JP2002355520A - Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen - Google Patents

Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen

Info

Publication number
JP2002355520A
JP2002355520A JP2001165923A JP2001165923A JP2002355520A JP 2002355520 A JP2002355520 A JP 2002355520A JP 2001165923 A JP2001165923 A JP 2001165923A JP 2001165923 A JP2001165923 A JP 2001165923A JP 2002355520 A JP2002355520 A JP 2002355520A
Authority
JP
Japan
Prior art keywords
pressure
tower
hydrogen
adsorption
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001165923A
Other languages
Japanese (ja)
Inventor
Hirotaka Furuta
博貴 古田
Toru Takahashi
徹 高橋
Kenichi Nakamura
健一 中村
Koji Aida
広司 会田
Ryohei Kusaka
亮平 日下
Yukihiro Kamakura
幸弘 鎌倉
Kumiko Moriguchi
久美子 森口
Hideki Miyajima
秀樹 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Chemicals Co Ltd, Mitsubishi Kakoki Kaisha Ltd, Tokyo Gas Co Ltd filed Critical Tokyo Gas Chemicals Co Ltd
Priority to JP2001165923A priority Critical patent/JP2002355520A/en
Publication of JP2002355520A publication Critical patent/JP2002355520A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the pressure to a target value of the pressure in pressurization process of each adsorption tower and suppress the fluctuation of the amount of product hydrogen without depending on factors, such as the temperature of the outside air environment in wintertime, summertime, daytime or nighttime in a four tower-type pressure-swing adsorption equipment for purifying hydrogen. SOLUTION: A flow rate control pressurization method for the four-tower-type pressure-swing adsorption apparatus for purifying hydrogen is characterized in that, by monitoring as needed the pressure in the adsorption tower in a hydrogen pressurizing process while controlling the flow rate of pressurization hydrogen according to the preset value of the flow rate of hydrogen, and correcting little by little the preset value of the flow rate of hydrogen when the pressure in the adsorption tower is increased to a predetermined adsorption pressure while using a portion of the product hydrogen, the pressure is increased to the predetermined pressure and the fluctuation of the amount of the product hydrogen can be suppressed without depending on the factors such as the temperature of the outside air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素精製用4塔式
圧力スイング吸着装置における昇圧工程における昇圧用
水素ガス流量の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the flow rate of hydrogen gas for pressurizing in a pressurizing step in a four-column pressure swing adsorption apparatus for hydrogen purification.

【0002】[0002]

【従来の技術】水素は不飽和結合への水素添加用、酸水
素炎用その他各種用途に供される基礎原料であり、燃料
電池用の燃料としても利用される。水素の工業的製造方
法として炭化水素ガスの水蒸気改質法や部分燃焼法があ
る。水蒸気改質法では改質器が用いられ、炭化水素ガス
が接触反応により改質ガスへ変えられる。得られる改質
ガスには主成分である水素のほか、CO、CO2等の副
生成分や余剰H2O、また未改質の炭化水素が含まれて
いる。このため改質ガスを例えば燃料電池にそのまま使
用したのでは電池性能を阻害してしまう。
2. Description of the Related Art Hydrogen is a basic raw material used for adding hydrogen to unsaturated bonds, for oxyhydrogen flames, and for various other uses, and is also used as a fuel for fuel cells. Industrial methods for producing hydrogen include a steam reforming method and a partial combustion method for hydrocarbon gas. In the steam reforming method, a reformer is used, and a hydrocarbon gas is converted into a reformed gas by a catalytic reaction. The obtained reformed gas contains by-products such as CO and CO 2 , surplus H 2 O, and unreformed hydrocarbons, in addition to hydrogen as a main component. Therefore, if the reformed gas is used as it is in a fuel cell, for example, the cell performance will be impaired.

【0003】例えば、燃料電池のうちリン酸型燃料電池
(PAFC)で用いる水素ガス中のCOは1%(容量
%、以下同じ)、固体高分子型燃料電池(PEFC)で
は100ppm(容量ppm)が限度であり、これらを
越えると電池性能が著しく劣化する。したがって改質ガ
スは、燃料電池へ導入する前に精製し、それら副生成分
を除去しておく必要がある。また不飽和結合への水素添
加用或いは酸水素炎用の水素は通常ボンベに詰めたもの
が使用されており、その純度は5N(99.999%)
以上が要求されている。
[0003] For example, among fuel cells, CO in hydrogen gas used in a phosphoric acid fuel cell (PAFC) is 1% (capacity%, the same applies hereinafter), and in a polymer electrolyte fuel cell (PEFC), 100 ppm (capacity ppm). Is the limit, and when these are exceeded, the battery performance is remarkably deteriorated. Therefore, it is necessary to purify the reformed gas before introducing it into the fuel cell and to remove those by-products. The hydrogen for adding hydrogen to the unsaturated bond or for the oxyhydrogen flame is usually used in a cylinder, and its purity is 5N (99.999%).
The above is required.

【0004】そのような高純度の水素を得るための水素
精製法の一つとして圧力スイング吸着法(PSA法:Pr
essure Swing Adsorption Method)がある。PSA法で
は、水素含有ガス、例えば改質器で生成しCO変成器を
経た改質ガス中の不純物を吸着剤層に加圧下で吸着させ
て分離し、常圧付近まで減圧して吸着不純物を脱着させ
る。
As one of the hydrogen purification methods for obtaining such high-purity hydrogen, a pressure swing adsorption method (PSA method: Pr
essure Swing Adsorption Method). In the PSA method, impurities in a hydrogen-containing gas, for example, a reformed gas generated in a reformer and passed through a CO converter are adsorbed and separated in an adsorbent layer under pressure, and the adsorbed impurities are reduced by reducing the pressure to about normal pressure. Desorb.

【0005】図1は、本発明において前提とする水素精
製用の4塔式圧力スイング吸着装置における各吸着塔A
〜D、配管(ライン)、各バルブ、オフガス貯蔵タンク
(オフガスタンク)等の配置関係を示す図である。図1
に示すような4塔式圧力スイング吸着装置においては吸
着、均圧減圧、均圧保持、減圧、ブローダウン、パー
ジ、均圧昇圧、H2昇圧(水素による昇圧)の各工程が
繰り返され、ブローダウンおよびパージの工程において
はオフガスが発生する。
[0005] Fig. 1 shows each adsorption tower A in a four-column pressure swing adsorption apparatus for hydrogen purification which is premised in the present invention.
FIG. 4 is a diagram showing an arrangement relationship of a pipe (line), each valve, an off-gas storage tank (off-gas tank), and the like. FIG.
Adsorption in 4-column pressure swing adsorption apparatus as shown in, equalization depressurization pressure equalization holding, vacuum, blowdown, purge, each step of the equalization repressurization, H 2 boosted (boosted by hydrogen) are repeated, blown Off gas is generated in the down and purge steps.

