制御手段は
コンビコータて゛構成する、。
The control means for controlling the flow rate of the pressurized gas as described above is constituted by a combi coater.

即ちコンビコータは、周知のようにCPUと、プログラ
ムが格納されたメモリーと、制御用デー1 夕が格納されたメモリーとを備え、制御用入力信号どし
て、精製ガスの圧ノJ、昇圧工程を行なっている吸着塔
の圧力、吸着剤温度、背圧ガス流量がA/Dコンバータ
を介して入力され、かつ制御出力信号が1〕/Δコンバ
ータを介して背圧ガス流tit調節弁(17)に出力さ
れるJ、うになっている。
That is, as is well known, the combi coater is equipped with a CPU, a memory in which a program is stored, and a memory in which control data is stored. The pressure, adsorbent temperature, and back pressure gas flow rate of the adsorption tower performing the process are input via the A/D converter, and the control output signal is input to the back pressure gas flow tit control valve ( 17) is output.

そのため、PSA装置には前期精製ガスの圧力を読み取
る手段とし精製ガス管路(2)の昇圧ガス管路(3)分
岐部−;り下流に、精製ガスの圧力を電気信号に変換す
る精製ガス圧力計(12)を、吸着塔の圧力を読み取る
手段として各吸着塔(9a)<qb)  (9c)に、
吸着塔の圧力を電気信号に変換する吸着塔圧力it (
11a) (11b) (11C)を夫々接続する。
Therefore, the PSA device has a means for reading the pressure of the purified gas in the first stage, and a purified gas pipe that converts the pressure of the purified gas into an electrical signal is installed downstream of the pressurized gas pipe (3) branch of the purified gas pipe (2). A pressure gauge (12) is installed in each adsorption tower (9a)<qb) (9c) as a means of reading the pressure of the adsorption tower,
The adsorption tower pressure it (
Connect 11a), (11b), and (11C), respectively.

また吸着剤温度を読み取る手段として処理前ガス管路(
1)に、処理前ガスの渇瓜(吸着剤の温度に近似し規則
的に影響をあたえる)を電気信号に変換する処理前ガス
温度計(18)を設iする。
Also, as a means of reading the adsorbent temperature, the pre-treatment gas pipe (
In 1), a pre-processing gas thermometer (18) is installed which converts the depletion of the pre-processing gas (which approximates the temperature of the adsorbent and regularly affects it) into an electrical signal.

更に昇圧ガスの流量を読み取る手段として昇圧ガス管路
(3)に、昇圧ガスの流量を電気信号に2 変換する昇圧ガス流量計(16)を接続する。
Further, as a means for reading the flow rate of the pressurized gas, a pressurized gas flow meter (16) that converts the flow rate of the pressurized gas into an electrical signal is connected to the pressurized gas pipe (3).

本発明による昇任ガス流量の制御に際しては上記各読み
取り手段からの入力データ雪に基づいて吸着塔の昇圧を
定流量で、かつ所定の工程時間で所定の圧力にするため
の昇圧ガス流11設定値を演算し、その演算値と実際の
昇任ガス流量とを比較して、実際の昇任ガス流量が、演
綿された昇圧ガス流量設定値に一致するように昇圧ガス
流量調節弁(17)の開度を調節する。
When controlling the boosting gas flow rate according to the present invention, the boosting gas flow 11 set value is used to boost the pressure of the adsorption tower at a constant flow rate and to a predetermined pressure in a predetermined process time based on the input data from each of the above-mentioned reading means. The calculated value is compared with the actual boosting gas flow rate, and the boosting gas flow rate control valve (17) is opened so that the actual boosting gas flow rate matches the calculated boosting gas flow rate set value. Adjust the degree.

上記制御用人力信号は昇圧工程の初期から終期にわたる
全期間にわたって常時継続的に入力し、それにより昇圧
ガス流量設定値は逐次補正される。
The control human input signal is constantly inputted throughout the entire period from the beginning to the end of the pressurization process, and thereby the pressurized gas flow rate set value is successively corrected.

ここで、背圧ガス流量の演算原理について以下に説明す
る。
Here, the principle of calculating the back pressure gas flow rate will be explained below.

