JP2004124148A - Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus - Google Patents

Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus Download PDF

Info

Publication number
JP2004124148A
JP2004124148A JP2002288864A JP2002288864A JP2004124148A JP 2004124148 A JP2004124148 A JP 2004124148A JP 2002288864 A JP2002288864 A JP 2002288864A JP 2002288864 A JP2002288864 A JP 2002288864A JP 2004124148 A JP2004124148 A JP 2004124148A
Authority
JP
Japan
Prior art keywords
compressor
pressure
hydrogen
inlet
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002288864A
Other languages
Japanese (ja)
Inventor
Masazumi Oishi
大石 正純
Katsuo Hashizaki
橋崎 克雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002288864A priority Critical patent/JP2004124148A/en
Publication of JP2004124148A publication Critical patent/JP2004124148A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a lowering of pressure in the inlet of a compressor when the compressor is started and to stabilize the pressure, without increasing a capacity of a buffer tank. <P>SOLUTION: The hydrogen-generating apparatus has the buffer tank 32, the compressor 33 and a hydrogen storage container 34, sequentially arranged in the downstream of a water electrolysis device 31. The method for controlling the pressure of hydrogen generated in the water electrolysis device 31 includes connecting the inlet and an outlet of the compressor 33 with a bypass line 36 having a pressure-regulating valve 35 therein, to control the pressure of the inlet side of the compressor 33. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水電解装置で発生する水素の圧力を制御する発生水素の圧力制御方法及び水素発生装置に関する。
【0002】
【従来の技術】
周知の如く、水電解装置で発生した水素を貯蔵する水素発生装置は、例えば図2に示すようになっている。
図中の符番1は、水電解装置(SPWE)を示す。この水電解装置1の下流側には、バッファタンク2、圧縮機3、水素貯蔵容器4が順次配置されている。ここで、圧縮機3は、水電解装置1で発生する水素を昇圧する機能を有している。
【0003】
ところで、圧縮機3の起動時には圧縮機3の入口側の圧力が乱れたり、低下することがある。従って、圧縮機3の起動時、圧縮機入口の圧力低下を防止するため及び圧力安定化のため、大容量のバッファタンク2が必要である。
【0004】
図3は、従来の水素発生装置の一例を示す(特開2000−281308号公報)。
この水素発生装置は、触媒層を有する改質管1aとバーナ1bとを備えた改質器1と、改質ガスを加圧するための圧縮機2と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)3と、前記圧縮機2の吐出側の圧力を測定する圧力計4と、この圧力を制御する手段として圧縮機2の吐出側から吸い込み側に接続されたバイパス配管経路に設けた制御弁5と、触媒層温度を測定する温度計6と備えている。また、前記水素発生装置は、前記改質器1の温度が改質器1の耐熱性の観点から定めた所定の設定値を越えた場合に、前記圧縮機2の吐出圧力を上昇させ、前記改質器1の温度を設定値以下に低下させるような制御装置7を備えている。なお、前記PSA3は、図示しないが、圧縮機2の吐出圧力上昇に合わせてPSA3の吸着圧力を上昇させるような調整弁を備えている。しかし、図3の水素発生装置は、改質器1の温度が変化すると圧縮機2の吐出側の圧力がかわるので、これを回避する為に水素精製後の残ガスを無駄に放出することなく、適正な改質器1の温度制御をしようとしたものである。
【0005】
【特許文献1】
特開2000−281308号(第4−5頁、図1〜3)
【0006】
【発明が解決しようとする課題】
本発明はこうした事情を考慮してなされたもので、圧縮機の入口及び出口を、圧力調整弁を介装したバイパスラインで連結し、圧縮機の入口側の圧力を制御することにより、バッファタンクの容量を大きくすることなく、圧縮機の起動時、圧縮機入口の圧力低下の防止、圧力安定化をなし得る発生水素の圧力制御方法を提供することを目的とする。
【0007】