【0006】図2は、図1に示す水素精製用4塔式圧力
スイング吸着装置における各吸着塔の工程フローおよび
運転シーケンスの概略を示す図である。図2には各工程
の進行に伴う各吸着塔内における圧力変化も示してい
る。原料ガス、すなわち炭化水素を改質する水蒸気改質
器(燃焼部+改質部)からCO変成器を経て得られる改
質ガスはA塔に供給され、ここでH2O、CO2、CO、
CH4等の不純物の吸着が行われ、吸着されない水素が
精製水素(製品水素)となる。
FIG. 2 is a diagram schematically showing the process flow and operation sequence of each adsorption tower in the four-column pressure swing adsorption apparatus for hydrogen purification shown in FIG. FIG. 2 also shows a pressure change in each adsorption tower as each process proceeds. A raw gas, that is, a reformed gas obtained from a steam reformer (combustion unit + reforming unit) for reforming hydrocarbons through a CO converter is supplied to a tower A, where H 2 O, CO 2 , CO ,
The adsorption of impurities such as CH 4 is performed, and the non-adsorbed hydrogen becomes purified hydrogen (product hydrogen).

【0007】その間、B塔ではブローダウンからパージ
の工程が行われ、C塔では均圧減圧から均圧保持、これ
に続く減圧の工程が行われ、D塔では均圧昇圧からH2
昇圧(水素による昇圧)の工程が行われる。改質ガスの
供給は、A塔において不純物が飽和して破過する前に、
自動的にD塔に切り換えられる。この時点で、A塔は均
圧減圧から減圧保持、これに続く減圧の工程へ切り換え
られ、B塔は均圧昇圧からH2昇圧の工程へ切り換えら
れ、C塔はブローダウンからパージの工程へ切り換えら
れ、D塔は吸着の工程へ切り換えられる。以降、これら
工程を図2に示すように順次自動的に切り換え、繰り返
して連続的に操作される。
[0007] Meanwhile, in the B tower purge step is carried out from the blowdown pressure equalization holding the equalization depressurization is C tower, decompression steps subsequent thereto are performed, H 2 from the equalization repressurization in D column
The step of increasing the pressure (pressure increase with hydrogen) is performed. The supply of the reformed gas is performed before the impurities are saturated in the tower A and break through.
Automatically switched to tower D. At this point, A tower vacuum holding the equalization depressurization is switched to the pressure reduction step subsequent thereto, B column is switched from the equalization repressurization to H 2 boosting step, C column from blowdown to purge step The D tower is switched to the adsorption step. Thereafter, these steps are automatically and sequentially switched as shown in FIG. 2 and are repeatedly and continuously operated.

【0008】その間、ブローダウン工程およびパージ工
程で発生するオフガスはオフガス貯蔵タンクTへ送られ
る。これらの工程において、ブローダウン工程時のオフ
ガスは、加圧下で吸着した不純物を常圧付近まで減圧し
て脱着させる工程で発生し、オフガス導管(オフガスラ
イン)を介してオフガス貯蔵タンクに貯えられた後、水
素製造用改質器のバーナに供給される。
During that time, off-gas generated in the blow-down step and the purge step is sent to the off-gas storage tank T. In these steps, off-gas during the blow-down step was generated in a step of depressurizing and adsorbing impurities adsorbed under pressure to about normal pressure and desorbed, and stored in an off-gas storage tank via an off-gas conduit (off-gas line). Then, it is supplied to the burner of the reformer for hydrogen production.

【0009】[0009]

【発明が解決しようとする課題】前記のとおり、水素精
製用の4塔式圧力スイング吸着装置は吸着、均圧減圧、
均圧保持、減圧、ブローダウン、パージ、均圧昇圧、H
2昇圧(水素による昇圧)のサイクルで運転が行われ
る。H2昇圧は製品水素の一部を利用し、水H2昇圧工程
にある吸着塔を所定吸着圧力まで昇圧する。
As described above, the four-column pressure swing adsorption apparatus for hydrogen purification employs adsorption, pressure reduction, and pressure reduction.
Equalization hold, decompression, blowdown, purge, equalization increase, H
The operation is performed in a cycle of 2 pressure increase (pressure increase by hydrogen). The H 2 pressurization utilizes a part of the product hydrogen to increase the pressure of the adsorption tower in the water H 2 pressurization step to a predetermined adsorption pressure.

【0010】ところで、従来の水素精製用4塔式圧力ス
イング吸着装置では、その昇圧を下記(1)〜(2)の
ような方法で行っている。 (1)流量制御方法、すなわち昇圧用水素ガス流量を一
定とし、吸着塔を昇圧工程時間内に所定圧力まで昇圧で
きるように、流量設定値を調整する方法。この方法によ
れば、製品水素流量の安定性はよいが、外気温度の影響
などにより所定圧力に達しないケースがある。 (2)圧力制御方法、すなわち吸着塔の圧力が昇圧工程
時間内に所定圧力まで達するよう、バルブ開度を調整す
る方法。この方法によれば、外気温度の影響などに左右
されず、常に所定圧力に到達し得るが、昇圧用水素ガス
流量には変動が生じるため製品水素量が変動してしま
う。
In the conventional four-column pressure swing adsorption apparatus for hydrogen purification, the pressure is increased by the following methods (1) and (2). (1) A flow rate control method, that is, a method in which the flow rate set value is adjusted so that the flow rate of the hydrogen gas for pressurization is constant and the pressure of the adsorption tower can be raised to a predetermined pressure within the pressurization step time. According to this method, the stability of the product hydrogen flow rate is good, but there are cases where the predetermined pressure is not reached due to the influence of the outside air temperature. (2) A pressure control method, that is, a method in which the valve opening is adjusted so that the pressure of the adsorption tower reaches a predetermined pressure within the time of the pressure increasing step. According to this method, the pressure can always reach the predetermined pressure without being affected by the influence of the outside air temperature or the like, but the flow rate of the hydrogen gas for pressurization changes, so that the product hydrogen amount changes.

【0011】本発明は、水素精製用の4塔式圧力スイン
グ吸着装置における上記問題を解決するためになされた
ものであり、昇圧用水素ガス流量の制御を行いつつ、吸
着塔の圧力を随時監視し、流量設定値を微小刻みで補正
していくことにより、外気温度等の因子に左右されず
に、昇圧目標圧力に到達させることができるとともに、
製品水素流量の変動も抑制することができる水素精製用
4塔式圧力スイング吸着装置の昇圧流量制御方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem in a four-column pressure swing adsorption apparatus for hydrogen purification, and monitors the pressure of the adsorption tower as needed while controlling the flow rate of hydrogen gas for pressurization. Then, by correcting the flow rate set value in minute increments, it is possible to reach the boost target pressure without being influenced by factors such as the outside air temperature,
It is an object of the present invention to provide a method for controlling a pressure increase flow rate of a four-column pressure swing adsorption apparatus for hydrogen purification that can also suppress fluctuations in a product hydrogen flow rate.

【0012】[0012]

【課題を解決するための手段】本発明は、水素精製用4
塔式圧力スイング吸着装置の昇圧流量制御方法であっ
て、製品水素の一部を利用して吸着塔を所定吸着圧力ま
で昇圧するに際して、水素流量設定値に基づき昇圧水素
流量の制御を行いつつ、水素昇圧工程にある吸着塔内の
圧力を随時監視し、水素流量設定値を微小刻みで補正し
ていくことにより、外気温度等の因子に左右されずに昇
圧目標圧力に到達させ、且つ製品水素量の変動を抑制す
ることを特徴とする水素精製用4塔式圧力スイング吸着
装置の昇圧流量制御方法である。
SUMMARY OF THE INVENTION The present invention relates to a hydrogen purification device for hydrogen purification.
A step-up flow rate control method of a tower type pressure swing adsorption apparatus, wherein when increasing the pressure of an adsorption tower to a predetermined adsorption pressure using a part of product hydrogen, while controlling the pressurized hydrogen flow rate based on a hydrogen flow rate set value, The pressure in the adsorption tower in the hydrogen pressurization step is monitored as needed, and the set value of the hydrogen flow rate is corrected in minute steps so that the target pressure can be reached without being affected by factors such as the outside air temperature, and the product hydrogen This is a method for controlling a pressure increase flow rate of a four-column pressure swing adsorption device for hydrogen purification, characterized by suppressing a change in the amount.