VOI−:定められた昇任期間に吸着塔に昇圧する昇圧
ガニ1.m [Nm/II稈1 V :吸着塔に充填している吸着剤の充IJ¥間[1T
11] Pl:精製ガスの圧力[にg/cm2G] 3 P2:昇圧工程を行っている吸着塔の圧力[Kg/cn
+2G] TSP:定められた昇圧期間[5ec11” PV :
 胃HT程の進行時間[scc]f :吸着剤の昇圧ガ
ス吸着量 [Nm−oas/m−吸着剤/Kg10f]QSP:昇
圧ガス流星設定値[N耀/h]t :吸着剤温度[℃] とすれば、吸着塔の昇圧に必要な昇圧ガスff1VOL
は、吸着剤の吸着uXと吸昇圧力の関係にすVOL=(
Pl−P2>・V−1’・・・・・・・・・・・・・・
・■となり、また、昇圧ガス流hlと昇圧]、程の残り
時間の関係から VOL= QSP (TSP−TPV) /3600−
−・・−・−・−・−・■これより未知である背圧ガス
流量は、次式の通りとなる、。
VOI-: Boosting crab that boosts the pressure in the adsorption tower during the specified boosting period 1. m [Nm/II culm 1 V: Filling IJ of adsorbent packed in the adsorption tower [1T
11] Pl: Pressure of purified gas [g/cm2G] 3 P2: Pressure of adsorption tower performing pressure increasing step [Kg/cn
+2G] TSP: Specified boost period [5ec11” PV:
Progression time of gastric HT [scc] f: Adsorption amount of pressurized gas on adsorbent [Nm-oas/m-adsorbent/Kg10f] QSP: Pressurized gas meteor setting value [N/h] t: Adsorbent temperature [°C ] Then, the pressurizing gas ff1VOL necessary for pressurizing the adsorption tower is
is the relationship between the adsorption uX of the adsorbent and the suction pressure.VOL=(
Pl-P2>・V-1'・・・・・・・・・・・・・・・
・■, and from the relationship between the pressurized gas flow hl and the pressurization], VOL= QSP (TSP-TPV) /3600-
−・・−・−・−・−・■ From this, the unknown back pressure gas flow rate is as follows.

QPS−(Pi−1)2)・V−f/((TSPTPV
> /3600)・・・・・・・・・・・・・・・・・
・・・・・・・■ここで、fは吸着塔に充填した吸着剤
の温度にJ:つ−C定まる値であり、以下の通り近似す
ること4 がCきる。
QPS-(Pi-1)2)・V-f/((TSPTPV
> /3600)・・・・・・・・・・・・・・・・・・
......■Here, f is a value determined by the temperature of the adsorbent packed in the adsorption tower, and can be approximated as follows.

f=a1・t+a2・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・■但し、al、a
2は吸着剤の種類と使用条件に1つ(定まる定数 また、■は装置によって決定される定数で予め求めてお
くことができる。
f=a1・t+a2・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・■ However, al, a
2 is a constant determined by the type of adsorbent and the conditions of use, and 2 is a constant determined by the device and can be determined in advance.

従って、上記各変数P1.P2.’T°SP、 T’P
V。
Therefore, each of the above variables P1. P2. 'T°SP, T'P
V.

tど上記■■の演算式にJ、って昇圧ガス流量設定値Q
SPを求めることができる。
t is the calculation formula for ■■ above.
SP can be calculated.

尚、上記精製ガスの圧力P1は、′rN製ガス圧力計(
12) 、吸着剤温度1]は処理前ガス温度1t(18
)から直接読み取ることかぐきるが、昇圧1稈を行って
いる吸着塔の圧力P2は、各吸着塔圧力計1(11a)
 (11b) (11c)が読み取った値と]程切昂用
シーケンスプログラムから選択特定して読み取る。
In addition, the pressure P1 of the purified gas is measured using a gas pressure gauge manufactured by 'rN (
12), adsorbent temperature 1] is the pre-treatment gas temperature 1t (18
), the pressure P2 of the adsorption tower performing one culm of pressurization can be read directly from each adsorption tower pressure gauge 1 (11a).
(11b) Select and read the value read in (11c) from the sequence program for cutting.

また、定められた背圧期間TSP、t?圧工程の進行時
間TPνは夫々工程切替用シーケンスプログラムから読
み取る。
Also, the defined back pressure period TSP, t? The progress time TPν of each pressure step is read from the step switching sequence program.