また、本発明は、圧縮機の入口及び出口を、圧力調整弁を介装したバイパスラインでつなぎ、圧縮機の入口側の圧力を制御する構成とすることにより、バッファタンクの容量を大きくすることなく、圧縮機の起動時、圧縮機入口の圧力低下の防止、圧力安定化をなし得る水素発生装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本願第1の発明は、水電解装置の下流側にバッファタンク、圧縮機、水素貯蔵容器を順次配置した水素発生装置で、水電解装置で発生した水素の圧力を制御する方法において、前記圧縮機の入口及び出口を、圧力調整弁を介装したバイパスラインで連結し、圧縮機の入口側の圧力を制御することを特徴とする発生水素の圧力制御方法である。
【0009】
本願第2の発明は、水電解装置と、この水電解装置の下流側に順次配置された,バッファタンク、圧縮機及び水素貯蔵容器と、前記圧縮機の入口及び出口間をつなぐ,圧力調整弁を介装したバイパスラインとを具備することを特徴とする水素発生装置である。
【0010】
本発明において、前記圧縮機をインバータ制御することにより、前記水電解装置の水素発生量叉は圧力の少なくともいずれか一方と同期をとりながら運転することが好ましい。前記圧力調整弁のみでも圧力を粗調整することはできるが、インバータ制御を加えることにより圧力調整弁で充分制御できない圧力の変動を微調整することができる。従って、前記圧力調整弁とインバータ制御を併用することにより、バッファタンクの容量を著しく小さくできる。なお、前記圧力調整弁としては、例えば楊程型の自立式調整弁が挙げられる。また、「インバータ制御」とは、圧縮機入口側の圧力が高い時叉は水素発生量が多い時は圧縮機の回転数を減らし、逆に圧縮機入口側の圧力が低い時叉は水素発生量が少ない時は圧縮機の回転数を増やすことを意味する。
【0011】
【発明の実施の形態】
以下、本発明の実施例に係る発生水素の圧力制御方法について図面を参照して説明する。
(実施例1)
図中の符番31は、水電解装置(SPWE)を示す。この水電解装置31の下流側には、バッファタンク32、圧縮機33、水素貯蔵容器34が順次配置されている。ここで、圧縮機33は、水電解装置31で発生する水素を昇圧する機能を有している。前記圧縮機33の入口及び出口は、圧力調整弁35を介装したバイパスライン36により連結されている。ここで、圧縮機33の入口側の圧力が高い場合は、圧力調整弁35の開度が自動的に減少することで圧縮機33の出口側から入口側への還流量を減らす。また、圧縮機33の入口側の圧力が低い場合は、圧力調整弁35の開度が自動的に増加することで圧縮機33の出口側から入口側への還流量を増やすような自律制御が成立し、圧縮機33の入口側の圧力をほぼ一定に制御することができる。
【0012】
このように、図1の水素発生装置は、水電解装置31と、この水電解装置31の下流側に順次配置された,バッファタンク32、圧縮機33及び水素貯蔵容器34と、前記圧縮機33の入口及び出口間をつなぐ,圧力調整弁35を介装したバイパスライン36を具備し、圧縮機33の入口側の圧力を該圧力の高低に応じて制御する構成となっている。
【0013】
実施例1によれば、前記圧縮機33の入口及び出口を、圧力調整弁35を介装したバイパスライン36により連結し、圧縮機33の入口側の圧力が低い場合は、圧力調整弁35の開度が自動的に増加することで圧縮機33の出口側から入口側への還流量を増やし、圧縮機33の入口側の圧力をほぼ一定に制御することができる。従って、従来のように、バッファタンク32の容量を大きくすることなく、圧縮機35の起動時に、圧縮機35の入口側の圧力が乱れたり、低下することを回避することができ、圧縮機35の入口側の圧力を安定して維持することができる。
【0014】
(実施例2)
図示しないが、本実施例2では、圧縮機をインバータ制御して、水電解装置の水素発生量と同期を取りながら運転することを特徴とする。なお、水素発生量の代わりに圧力もしくは両方と同期をとってもよい。
【0015】
実施例2によれば、圧縮機をインバータ制御して、水電解装置の水素発生量と同期を取りながら運転することにより、上記実施例1のように圧力調整弁のみを用いた場合と比べて、バッファタンクの容量を更に小さくできる。
【0016】
【発明の効果】
以上詳述したように本発明によれば、圧縮機の入口及び出口を、圧力調整弁を介装したバイパスラインで連結し、圧縮機の入口側の圧力を制御することにより、バッファタンクの容量を大きくすることなく、圧縮機の起動時、圧縮機入口の圧力低下の防止、圧力安定化をなし得る発生水素の圧力制御方法を提供できる。
【0017】
また、前記圧縮機をインバータ制御して、水電解装置の水素発生量、圧力のいずれか一方と同期を取りながら運転すれば、更にバッファタンクの容量を小さくできる発生水素の圧力制御方法を提供できる。
【0018】
また、本発明によれば、圧縮機の入口及び出口を、圧力調整弁を介装したバイパスラインでつなぎ、圧縮機の入口側の圧力を制御する構成とすることにより、バッファタンクの容量を大きくすることなく、圧縮機の起動時、圧縮機入口の圧力低下の防止、圧力安定化をなし得る水素発生装置を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る発生水素の圧力制御方法の説明図。
【図2】従来の発生水素の圧力制御方法の説明図。
【図3】従来の水素発生装置の説明図。
【符号の説明】
31…水電解装置(SPWE)、
32…バッファタンク、
33…圧縮機、
34…水素貯蔵容器、
35…圧力調整弁、
36…バイパスライン。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a generated hydrogen pressure control method for controlling the pressure of hydrogen generated in a water electrolysis device and a hydrogen generator.
[0002]
[Prior art]
As is well known, a hydrogen generator for storing hydrogen generated in a water electrolyzer is, for example, as shown in FIG.