【0013】[0013]

【発明の実施の形態】本発明は、水素精製用4塔式圧力
スイング吸着装置において、吸着、均圧減圧、均圧保
持、減圧、ブローダウン、パージ、均圧昇圧、H2昇圧
(水素による昇圧)のサイクルで運転を行い、この時、
2昇圧工程において、製品水素の一部を利用し、H2
圧工程にある吸着塔を所定吸着圧力、すなわち次のステ
ップで吸着工程に入る吸着塔を吸着圧力まで昇圧するこ
とを前提とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a 4-column pressure swing adsorption device for hydrogen purification, adsorption, equalization depressurization pressure equalization holding, vacuum, blowdown, purge, by equalization repressurization, H 2 booster (hydrogen Operation), and at this time,
In the H 2 pressurization step, it is assumed that a part of the product hydrogen is used and the adsorption tower in the H 2 pressurization step is pressurized to a predetermined adsorption pressure, that is, the adsorption tower which enters the adsorption step in the next step is increased to the adsorption pressure. .

【0014】そして、本発明は、該水素精製用4塔式圧
力スイング吸着装置において、製品水素の一部を利用し
て吸着塔を所定吸着圧力、すなわち次のステップで吸着
工程に入る吸着塔内を吸着圧力まで昇圧するに際して、
水素流量設定値に基づき昇圧水素流量の制御を行いつ
つ、該吸着塔内の圧力を随時監視し、水素流量設定値を
微小刻みで補正していくことを特徴とする。これによ
り、外気温度等の因子に左右されずに昇圧目標圧力に到
達させ、夏場、冬場あるいは昼夜などの気温差により目
標昇圧圧力に到達しないケースを未然に防ぎ、且つ、製
品水素量の変動を抑制することができる。
Further, the present invention provides a four-column pressure swing adsorption apparatus for hydrogen purification, wherein a part of a product hydrogen is used to set the adsorption tower at a predetermined adsorption pressure, that is, in the adsorption tower which enters the adsorption step in the next step. When the pressure is increased to the adsorption pressure,
While controlling the pressurized hydrogen flow rate based on the hydrogen flow rate set value, the pressure in the adsorption tower is monitored as needed, and the hydrogen flow rate set value is corrected in minute steps. This makes it possible to reach the boost target pressure without being influenced by factors such as the outside air temperature, to prevent a case where the target boost pressure does not reach due to a temperature difference in summer, winter or day and night, and to prevent fluctuations in the product hydrogen amount. Can be suppressed.

【0015】この点、従来における、前記(1)流量制
御方法では、外気温度の影響などにより所定圧力に達し
ないケースがあり、また前記(2)圧力制御方法では、
昇圧用水素ガス流量には変動が生じるため、製品水素量
が変動してしまうが、本発明によれば、これらの問題を
同時に、すなわち一挙に解決することができる。
With respect to this point, in the conventional (1) flow control method, there are cases where the predetermined pressure is not reached due to the influence of the outside air temperature or the like, and in the (2) pressure control method,
Since the flow rate of the pressurizing hydrogen gas fluctuates, the amount of product hydrogen fluctuates. According to the present invention, these problems can be solved simultaneously, that is, all at once.

【0016】図3は、本発明に係る、吸着塔におけるH
2昇圧の開始からの昇圧流量制御のフローを示す図であ
る。吸着塔につき昇圧工程における予備実験または実績
に基づきH2昇圧進行時間に対する吸着塔予想圧力を
設定して制御機構に入力し、これに対応する精製水素流
量を水素流量設定値として制御機構に入力しておく。
この設定値は、吸着塔予想圧力に対応した必要精製
水素の流量に対応し、そしてこの精製水素流量は、精製
水素(製品水素)のラインから分岐したライン(製品水
素の一部を分岐して昇圧用に利用する)に設けられたバ
ルブ(図1で云えはバルブW)の開度に対応している。
FIG. 3 shows H in the adsorption tower according to the present invention.
2 is a diagram showing a flow of boosting the flow control from the start of the boost. For the adsorption tower, set the expected pressure of the adsorption tower with respect to the progress time of the H 2 pressurization based on the preliminary experiments or results in the pressurization step and input it to the control mechanism, and input the corresponding purified hydrogen flow rate as the hydrogen flow set value to the control mechanism Keep it.
This set value corresponds to the flow rate of the required purified hydrogen corresponding to the expected pressure of the adsorption tower, and the purified hydrogen flow rate is determined by a line branched from the purified hydrogen (product hydrogen) line (a part of the product hydrogen is branched off). This corresponds to the opening of a valve (in FIG. 1, referred to as a valve W) provided in the pressure increasing device.

【0017】図4は、予備実験に基づき設定したH2
圧進行時間に対する吸着塔予想圧力の例を示す図であ
る。図4での例での「H2昇圧進行時間/昇圧工程設定
時間(%)」に対する「吸着塔圧力」は直線であるが、
この関係が外気温度などの因子に左右されてカーブ状等
になる場合もある。本発明においては、このような吸着
塔予想圧力と、これに対応する水素流量を水素流量設
定値として制御機構に入力しておく。制御機構として
は好ましくは制御用コンピュータが用いられる。制御用
コンピュータはCPU、制御プログラム格納メモリー、
制御データ格納メモリー、タイマー等からなるもので、
周知の制御用コンピュータを用いることができる。
FIG. 4 is a diagram showing an example of the expected pressure of the adsorption tower with respect to the progress time of the H 2 pressure increase set based on the preliminary experiment. The “adsorption tower pressure” with respect to “H 2 pressure increase progress time / pressure increase step set time (%)” in the example in FIG.
This relationship may be curved or the like depending on factors such as the outside air temperature. In the present invention, such an expected pressure in the adsorption tower and the hydrogen flow rate corresponding thereto are input to the control mechanism as a hydrogen flow rate set value. A control computer is preferably used as the control mechanism. The control computer is a CPU, a control program storage memory,
It consists of control data storage memory, timer, etc.
A well-known control computer can be used.

【0018】H2昇圧工程に切り換えられ、H2昇圧を開
始した吸着塔内の実圧力を測定する。図1〜2で云え
ば、ステップ2〜3におけるD塔がH2昇圧工程に相当
しているが、圧力計PDにより吸着塔D内の実圧力を
測定する。制御機構では、測定された吸着塔内実圧力
を吸着塔内予想圧力と比較し、その結果に基づき、水
素流量設定値を微小刻みで補正する。これに基づきバ
ルブ開度を微小きざみで補正する。
[0018] switched in H 2 boosting step, measuring the actual pressure in the adsorption tower that started with H 2 boosting. In FIG. 1 and FIG. 2, the D tower in steps 2 and 3 corresponds to the H 2 pressure increasing step, but the actual pressure in the adsorption tower D is measured by the pressure gauge PD. The control mechanism compares the measured actual pressure in the adsorption tower with the expected pressure in the adsorption tower, and based on the result, corrects the hydrogen flow rate set value in minute increments. Based on this, the valve opening is corrected in minute increments.