斯る演算は二1ンピ1−タの演算手段(14)により行
なわれ、その演算値と、昇圧ガス流量泪(16)5 の読み取り値に基づいて昇圧ガス流量調節器(15)が
昇圧ガス流量調整弁(17)を作動させて昇圧ガスの流
量制御を行う。
Such a calculation is performed by the calculating means (14) of the 21-input processor, and based on the calculated value and the read value of the pressurized gas flow rate (16) 5, the pressurized gas flow rate regulator (15) adjusts the boosted gas flow rate. The flow rate adjustment valve (17) is operated to control the flow rate of the pressurized gas.

このときに、昇圧工程を行う吸着塔の圧力は、均圧T稈
完了時にJ3いて、第3図に承りようにケースエ、ケー
ス■、ケース■のようなバラツキを生じる。これは、吸
着剤の吸着能力の変動、脱着工程における最終圧力値の
変動等が原因となるが、上記のように、Pl、P2をそ
の都反読み取り演算するため、昇圧初期の圧力に対応し
た昇圧ガス流1iが演算され、昇圧完了時には所定の圧
力に一定量で昇圧される。
At this time, the pressure of the adsorption tower performing the pressure increasing step is J3 when the pressure equalization T culm is completed, and as shown in FIG. This is caused by fluctuations in the adsorption capacity of the adsorbent, fluctuations in the final pressure value in the desorption process, etc., but as mentioned above, in order to calculate Pl and P2 by reading their opposite sides, A pressurized gas flow 1i is calculated, and upon completion of pressurization, the pressure is increased to a predetermined pressure by a constant amount.

J:た、処理前ガスの温度の変化によっC1吸着剤の吸
着能力が変化し吸着剤の昇圧ガス吸着1fが変動するが
、fを上記0式の通り処理前ガス温度tによって算出し
ているため、吸着剤の吸着能力の変化による演算の精度
は低下しない。
J: Also, the adsorption capacity of the C1 adsorbent changes due to a change in the temperature of the pre-treatment gas, and the pressurized gas adsorption 1f of the adsorbent fluctuates. Therefore, the accuracy of calculation does not decrease due to changes in the adsorption capacity of the adsorbent.

さらに、粘度よく昇圧完了簡において所定の圧力に背、
圧させるため、R圧進行時点での昇圧ガス流量の値の演
算を昇圧■稈初期から末期まで常時6 連続に行っている。即ち昇圧工程を行っている間で、昇
圧ガス流量の演算と制御を第4図に示づ■。
In addition, when the viscosity is high and the pressure has been increased, the
In order to increase the pressure, the value of the pressurizing gas flow rate at the time when the R pressure progresses is always calculated 6 times continuously from the initial stage to the final stage of the culm. That is, the calculation and control of the pressurized gas flow rate during the pressurization step is shown in FIG.

■、■、■、■・・・のどころでPl、P2.TSP。■、■、■、■...Pl, P2. TSP.

TPVの読み取りと、演算手段(14)による背圧ガス
流量の値の演算と、昇圧ガス流部調節器(15)による
流fft 1lIll fallを繰り返し行っている
Reading of the TPV, calculation of the value of the back pressure gas flow rate by the calculation means (14), and flow fft 11Ill fall by the pressurized gas flow section regulator (15) are repeatedly performed.

これにより、様々な原因により吸着能力の時間的変動が
生じても昇圧を行う吸着塔の圧力と背圧進行時間の関係
が昇圧初期の圧力値と昇圧完了時の目標圧力とを直線で
結ばれる昇圧軌道になるように昇圧ガスの流量を制御す
ることとなる。
As a result, even if the adsorption capacity fluctuates over time due to various reasons, the relationship between the pressure in the adsorption tower that performs pressurization and the backpressure progress time can be established by connecting the initial pressure value of pressurization with the target pressure at the completion of pressurization in a straight line. The flow rate of the pressurized gas will be controlled to maintain a pressurized trajectory.

次に第2図に示すフ1−1−チャー1−に従って、制御
の手順の一例を説明する。なお、第2図に示1(ステッ
プ)の番号を示す。
Next, an example of the control procedure will be explained according to the feature 1-1-chart 1- shown in FIG. Note that the number 1 (step) shown in FIG. 2 is shown.