Reference numeral 1 in the figure indicates a water electrolysis device (SPWE). On the downstream side of the water electrolysis device 1, a buffer tank 2, a compressor 3, and a hydrogen storage container 4 are sequentially arranged. Here, the compressor 3 has a function of increasing the pressure of hydrogen generated in the water electrolysis device 1.
[0003]
By the way, when the compressor 3 is started, the pressure on the inlet side of the compressor 3 may be disturbed or reduced. Therefore, when starting the compressor 3, a large-capacity buffer tank 2 is required to prevent a pressure drop at the compressor inlet and to stabilize the pressure.
[0004]
FIG. 3 shows an example of a conventional hydrogen generator (JP-A-2000-281308).
This hydrogen generator includes a reformer 1 having a reforming tube 1a having a catalyst layer and a burner 1b, a compressor 2 for pressurizing the reformed gas, and hydrogen from the pressurized reformed gas. A pressure swing adsorption device (PSA) 3 for separating and refining, a pressure gauge 4 for measuring the pressure on the discharge side of the compressor 2, and a means for controlling the pressure are connected from the discharge side to the suction side of the compressor 2. A control valve 5 provided in a bypass pipe route and a thermometer 6 for measuring a catalyst layer temperature are provided. Further, the hydrogen generator increases the discharge pressure of the compressor 2 when the temperature of the reformer 1 exceeds a predetermined set value determined from the viewpoint of heat resistance of the reformer 1, A control device 7 for lowering the temperature of the reformer 1 to a set value or lower is provided. Although not shown, the PSA 3 includes an adjustment valve that increases the adsorption pressure of the PSA 3 in accordance with the increase in the discharge pressure of the compressor 2. However, in the hydrogen generator shown in FIG. 3, when the temperature of the reformer 1 changes, the pressure on the discharge side of the compressor 2 changes, so that in order to avoid this, the residual gas after hydrogen purification is not wasted. This is intended to appropriately control the temperature of the reformer 1.
[0005]
[Patent Document 1]
JP-A-2000-281308 (pages 4-5, FIGS. 1-3)
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and a buffer tank is connected by connecting an inlet and an outlet of a compressor by a bypass line provided with a pressure regulating valve and controlling the pressure on the inlet side of the compressor. It is an object of the present invention to provide a method for controlling the pressure of generated hydrogen which can prevent a pressure drop at the compressor inlet and stabilize the pressure when the compressor is started without increasing the capacity of the hydrogen.