【0019】すなわち、実圧力≧吸着塔内予想圧力
のときは、水素流量設定値にマイナスの微小きざみの
補正をかけ、これに対応してバルブ開度にマイナスの補
正をかけて制御する。図1で云えば、バルブWの開度を
設定値の補正に応じて微小きざみに絞るよう制御する
(図3では「設定値−補正値」と記載しいてる)。逆
に、実圧力≦吸着塔内予想圧力のときは、水素流量
設定値にプラスの微小きざみの補正をかけ、これに対
応してバルブ開度にプラスの補正をかけて制御する。図
1で云えば、バルブWの開度を設定値の補正に応じて
微小刻みに大きくすよう制御する(図3では「設定値
+補正値」と記載しいてる)。
That is, when the actual pressure is equal to or greater than the expected pressure in the adsorption tower, the hydrogen flow set value is corrected by minute small steps, and the valve opening is controlled by a negative correction correspondingly. In FIG. 1, the opening degree of the valve W is controlled to be narrowed in small increments in accordance with the correction of the set value (in FIG. 3, "set value-correction value" is described). Conversely, when the actual pressure ≦ the expected pressure in the adsorption tower, the hydrogen flow set value is corrected by a small positive step, and the valve opening is controlled by a positive correction in response to the correction. In FIG. 1, the opening degree of the valve W is controlled to be increased in small increments according to the correction of the set value (in FIG. 3, "set value + correction value" is described).

【0020】本発明によれば、以上のようにして、各ス
テップにおける当該吸着塔の製品水素による昇圧を行う
に際して、その昇圧工程を常に理想状態とすることがで
き、これにより夏場と冬場、あるいは昼夜などに起因す
る気温差等により目標昇圧圧力に到達しないケースを未
然に防ぐことができ、製品水素量の変動を抑制すること
ができる。なお、本発明の昇圧流量制御方法は4塔式と
は限らず、3塔式以上の水素精製用圧力スイング吸着装
置に対しても適用できるものである。
According to the present invention, as described above, when the pressure of the adsorption tower is increased by the product hydrogen in each step, the pressure increasing step can always be set to the ideal state, whereby the summer and winter, or It is possible to prevent a case where the target pressure increase pressure is not reached due to a temperature difference or the like due to day and night, and to suppress a fluctuation in the product hydrogen amount. In addition, the pressurized flow control method of the present invention is not limited to the four-column type, but can be applied to a pressure swing adsorption device for hydrogen purification of three or more columns.

【0021】この点、特開平3−131317号では、
製品水素の一部を利用して吸着塔の昇圧を行う技術が提
案されている。しかし、この技術では、各々吸着塔の圧
力を常時読み取って電気信号に変換する、精製ガス管路
の圧力を常時読み取って電気信号に変換する、処理前ガ
ス温度から吸着状態の温度を読み取って電気信号に変換
するなど多くの手段が必要である。これに対して、本発
明においては、昇圧の工程にある吸着塔の圧力を随時監
視し、バルブの開度を微小刻みで補正していくだけで、
外気温度などの因子に左右されずに昇圧目標圧力に到達
させ、且つ、製品水素量の変動を抑制することができ
る。
In this regard, Japanese Patent Application Laid-Open No. 3-131317 discloses that
A technology for increasing the pressure of an adsorption tower by using a part of product hydrogen has been proposed. However, in this technology, the pressure of the adsorption tower is always read and converted to an electric signal, the pressure of the purified gas pipeline is always read and converted to an electric signal, and the temperature in the adsorption state is read from the pre-treatment gas temperature to read the electric signal. Many means are required, such as converting to a signal. On the other hand, in the present invention, the pressure of the adsorption tower in the step of increasing the pressure is monitored as needed, and the opening degree of the valve is corrected in small increments.
It is possible to reach the target pressure to be raised without being influenced by factors such as the outside air temperature and to suppress the fluctuation of the product hydrogen amount.

【0022】[0022]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。本実施例では図1に示す装置を使用
した。各吸着塔A、B、C、Dに混合床として活性炭、
ゼオライトを充填した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. In this embodiment, the apparatus shown in FIG. 1 was used. Activated carbon as a mixed bed in each of the adsorption towers A, B, C, D;
Zeolite was charged.

【0023】原料ガスとして都市ガス(脱硫済み)を水
蒸気改質する改質器からCO変成器を経て得られる改質
ガスを用いた。改質器は概略バーナを備える加熱部と改
質部からなり、加熱部からの熱(ΔH)が改質部に供給
され、改質部で原料ガスが接触反応により改質ガスへ変
えられる。図1中、Tはオフガス貯蔵タンク、Kはバー
ナ燃焼用空気導管、Fはバーナ燃料ガス導管であり、バ
ーナ燃料としてオフガスのみでは不足の場合には適宜都
市ガス等が添加補充される。PA〜PDはそれぞれ各塔
A〜Dの圧力計である。なお、図1中改質器に続くCO
変成器およびガスクーラーの記載は省略している。
As a raw material gas, a reformed gas obtained from a reformer for steam reforming city gas (desulfurized) through a CO converter was used. The reformer generally includes a heating section having a burner and a reforming section. Heat (ΔH) from the heating section is supplied to the reforming section, and the raw material gas is converted into a reformed gas by a contact reaction in the reforming section. In FIG. 1, T is an off-gas storage tank, K is an air conduit for burner combustion, and F is a burner fuel gas conduit. If only off-gas is insufficient as burner fuel, city gas or the like is appropriately supplemented and supplemented. PA to PD are pressure gauges of each column A to D, respectively. In addition, CO shown in FIG.
The description of the transformer and the gas cooler is omitted.

【0024】改質ガスは、水素が主成分であるが、CH
4、CO2、N2、COなどが含まれている。これら水素
以外のガスが吸着塔で吸着除去されるガスであるが、改
質ガスの吸着塔への供給温度は20〜40℃程度であ
る。CO変成器を経た改質ガスの温度はそれより高温で
あるので、ガスクーラーによりそのような温度に冷却、
調整して吸着塔に供給される。
The reformed gas is mainly composed of hydrogen.
4 , CO 2 , N 2 , CO and the like. These gases other than hydrogen are gases that are adsorbed and removed by the adsorption tower, and the supply temperature of the reformed gas to the adsorption tower is about 20 to 40 ° C. Since the temperature of the reformed gas passing through the CO converter is higher than that, the gas is cooled to such a temperature by a gas cooler,
Adjusted and supplied to the adsorption tower.

【0025】本発明で対象とする水素精製用4塔式圧力
スイング吸着装置の各ステップの操作時間については、
ステップ1は5〜60秒、好ましくは20〜30秒、ス
テップ2は5〜60秒、好ましくは10〜20秒、ステ
ップ3は110〜300秒、好ましくは120〜190
秒の範囲である。したがってステップ1〜3での吸着時
間は120〜420秒、好ましくは150〜240秒の
範囲で実施される。
The operation time of each step of the four-column pressure swing adsorption apparatus for hydrogen purification targeted in the present invention is as follows.
Step 1 is 5 to 60 seconds, preferably 20 to 30 seconds, Step 2 is 5 to 60 seconds, preferably 10 to 20 seconds, Step 3 is 110 to 300 seconds, preferably 120 to 190
Range of seconds. Therefore, the adsorption time in steps 1 to 3 is set in the range of 120 to 420 seconds, preferably 150 to 240 seconds.