先ず、ステップOて゛メモリーに格納された制御データ
ーから吸着剤の充填量Vを読み取り続いて()′C″P
SAの運転中か停」[中かのフラグを別途のPSA工程
切替シーケンスプログラムから読み取り、運転中のどき
にはOに移行し、停止中7 Oでは昇圧]−稈の吸着塔がどれであるかを上記工程切
替シーケンスプログラムから読み取る。
First, in step O, the adsorbent filling amount V is read from the control data stored in the memory, and then ()'C''P
"SA is in operation or stopped" [The "in" flag is read from a separate PSA process switching sequence program, and when it is in operation, it shifts to O, and when it is stopped, the pressure increases] - Which adsorption tower is in the culm? is read from the process switching sequence program.

即ら、Oにおいては先ず昇圧工程の吸着塔がA吸着塔(
9a)かどうかを読み取り、A吸着塔(9a)でないと
きにはB吸着塔(9b)であるかどうかを読み取る。
That is, in O, first the adsorption tower in the pressure increasing step is A adsorption tower (
9a), and if it is not the A adsorption tower (9a), then it is read whether it is the B adsorption tower (9b).

そして、昇圧T程吸着塔がΔ吸着塔(9a)のときには
0でA吸W塔(9a)の圧力を、B吸着塔(9b)のと
きにはOでB吸着塔(9b)の圧力P2を夫々の吸着塔
圧力計(11a)(11b)から読み取りOに移行する
When the adsorption tower is a Δ adsorption tower (9a), the pressure of the A W absorption tower (9a) is set to 0, and when the adsorption tower is a B adsorption tower (9b), the pressure P2 of the B adsorption tower (9b) is set to O. The adsorption tower pressure gauges (11a) and (11b) read O.

A、Bいずれの吸着塔(9a)  (9b)でもないと
きにはC吸着塔(9C)であるということになるのでカ
泪(11c) から読み取ってOに移行する。
If it is neither A nor B adsorption tower (9a) (9b), it means that it is C adsorption tower (9C), so it is read from "K" (11c) and shifts to O.

(12) かう読み取る。(12) Read like that.

8 ンスプログラムから昇圧工程設定[,1間TSP、昇圧
工程進行時間TPvを読み取る。
8 Read the boosting process setting [, 1 interval TSP, and boosting process progress time TPv from the program.

更に、()で処理前ガス温度1を処理前ガス温度計から
読み取り4E)でメモリーに格納された制御データーか
ら吸着剤の温度係数al 、a2を読み取って、これら
処理前ガス温度tと吸着剤の温度係数a、、a2にすづ
いて吸着剤の昇圧ガス流量設定値QSPを演算QSP←
(P+  P2)Vf/ ((−rsP−−1−PV)
 73600) L、コ17) m算値ニ1;<づいて
Oで昇圧ガス流量設定値QSPの補正を行い、これを背
圧ガス流量調節器(15)に伝送りる一方、昇圧ガス流
母調節器(15〉は伝送される昇圧ガス流吊設定値QS
Pと昇圧ガス流量目(16>が検出する昇圧ガス実流量
を常時比較しており、両名の差に応じてバルブ間電信g
を27圧ガス流吊調節弁(17)に出力する。
Furthermore, in (), the pre-treatment gas temperature 1 is read from the pre-treatment gas thermometer, and in 4E), the temperature coefficients al and a2 of the adsorbent are read from the control data stored in the memory, and these pre-treatment gas temperature t and the adsorbent are Calculate the pressurized gas flow rate setting value QSP of the adsorbent based on the temperature coefficients a, , a2 of QSP←
(P+ P2)Vf/ ((-rsP--1-PV)
73600) L, ko17) m calculated value d1; The regulator (15) is the transmitted pressurized gas flow setting value QS.
P and the actual booster gas flow rate detected by the booster gas flow rate number (16) are constantly compared, and the inter-valve telegraph g is determined according to the difference between the two.
is output to the 27-pressure gas flow suspension control valve (17).

9 そして、昇圧ガス流量調節弁(17)は上記昇圧ガス流
量調節器(15)のバルブ開度信号を受けてバルブ開度
を可変し、昇圧ガス流量を調節する。
9 The pressurized gas flow rate control valve (17) receives the valve opening degree signal from the pressurized gas flow rate regulator (15), varies the valve opening degree, and adjusts the pressurized gas flow rate.