【0026】本実施例においては、ステップ1は25
秒、ステップ2は15秒、ステップ3は160秒とし
た。したがって吸着時間は200秒である。ステップ4
〜6、6〜9および10〜12は、それぞれ、ステップ
1〜3と同様である。ステップ1〜3、ステップ4〜
6、ステップ7〜9、ステップ10〜12がそれぞれサ
ブサイクルであり、ステップ1〜12で1サイクルとな
る。
In this embodiment, step 1 is 25 steps.
Second, step 2 was 15 seconds, and step 3 was 160 seconds. Therefore, the adsorption time is 200 seconds. Step 4
Steps 6 to 6, 6 to 9 and 10 to 12 are the same as steps 1 to 3, respectively. Steps 1 to 3, Steps 4 to
6, steps 7 to 9 and steps 10 to 12 are subcycles, and steps 1 to 12 constitute one cycle.

【0027】運転圧力は吸着工程時(吸着工程終了時ま
で同じ)0.7MPaG、均圧減圧、減圧保持および減
圧終了時0.6MPaG、ブローダウン終了時0.02
MPaG、パージ終了時0.22MPaG、昇圧終了時
0.68MPaとした。吸着工程の吸着圧力は精製水素
ラインに配置された制御バルブにより制御されるが、図
示は省略している。以下の操作において、弁Vはステッ
プ1〜12を通して開の状態である。なお、以下におい
てブローダウン(工程)は適宜ブロー(工程)と略記し
ている。
The operating pressure is 0.7 MPaG at the time of the adsorption step (the same until the end of the adsorption step), 0.6 MPaG at the time of pressure equalization, pressure reduction hold and pressure reduction end, and 0.02 at the end of blowdown.
MpaG, 0.22 MPaG at the end of purge, and 0.68 MPa at the end of pressure increase. The adsorption pressure in the adsorption step is controlled by a control valve arranged in the purified hydrogen line, but is not shown. In the following operation, the valve V is open through steps 1 to 12. In the following, blowdown (step) is abbreviated as blow (step) as appropriate.

【0028】〈ステップ1〉A塔=吸着、B塔=ブロ
ー、C塔=均圧減圧、D塔=均圧昇圧 弁A1、A2を開とし、改質ガスをA塔に供給して吸着
操作を実施した。その間、B塔ではブロー工程、C塔で
は均圧減圧工程、D塔では均圧昇圧工程を行った。他の
弁につていは、弁B5、C4、D3を開とし、バルブ
W、バルブX、バルブY、バルブZの開度を一定とし
た。これら以外の弁は閉状態である。
<Step 1> A tower = adsorption, B tower = blowing, C tower = equalizing pressure reducing, D tower = equalizing pressure increasing valves A1, A2 are opened, and the reformed gas is supplied to the A tower to perform the adsorption operation. Was carried out. In the meantime, the blowing step was performed in the tower B, the equalizing pressure reducing step was performed in the tower C, and the equalizing pressure increasing step was performed in the tower D. As for the other valves, the valves B5, C4, and D3 were opened, and the opening degrees of the valves W, X, Y, and Z were kept constant. Other valves are closed.

【0029】〈ステップ2〉A塔=吸着、B塔=ブロ
ー、C塔=減圧保持、D塔=H2昇圧 弁C4、バルブXを閉に切り換えた以外はステップ1と
同じくして、引続き改質ガスをA塔に供給して吸着操作
を実施した。その間、B塔ではブロー工程、C塔では減
圧保持工程、D塔では均圧昇圧工程を行った。ここでバ
ルブWは、製品水素ラインから分岐したラインに設けた
もので、その開度は、図4に示すように、〈ステップ
2〉に〈ステップ3〉を合わせて〈ステップ3〉の終了
時点で0.68MPaとなるようセットした。すなわ
ち、ステップ2は15秒、ステップ3は160秒である
ので、〈ステップ2〉と〈ステップ3〉を合わせて17
5秒である(=昇圧工程設定時間)。この間にD塔内圧
力が0.68MPaとなるようにセットした。操作中、
D塔内の圧力を圧力計PDにより計測し(図3における
吸着塔内実圧力の計測)、随時監視した。
<Step 2> A tower = adsorption, B tower = blowing, C tower = reduced pressure, D tower = H 2 boosting valve Same as step 1 except that the valve C4 and the valve X were closed. The raw gas was supplied to the tower A to perform the adsorption operation. During that time, a blowing step was performed in the tower B, a pressure reduction step was performed in the tower C, and a pressure equalizing step was performed in the tower D. Here, the valve W is provided on a line branched from the product hydrogen line, and its opening degree is adjusted at the end of <Step 3> by adding <Step 3> to <Step 2> as shown in FIG. At 0.68 MPa. That is, since Step 2 is 15 seconds and Step 3 is 160 seconds, the total of <Step 2> and <Step 3> is 17 seconds.
5 seconds (= step-up step setting time). During this time, the pressure in the tower D was set so as to be 0.68 MPa. During operation,
The pressure inside the tower D was measured by a pressure gauge PD (measurement of the actual pressure inside the adsorption tower in FIG. 3), and monitored as needed.

【0030】〈ステップ3〉A塔=吸着、B塔=パー
ジ、C塔=減圧、D塔=H2昇圧 弁B4、C4を開とした以外はステップ2と同じくし
て、引続き改質ガスをA塔に供給して吸着操作を実施し
た。その間、B塔ではパージ工程、C塔では減圧工程、
D塔ではH2昇圧工程を行った。
<Step 3> The reformed gas was continuously supplied in the same manner as in Step 2 except that the tower A was adsorbed, the tower B was purged, the tower C was depressurized, and the tower D was H 2 booster valves B4 and C4 were opened. The mixture was supplied to the tower A to perform an adsorption operation. Meanwhile, the purging step in the tower B, the depressurizing step in the tower C,
In the tower D, an H 2 pressure increasing step was performed.

【0031】〈ステップ2〉〜〈ステップ3〉の間、制
御機構により、吸着塔内実圧力の計測値を予め設定し
た吸着塔内予想圧力と比較したところ、〈ステップ
3〉への移行直後に実圧力≧であることが観測され
た。そこで、その差を基に、制御機構により設定値を
マイナスの補正をかけ、バルブWの開度を微小刻みで小
さくすることにより、〈ステップ3〉の終了時点でD塔
内圧力を0.68MPaとすることができた。このこと
は、もし本制御を実施しなかった場合には、D塔内圧力
が0.68MPaを超えてしまい、D塔について、当該
昇圧工程に続く吸着工程に円滑に移行できなかったこと
を意味する。
During a period between <Step 2> and <Step 3>, the measured value of the actual pressure in the adsorption tower was compared with a preset expected pressure in the adsorption tower by the control mechanism. It was observed that pressure ≧. Therefore, based on the difference, the set value is negatively corrected by the control mechanism, and the opening degree of the valve W is reduced in small increments, so that the pressure in the D tower is 0.68 MPa at the end of <Step 3>. And could be. This means that if this control was not performed, the pressure in the D column exceeded 0.68 MPa, and the D column could not smoothly transition to the adsorption step following the pressure increasing step. I do.