以上の結果、昇圧ガスの流量は吸着塔の背圧を所定の工
程切替サイクル時間で所定の圧力にし、かつ連続定量に
なるように自動制御される。
As a result of the above, the flow rate of the pressurized gas is automatically controlled so that the back pressure of the adsorption tower is brought to a predetermined pressure in a predetermined process switching cycle time, and the flow rate is continuously constant.

この制御装置を連続M製PSAに実施した結果、PSΔ
の前後に4ノージタンクを設置l′ずに、精製ガスの流
量変動及び圧力変動を2%以下に抑えることができた。
As a result of implementing this control device on a continuous M-made PSA, PSΔ
Fluctuations in the flow rate and pressure of purified gas could be suppressed to 2% or less without installing 4 nozzle tanks before and after.

(効果) 本発明は上記のように構成したから以下に記載する効果
を奏する。
(Effects) Since the present invention is configured as described above, it produces the effects described below.

1〉屏丹ガスの流量が吸着塔の昇圧を所定の工程切替サ
イクル時間で所定の圧力にし、かつ連続定量になるよう
に制御されるので、連続精製PSAは精製ガスの流1.
圧力の変動をナージタンクを設Hしてなくでも微小にす
ることができ、装置設置面積と建設費を縮小できる。
1> Since the flow rate of the Pingtan gas is controlled so that the pressure in the adsorption tower is increased to a predetermined pressure in a predetermined process switching cycle time and the flow rate is continuously constant, continuous purification PSA is performed so that the flow rate of the purified gas 1.
Fluctuations in pressure can be minimized even without the need for a energy tank, reducing equipment installation area and construction costs.

2〉吸着塔の各工程時間の変更、精製ガスの圧0 力の変更、処理前ガスの温度及び吸着剤の再生の程瓜並
びに外気温度等ににる吸着剤の吸着性能の時間的変動に
対しCも自動的に演算して制御を行うため、昇圧ガス流
量はいずれの場合でも定量となり、処理後の精製ガス流
量及び圧力も定量・定圧となる。
2> Temporal fluctuations in the adsorption performance of the adsorbent due to changes in each process time of the adsorption tower, changes in the pressure of purified gas, temperature of the gas before treatment, regeneration of the adsorbent, and outside air temperature, etc. On the other hand, since C is also automatically calculated and controlled, the pressurized gas flow rate is fixed in any case, and the purified gas flow rate and pressure after treatment are also fixed and constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧力スイング吸着における連続精製の
変動を微小にする装置の作動原理を説明するフローシー
ト、第2図は制御手順を示リフローチャート、第3図は
本発明方法と装置によりPSA法を実施したときに昇圧
工程における均圧圧力のバラツキと昇圧曲線の関係を示
すグラフ、第4図は本発明方法と装置によりPSA法を
実施ししたときに昇圧■稈にお()る、吸着塔に充填し
である吸着剤の吸着特性の変動と昇圧曲線の関係を示す
グラフである。 図中 1:処哩前ガス管路 2:精製ガス管路 1 3:背圧ガス管路 4:脱着ガス管路 ゛!1a−5c:処即前ガス入【]切tV弁6a〜6C
:精製ガス出口切替弁 78〜7C:昇圧ガス入口切替弁 8a−一8C:脱着ガス出口切替弁 98へ・9C:注着塔 11a〜11C:吸着塔圧力泪(吸着塔圧ツノ読み取り
手段) 12:精製ガス圧力泪(精製ガス圧力読み取り手段) 13:昇任を行なう吸着塔の圧力を選択して読み取る手
段 14:R圧ガス流量演算手段 15:昇圧ガス流量調節器 16:昇圧ガス流量計(昇圧ガス流量読み取り手段) 17:昇圧ガス流量調節弁 18:処理前ガス温石51(吸着剤温度読み取り手段) 2 19:14七工程進行時間読み取り手段時 許 出 願 人 西部瓦斯株式会社 特 に1 出 願 人 三菱油化1−ンジニア リング株式全相 代 理 人 !″+1 政 名 3
Fig. 1 is a flow sheet explaining the operating principle of the device for minimizing fluctuations in continuous purification in pressure swing adsorption of the present invention, Fig. 2 is a reflow chart showing the control procedure, and Fig. 3 is a flowchart explaining the operating principle of the device for minimizing fluctuations in continuous purification in pressure swing adsorption, and Fig. 3 is a reflow chart showing the control procedure. A graph showing the relationship between the variation in equalized pressure in the pressurization step and the pressure increase curve when the PSA method is carried out. Figure 4 shows the relationship between the pressure rise curve and the variation in equalized pressure in the pressure rise process when the PSA method is carried out. , is a graph showing the relationship between fluctuations in the adsorption characteristics of the adsorbent packed in the adsorption tower and the pressure increase curve. In the figure 1: Pre-treatment gas pipe 2: Purified gas pipe 1 3: Back pressure gas pipe 4: Desorption gas pipe! 1a-5c: Immediately before treatment gas on [] off tV valve 6a-6C
: Purified gas outlet switching valves 78 to 7C: Boosting gas inlet switching valves 8a to 8C: Desorption gas outlet switching valves 98 to 9C: Injection towers 11a to 11C: Adsorption tower pressure drop (adsorption tower pressure horn reading means) 12 : Purified gas pressure drop (purified gas pressure reading means) 13: Means for selecting and reading the pressure of the adsorption tower to be promoted 14: R pressure gas flow rate calculation means 15: Boosting gas flow rate regulator 16: Boosting gas flow meter (boosting gas flow meter) Gas flow rate reading means) 17: Boosting gas flow rate control valve 18: Pre-treatment gas hot stone 51 (adsorbent temperature reading means) 2 19:14 Seventh process progress time reading means Applicant: Seibu Gas Co., Ltd. Particularly 1 Applicant: Mitsubishi Oil Chemical 1-Engineering stock representative! ″+1 Masanai 3