【0032】〈ステップ4〉A塔=均圧減圧、B塔=均
圧昇圧、C塔=ブロー、D塔=吸着 弁D1、D2を開とし、改質ガスをD塔に供給して吸着
操作を実施した。その間、A塔では均圧減圧工程、B塔
では均圧昇圧工程、C塔ではブロー工程を行った。他の
弁については、弁A4、B3、C5を開とし、バルブ
W、バルブX、バルブY、バルブZの開度を一定とし
た。これら以外の弁は閉状態である。
<Step 4> A tower = equalization pressure reduction, B tower = equalization pressure increase, C tower = blowing, D tower = adsorption valves D1 and D2 are opened, and reformed gas is supplied to D tower to perform adsorption operation. Was carried out. During that time, the equalizing pressure reducing step was performed in the tower A, the equalizing pressure increasing step was performed in the tower B, and the blowing step was performed in the tower C. With respect to the other valves, the valves A4, B3, and C5 were opened, and the opening degrees of the valves W, X, Y, and Z were kept constant. Other valves are closed.

【0033】〈ステップ5〉A塔=減圧保持、B塔=H
2昇圧、C塔=ブロー、D塔=吸着 弁A4、バルブXを閉に切り換えた以外はステップ4と
同じくして、引続き改質ガスをD塔に供給して吸着操作
を実施した。その間、A塔では減圧保持工程、B塔では
2昇圧工程を行い、C塔ではブロー工程を行った。こ
こでバルブWの開度は、図4に示すように、〈ステップ
6〉の終了時点で0.68MPaとなるようセットし
た。すなわち、〈ステップ5〉と〈ステップ6〉を合わ
せて175秒であり(昇圧工程設定時間)、この間にD
塔内圧力が0.68MPaとなるようにセットした。操
作中、D塔内の圧力を圧力計PDにより計測し、随時監
視した。
<Step 5> Tower A = retained pressure, Tower B = H
(2) Pressurization, C tower = blow, D tower = adsorption In the same manner as in step 4 except that the valve A4 and the valve X were closed, the reforming gas was continuously supplied to the D tower to perform the adsorption operation. In the meantime, the tower A performed the reduced pressure holding step, the tower B performed the H 2 pressure increasing step, and the tower C performed the blowing step. Here, as shown in FIG. 4, the opening degree of the valve W was set to be 0.68 MPa at the end of <Step 6>. That is, the total of <Step 5> and <Step 6> is 175 seconds (step-up step set time), during which D
The column pressure was set so as to be 0.68 MPa. During the operation, the pressure in the tower D was measured by the pressure gauge PD and monitored as needed.

【0034】〈ステップ6〉A塔=減圧、B塔=H2
圧、C塔=パージ、D塔=吸着 A4、C4を開とした以外はステップ5と同じくして、
引続き改質ガスをD塔に供給して吸着操作を実施した。
その間、A塔では減圧工程、B塔ではH2昇圧工程、C
塔ではパージ工程を行い、操作中、B塔内の圧力を圧力
計PBにより計測し、随時監視した。
<Step 6> A tower = decompression, B tower = H 2 pressure increase, C tower = purge, D tower = adsorption Same as step 5, except that A4 and C4 were opened.
Subsequently, the reforming gas was supplied to the tower D to perform an adsorption operation.
In the meantime, the pressure reduction step is performed in the tower A, the H 2 pressure increase step is performed in the tower B,
During the operation, the pressure in the tower B was measured by a pressure gauge PB and monitored as needed.

【0035】〈ステップ5〉〜〈ステップ6〉の間、制
御機構により、吸着塔内実圧力の計測値を予め設定し
た吸着塔内予想圧力と比較したところ、〈ステップ
5〉への移行直後に実圧力≧であることが観測され
た。そこで、その差を基に、制御機構により設定値に
マイナスの補正をかけ、バルブWの開度を微小刻みで小
さくすることにより、〈ステップ6〉の終了時点でのB
塔内圧力を0.68MPaとすることができ、製品水素
量も安定させることができた。
During the period from <Step 5> to <Step 6>, the measured value of the actual pressure in the adsorption tower was compared with the preset expected pressure in the adsorption tower by the control mechanism. It was observed that pressure ≧. Therefore, based on the difference, the control mechanism performs a negative correction on the set value to reduce the opening degree of the valve W in small steps, thereby obtaining B at the end of <Step 6>.
The pressure in the tower could be 0.68 MPa, and the product hydrogen amount could be stabilized.

【0036】〈ステップ7〉A塔=ブロー、B塔=吸
着、C塔=均圧昇圧、D塔=均圧減圧 弁B1、B2を開とし、改質ガスをB塔に供給して吸着
操作を実施した。その間、A塔ではブロー工程、C塔で
は均圧昇圧工程、D塔では均圧減圧工程を行った。他の
弁については、A5、C3、D4を開とし、バルブW、
バルブX、バルブY、バルブZの開度を一定とした。こ
れら以外の弁は閉状態である。
<Step 7> A tower = blow, B tower = adsorption, C tower = equalizing pressure increase, D tower = equalizing pressure reducing valves B1 and B2 are opened, and reforming gas is supplied to B tower to perform adsorption operation. Was carried out. During that time, the blowing step was performed in the tower A, the equalizing pressure increasing step in the tower C, and the equalizing pressure reducing step in the tower D. With respect to the other valves, A5, C3, and D4 are opened, and valves W,
The opening degrees of the valve X, the valve Y, and the valve Z were made constant. Other valves are closed.

【0037】〈ステップ8〉A塔=ブロー、B塔=吸
着、C塔=H2昇圧、D塔=減圧保持 弁D4、バルブXを閉に切り換えた以外はステップ7と
同じくして、引続き改質ガスをB塔に供給して吸着操作
を実施した。その間、A塔ではブロー工程、C塔ではH
2昇圧工程、D塔では減圧保持工程を行った。ここでバ
ルブWの開度は、図4に示すように、〈ステップ9〉の
終了時点で0.68MPaとなるようセットした。操作
中、C塔内の圧力を圧力計PCにより計測し、随時監視
した。
<Step 8> A tower = blow, B tower = adsorption, C tower = H 2 boost, D tower = depressurization holding Same as step 7, except that valve D4 and valve X were closed. The raw gas was supplied to the tower B to perform the adsorption operation. In the meantime, the blowing process is performed in the tower A, and the blowing process is performed in the tower C.
(2) The pressure raising step, and the reduced pressure holding step were performed in the tower D. Here, the opening degree of the valve W was set to 0.68 MPa at the end of <Step 9> as shown in FIG. During the operation, the pressure in the tower C was measured by a pressure gauge PC and monitored as needed.

【0038】〈ステップ9〉A塔=パージ、B塔=吸
着、C塔=H2昇圧、D塔=減圧 A4、D4を開とした以外はステップ8と同じくして、
引続き改質ガスをB塔に供給して吸着操作を実施した。
その間、A塔ではパージ工程、C塔ではH2昇圧工程、
D塔では減圧工程を行い、C塔内の圧力を圧力計PCに
より計測し、随時監視した。
<Step 9> A tower = purge, B tower = adsorption, C tower = H 2 pressure increase, D tower = pressure reduction Same as step 8 except that A4 and D4 were opened.
Subsequently, the reforming gas was supplied to the tower B to perform an adsorption operation.
Meanwhile, the tower A has a purge step, the tower C has a H 2 pressure increasing step,
In the tower D, a pressure reduction step was performed, and the pressure in the tower C was measured by a pressure gauge PC and monitored as needed.