Claims (1)

【特許請求の範囲】 3塔以上の吸着塔をサイクル使用する圧力スイング吸着
により、供給される混合ガスから選択的に1種又はそれ
以上のガス成分を除去する混合ガスの連続精製装置であ
つて、精製ガスの一部を昇圧に利用するものにおいて、 各吸着塔に夫々設けられ各々吸着塔の圧力を常時読み取
って電気信号に変換する吸着塔圧力読み取り手段と、 精製ガス管路に設けられ精製ガス圧力を常時読み取って
電気信号に変換する精製ガス圧力読み取り手段と、 処理前ガス管路に設けられ処理前ガス温度から吸着状態
の温度を常時読み取つて電気信号に変換する吸着状態温
度読み取り手段と、 圧力スイング吸着における吸着塔工程切替シーケンスプ
ログラムに基づいて昇圧工程を実行する吸着塔を識別し
、該吸着塔の圧力読み取り手段の検出値を前記各吸着塔
の圧力読み取り手段の検出値の中から選択して読み取る
昇圧吸着塔圧力読み取り手段と、 上記吸着塔工程切替シーケンスプログラムに基づいて昇
圧工程進行時間を読み取る昇圧工程進行時間読み取り手
段と、 上記各読み取り手段が読み取った値と吸着工程工程切替
シーケンスプログラムで設定された昇圧工程設定時間及
び昇圧工程進行時間から昇圧ガス流量設定値を常時連続
的に演算する演算手段と、精製ガス管路から分岐して昇
圧工程を実行する吸着塔に連絡する昇圧ガス管路に設け
られ昇圧ガスの実流量を常時読み取って電気信号に変換
する昇圧ガス流量読み取り手段と、 上記昇圧ガス管路に設けられた流量調節弁と、前記演算
手段で演算された昇圧ガス流量設定値と昇圧ガス流量読
み取り手段が読み取つた昇圧ガス実流量を比較し、昇圧
ガス実流量が昇圧ガス流量設定値と同じになるように流
量調節弁の開度を制御する昇圧ガス流量調節器と、 を具備することを特徴とする圧力スイング吸着における
連続精製の変動を微小にする装置。
[Scope of Claim] A continuous purification device for a mixed gas that selectively removes one or more gas components from a supplied mixed gas by pressure swing adsorption using three or more adsorption towers in cycles. , in which a part of the purified gas is used for pressurization, an adsorption tower pressure reading means is provided in each adsorption tower and constantly reads the pressure of each adsorption tower and converts it into an electric signal, and an adsorption tower pressure reading means is provided in the purified gas pipeline and is used to increase the pressure of the purified gas. Purified gas pressure reading means for constantly reading gas pressure and converting it into an electrical signal; and adsorption state temperature reading means provided in the pre-processing gas pipeline for constantly reading the adsorption state temperature from the pre-processing gas temperature and converting it into an electrical signal. , identify the adsorption tower that executes the pressure increasing step based on the adsorption tower process switching sequence program in pressure swing adsorption, and select the detected value of the pressure reading means of the adsorption tower from among the detected values of the pressure reading means of each of the adsorption towers. Pressure boosting adsorption tower pressure reading means for selectively reading; Pressurization step progress time reading means for reading the pressurization process progress time based on the adsorption tower process switching sequence program; and the values read by each of the reading means and the adsorption process step switching sequence. A calculation means that constantly and continuously calculates the pressurized gas flow rate setting value from the pressurization process set time and pressurization process progress time set in the program, and a pressurization unit that branches from the purified gas pipe and connects to the adsorption tower that executes the pressurization process. a pressurized gas flow rate reading means provided in the gas pipe that constantly reads the actual flow rate of the pressurized gas and converts it into an electrical signal; a flow rate control valve provided in the pressurized gas pipe; and a pressurized gas calculated by the calculation means. A boost gas flow rate regulator that compares the flow rate set value and the actual boost gas flow rate read by the boost gas flow rate reading means, and controls the opening degree of the flow rate control valve so that the actual boost gas flow rate becomes the same as the boost gas flow rate set value. An apparatus for minimizing fluctuations in continuous purification in pressure swing adsorption, characterized by comprising:
JP1270051A 1989-10-16 1989-10-16 Device for minimizing fluctuations in continuous purification in pressure swing adsorption Expired - Lifetime JPH0693966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270051A JPH0693966B2 (en) 1989-10-16 1989-10-16 Device for minimizing fluctuations in continuous purification in pressure swing adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270051A JPH0693966B2 (en) 1989-10-16 1989-10-16 Device for minimizing fluctuations in continuous purification in pressure swing adsorption

Publications (2)

Publication Number Publication Date
JPH03131317A true JPH03131317A (en) 1991-06-04
JPH0693966B2 JPH0693966B2 (en) 1994-11-24

Family

ID=17480843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270051A Expired - Lifetime JPH0693966B2 (en) 1989-10-16 1989-10-16 Device for minimizing fluctuations in continuous purification in pressure swing adsorption

Country Status (1)

Country Link
JP (1) JPH0693966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355520A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355519A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP2007261909A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Method for operating hydrogen refining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355520A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355519A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP2007261909A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Method for operating hydrogen refining apparatus

Also Published As

Publication number Publication date
JPH0693966B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
KR100196100B1 (en) Tuning of vacuum pressure swing absorption systems
EP1993706B1 (en) Psa pressure measurement and control system
JPS6022965B2 (en) Method and device for increasing a given gas ratio in a gaseous mixture
CN108367923B (en) Neon gas recovery/purification system and neon gas recovery/purification method
JP5948318B2 (en) Staged blowdown of adsorption bed
US6238458B1 (en) Process for treatment of a gaseous mixture by pressure swing adsorption, with variable production flow rate
KR20120010640A (en) Apparatus for supllying nitrogen and method of controlling the same
JPH03131317A (en) Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption
JP6384960B2 (en) Helium gas purification method and purification system
WO2017170983A1 (en) Pressure swing adsorption type gas manufacturing device
US4475930A (en) Pressure swing adsorption system using product gas as replacement for purge gas
JPH0999209A (en) Production of pressurized oxygen by adsorption
CN112316664A (en) System for accurately controlling pressure swing adsorption, pressure equalization, sequential discharge and flushing processes and use method thereof
KR101969614B1 (en) Product gas supply method and product gas supply system
CN105126533A (en) Method, apparatus and system for controlling natural gas adsorption column, and purification system
JP3025566B2 (en) Method for separating and recovering CO2 from flue gas
JP6987099B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JPS59133365A (en) Vacuum device
CN215138394U (en) System for accurately controlling pressure swing adsorption, pressure equalization, sequential discharge and flushing processes
JPH0753220B2 (en) Control method of pretreatment device for air separation device
JPS6247802B2 (en)
CN212581523U (en) Special energy-saving oxygen generation system for plateau
CN216273114U (en) Nitrogen gas highly purified&#39;s system gas equipment
JP6987098B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
US20240053098A1 (en) Air separation unit