【0039】〈ステップ8〉〜〈ステップ9〉の間、制
御機構により、吸着塔内実圧力の計測値を予め設定し
た吸着塔内予想圧力と比較したところ、〈ステップ
9〉への移行直後に実圧力≧であることが観測され
た。そこで、その差を基に、制御機構により設定値を
マイナスの補正をかけ、バルブWの開度を微小刻みで小
さくすることにより、〈ステップ9〉の終了時点でのC
塔内圧力を0.68MPaとすることができ、製品水素
量も安定させることができた。
During the period from <Step 8> to <Step 9>, the measured value of the actual pressure in the adsorption tower was compared with the preset expected pressure in the adsorption tower by the control mechanism. It was observed that pressure ≧. Therefore, based on the difference, the set value is negatively corrected by the control mechanism, and the opening degree of the valve W is reduced in small steps, so that C at the end of <Step 9> is reduced.
The pressure in the tower could be 0.68 MPa, and the product hydrogen amount could be stabilized.

【0040】〈ステップ10〉A塔=均圧昇圧、B塔=
均圧減圧、C塔=吸着、D塔=ブロー 弁C1、C2を開とし、改質ガスをC塔に供給して吸着
操作を実施した。その間、A塔では均圧昇圧工程、B塔
では均圧減圧工程、D塔ではブロー工程を行った。他の
弁については、A3、B4、D5を開とし、バルブW、
バルブX、バルブY、バルブZの開度を一定とした。こ
れら以外の弁は閉状態である。
<Step 10> Tower A = equalizing pressure increase, Tower B =
Equalization pressure reduction, C tower = adsorption, D tower = blow valves C1 and C2 were opened, and the reforming gas was supplied to the C tower to perform the adsorption operation. In the meantime, the equalizing pressure increasing step was performed in the tower A, the equalizing pressure reducing step was performed in the tower B, and the blowing step was performed in the tower D. With respect to the other valves, A3, B4, and D5 are opened, and valves W,
The opening degrees of the valve X, the valve Y, and the valve Z were made constant. Other valves are closed.

【0041】〈ステップ11〉A塔=H2昇圧、B塔=
減圧保持、C塔=吸着、D塔=ブロー 弁B4、バルブXを閉に切り換えた以外はステップ10
と同じくして、引続き改質ガスをC塔に供給して吸着操
作を実施した。その間、A塔ではH2昇圧工程、B塔で
は減圧保持工程、D塔ではブロー工程を行った。ここで
バルブWの開度は、図4に示すように、次の〈ステップ
12〉と合わせた175秒間にA塔内圧力が0.68M
Paとなるようにセットした。操作中、A塔内の圧力を
圧力計PAにより計測し、随時監視した。
<Step 11> Tower A = H 2 boost, Tower B =
Step 10 except that the pressure reduction was maintained, the tower C was adsorbed, and the tower D was blow valve B4 and valve X were closed.
In the same manner as described above, the reforming gas was continuously supplied to the column C to perform the adsorption operation. In the meantime, the tower A performed the H 2 pressure increasing step, the tower B performed the reduced pressure holding step, and the tower D performed the blowing step. Here, as shown in FIG. 4, as shown in FIG. 4, the pressure in the tower A becomes 0.68M in 175 seconds including the following <Step 12>.
Pa was set. During the operation, the pressure in the tower A was measured by the pressure gauge PA and monitored as needed.

【0042】〈ステップ12〉A塔=H2昇圧、B塔=
減圧、C塔=吸着、D塔=パージ B4、D4を開とした以外はステップ11と同じくし
て、引続き改質ガスをC塔に供給して吸着操作を実施し
た。その間、A塔ではH2昇圧工程、B塔では減圧工
程、D塔ではパージ工程を行った。
<Step 12> Tower A = H 2 boost, Tower B =
Depressurization, C tower = adsorption, D tower = purge Except that B4 and D4 were opened, the adsorption operation was performed by continuously supplying the reformed gas to the C tower in the same manner as in step 11. In the meantime, the H 2 pressure increasing step was performed in the tower A, the pressure reducing step was performed in the tower B, and the purging step was performed in the tower D.

【0043】〈ステップ11〉〜〈ステップ12〉の
間、制御機構により、吸着塔内実圧力の計測値を予め
設定した吸着塔内予想圧力と比較したところ、〈ステ
ップ12〉への移行直前に実圧力≦であることが観
測された。そこで、その差を基に、制御機構により設定
値にプラスの補正をかけ、バルブWの開度を微小刻み
で大きくすることにより、〈ステップ12〉の終了時点
でのA塔内圧力を0.68MPaとすることができ、製
品水素量も安定させることができた。このことは、もし
本制御を実施しなかった場合には、A塔内圧力が0.6
8MPaを下回ってしまい、A塔内圧力が所定時間内に
吸着圧力に達せず、当該昇圧工程に続く吸着工程に円滑
に移行できなかったことを意味する。
During the period from <Step 11> to <Step 12>, the measured value of the actual pressure in the adsorption tower was compared with the preset expected pressure in the adsorption tower by the control mechanism. It was observed that pressure ≤. Therefore, based on the difference, a positive correction is made to the set value by the control mechanism, and the opening degree of the valve W is increased in small increments, so that the pressure in the tower A at the end of <Step 12> is reduced to 0.1. 68 MPa, and the product hydrogen amount could be stabilized. This means that if this control was not performed, the pressure in the tower A would be 0.6
This means that the pressure in the column A did not reach the adsorption pressure within a predetermined time because the pressure was lower than 8 MPa, and it was not possible to smoothly shift to the adsorption step following the pressure increasing step.

【0044】[0044]

【発明の効果】本発明によれば、水素精製用4塔式圧力
スイング吸着装置において、夏期や冬季、あるいは昼夜
等の外気環境温度などの因子に左右されることなく、各
吸着塔の昇圧工程における昇圧目標圧力に到達させるこ
とができるとともに、製品水素流量の変動を抑制するこ
とができる。
According to the present invention, in the four-column pressure swing adsorption apparatus for hydrogen purification, the pressure rising step of each adsorption tower can be performed without being affected by factors such as the outside air temperature in summer, winter, or day and night. And the fluctuation of the product hydrogen flow rate can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素精製用4塔式PSA装置における各吸着塔
A〜D、配管、バルブ、オフガス貯蔵タンク等の配置関
係を示す図
FIG. 1 is a diagram showing the arrangement of adsorption towers A to D, piping, valves, off-gas storage tanks, and the like in a four-column PSA apparatus for hydrogen purification.

【図2】図1に示す水素精製用4塔式PSA装置におけ
る各吸着塔の工程フロー及び運転シーケンスの概略を示
す図
FIG. 2 is a diagram schematically showing a process flow and an operation sequence of each adsorption tower in the four-column PSA apparatus for hydrogen purification shown in FIG.

【図3】本発明に係る、吸着塔におけるH2昇圧開始か
らの昇圧流量制御のフローを示す図
FIG. 3 is a diagram showing a flow of pressure increase flow control from the start of H 2 pressure increase in the adsorption tower according to the present invention.

【図4】予備実験に基づき設定したH2昇圧進行時間に
対する吸着塔予想圧力の例を示す図
FIG. 4 is a diagram showing an example of an expected pressure of an adsorption tower with respect to a progress time of H 2 pressure increase set based on a preliminary experiment.

【符号の説明】[Explanation of symbols]

A〜D 吸着塔 T オフガス貯蔵タンク F バーナ燃料ガス導管 K バーナ燃焼用空気導管 PA〜PD 吸着塔A〜D内の各実圧力測定用圧力計 A to D adsorption tower T off-gas storage tank F burner fuel gas conduit K burner combustion air conduit PA to PD Pressure gauge for measuring actual pressure in adsorption towers A to D

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古田 博貴 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 高橋 徹 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 中村 健一 東京都新宿区西新宿3ー7ー1 新宿パー クタワー10階 東京ガスケミカル株式会社 内 (72)発明者 会田 広司 東京都新宿区西新宿3ー7ー1 新宿パー クタワー10階 東京ガスケミカル株式会社 内 (72)発明者 日下 亮平 神奈川県横浜市青葉区奈良町1670ー25 (72)発明者 鎌倉 幸弘 東京都八王子市小宮町1064ー15 (72)発明者 森口 久美子 神奈川県川崎市宮前区有馬一丁目8ー13ー 501 (72)発明者 宮島 秀樹 神奈川県横浜市鶴見区東寺尾5ー2ー10 Fターム(参考) 4D012 CA07 CB16 CD07 CE01 CE02 CE03 CF02 CF03 CF04 CG01 CH10 5H027 BA01 BA16 BA17 KK01 KK21 MM01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Furuta 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Tohru Takahashi 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Inside (72) Inventor Kenichi Nakamura 3-7-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Shinjuku Park Tower 10th floor Tokyo Gas Chemical Co., Ltd. Inside (72) Inventor Koji Aida 3-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Shinjuku Park Tower 10th Floor Tokyo Gas Chemical Co., Ltd. Person Kumiko Moriguchi 1-13-501, Arima 1-chome, Miyamae-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Hideki Miyajima 5-2-10 F-Terao, Tsurumi-ku, Yokohama City, Kanagawa Prefecture None (reference) 4D012 CA07 CB16 CD07 CE01 CE02 CE03 CF02 CF03 CF04 CG01 CH10 5H027 BA01 BA16 BA17 KK01 KK21 MM01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素精製用4塔式圧力スイング吸着装置の
昇圧流量制御方法であって、製品水素の一部を利用して
吸着塔を所定吸着圧力まで昇圧するに際して、水素流量
設定値に基づき昇圧水素流量の制御を行いつつ、水素昇
圧工程にある吸着塔内の圧力を随時監視し、水素流量設
定値を微小刻みで補正していくことにより、外気温度等
の因子に左右されずに昇圧目標圧力に到達させ、且つ、
製品水素量の変動を抑制することを特徴とする水素精製
用4塔式圧力スイング吸着装置の昇圧流量制御方法。
1. A method for controlling a pressure increase flow rate of a four-column pressure swing adsorption apparatus for hydrogen purification, wherein a pressure of an adsorption tower is increased to a predetermined adsorption pressure using a part of product hydrogen based on a set value of a hydrogen flow rate. While controlling the pressurized hydrogen flow rate, the pressure in the adsorption tower in the hydrogen pressurization step is monitored as needed, and the set value of the hydrogen flow rate is corrected in minute steps, thereby increasing the pressure regardless of factors such as the outside air temperature. To reach the target pressure, and
A method for controlling a pressurized flow rate of a four-tower pressure swing adsorption apparatus for hydrogen purification, characterized by suppressing fluctuations in a product hydrogen amount.
【請求項2】上記水素精製用4塔式圧力スイング吸着装
置の昇圧流量制御方法が、4塔の各塔において吸着、均
圧減圧、均圧保持、減圧、ブローダウン、パージ、均圧
昇圧、水素昇圧の各工程が繰り返される工程における水
素昇圧工程に対するものであることを特徴とする請求項
1に記載の水素精製用4塔式圧力スイング吸着装置の昇
圧流量制御方法。
2. A method for controlling the pressure increase flow rate of the four-column pressure swing adsorption apparatus for hydrogen purification, comprising the steps of: adsorbing, equalizing and reducing, equalizing holding, reducing, blowing down, purging, equalizing and increasing pressure in each of the four columns. The method according to claim 1, wherein the step of increasing the pressure of the hydrogen is a step of repeating the step of increasing the pressure of the hydrogen in the step of increasing the pressure of the hydrogen.
JP2001165923A 2001-05-31 2001-05-31 Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen Pending JP2002355520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165923A JP2002355520A (en) 2001-05-31 2001-05-31 Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165923A JP2002355520A (en) 2001-05-31 2001-05-31 Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen

Publications (1)

Publication Number Publication Date
JP2002355520A true JP2002355520A (en) 2002-12-10

Family

ID=19008535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165923A Pending JP2002355520A (en) 2001-05-31 2001-05-31 Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen

Country Status (1)

Country Link
JP (1) JP2002355520A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146420A (en) * 1982-02-16 1983-09-01 リンデ・アクチエンゲゼルシヤフト Method and apparatus for operating cyclically operated pressure transfer type adsorbing apparatus
JPH03131317A (en) * 1989-10-16 1991-06-04 Seibu Gas Kk Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption
JP2000317245A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Separation and purification of gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146420A (en) * 1982-02-16 1983-09-01 リンデ・アクチエンゲゼルシヤフト Method and apparatus for operating cyclically operated pressure transfer type adsorbing apparatus
JPH03131317A (en) * 1989-10-16 1991-06-04 Seibu Gas Kk Apparatus for minimizing fluctuation of continuous refining in pressure swing adsorption
JP2000317245A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Separation and purification of gas

Similar Documents

Publication Publication Date Title
KR100909525B1 (en) Systems and methods for regulating heating assembly operation through pressure swing adsorption purification control
JP2008523981A (en) Temperature based breakthrough detection and pressure swing adsorption system and fuel cell with same
US9656202B2 (en) Method and device for separating a gas mixture by means of pressure swing adsorption
TWI476038B (en) Purifying method and purifying apparatus for argon gas
JP2004124148A (en) Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus
JP2001010806A (en) Control of off-gas pressure from off-gas tank in three- column type psa unit
JP2009154079A (en) Stopping method of gas production apparatus
JP2007209868A (en) Stable operation method of pressure swing adsorption device
JP2017226562A (en) Hydrogen gas manufacturing method and hydrogen gas manufacturing device
JP2002355522A (en) Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP2003163024A (en) Reform type fuel cell system
JP6530122B1 (en) Hydrogen production equipment
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2002355520A (en) Flow rate control pressurization method for four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP3819174B2 (en) Off-gas flow rate control method in pressure swing adsorption device
JP4187569B2 (en) Hydrogen production equipment
US20050172804A1 (en) Method of shutting off fuel gas manufacturing apparatus
JP2001279267A (en) Method for producing industrial gas by using pressure- varied adsorptive separation apparatus
TW201219297A (en) for recycling argon gas at a high purity with lower costs and less energy consumption
JP4236500B2 (en) Hydrogen production apparatus and hydrogen production method
JP4771668B2 (en) Hydrogen production method and apparatus
JP2007269526A (en) Hydrogen refining unit and operation method thereof
JP2007261909A (en) Method for operating hydrogen refining apparatus
JP7129321B2 (en) Hydrogen production device, hydrogen production device operation method, and hydrogen production device operation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510