[0007]
Further, the present invention increases the capacity of the buffer tank by connecting the inlet and outlet of the compressor with a bypass line interposed with a pressure regulating valve to control the pressure on the inlet side of the compressor. It is another object of the present invention to provide a hydrogen generator capable of preventing a pressure drop at the compressor inlet and stabilizing the pressure when the compressor is started.
[0008]
[Means for Solving the Problems]
The first invention of the present application is directed to a method for controlling the pressure of hydrogen generated in a water electrolysis apparatus, wherein the hydrogen generation apparatus includes a buffer tank, a compressor, and a hydrogen storage container sequentially arranged downstream of the water electrolysis apparatus. And an outlet of the compressor are connected by a bypass line interposed with a pressure regulating valve, and the pressure on the inlet side of the compressor is controlled.
[0009]
The second invention of the present application relates to a water electrolysis device, a buffer tank, a compressor, and a hydrogen storage container which are sequentially arranged downstream of the water electrolysis device, and a pressure regulating valve for connecting between an inlet and an outlet of the compressor. And a bypass line interposed therebetween.
[0010]
In the present invention, it is preferable that the compressor be operated while being synchronized with at least one of the hydrogen generation amount and the pressure by controlling the compressor with an inverter. Although the pressure can be roughly adjusted only by the pressure adjusting valve, the fluctuation of the pressure that cannot be sufficiently controlled by the pressure adjusting valve can be finely adjusted by adding the inverter control. Therefore, the capacity of the buffer tank can be significantly reduced by using both the pressure regulating valve and the inverter control. As the pressure regulating valve, for example, a free-standing type regulating valve of the Yangtze type is mentioned. Inverter control means that when the pressure at the compressor inlet is high or when the amount of hydrogen generated is large, the number of revolutions of the compressor is reduced, and when the pressure at the compressor inlet is low or hydrogen is generated. When the amount is small, it means that the number of revolutions of the compressor is increased.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a pressure control method for generated hydrogen according to an embodiment of the present invention will be described with reference to the drawings.
(Example 1)
Reference numeral 31 in the figure indicates a water electrolysis device (SPWE). Downstream of the water electrolysis device 31, a buffer tank 32, a compressor 33, and a hydrogen storage container 34 are sequentially arranged. Here, the compressor 33 has a function of increasing the pressure of hydrogen generated in the water electrolysis device 31. The inlet and outlet of the compressor 33 are connected by a bypass line 36 with a pressure regulating valve 35 interposed. Here, when the pressure on the inlet side of the compressor 33 is high, the amount of recirculation from the outlet side to the inlet side of the compressor 33 is reduced by automatically reducing the opening of the pressure regulating valve 35. In addition, when the pressure on the inlet side of the compressor 33 is low, autonomous control such as increasing the amount of recirculation from the outlet side to the inlet side of the compressor 33 by automatically increasing the opening of the pressure regulating valve 35 is performed. This holds true, and the pressure on the inlet side of the compressor 33 can be controlled to be substantially constant.
[0012]
As described above, the hydrogen generator of FIG. 1 includes a water electrolysis device 31, a buffer tank 32, a compressor 33, and a hydrogen storage container 34 which are sequentially arranged downstream of the water electrolysis device 31, And a bypass line 36 having a pressure regulating valve 35 interposed between the inlet and the outlet of the compressor 33 to control the pressure on the inlet side of the compressor 33 in accordance with the level of the pressure.
[0013]
According to the first embodiment, the inlet and the outlet of the compressor 33 are connected by a bypass line 36 having a pressure regulating valve 35 interposed therebetween. When the pressure on the inlet side of the compressor 33 is low, the pressure regulating valve 35 is By automatically increasing the opening, the amount of recirculation from the outlet side to the inlet side of the compressor 33 is increased, and the pressure on the inlet side of the compressor 33 can be controlled to be substantially constant. Therefore, it is possible to prevent the pressure on the inlet side of the compressor 35 from being disturbed or reduced when the compressor 35 is started, without increasing the capacity of the buffer tank 32 as in the related art. The pressure on the inlet side of can be maintained stably.
[0014]
(Example 2)
Although not shown, the second embodiment is characterized in that the compressor is operated by inverter control so as to operate in synchronization with the amount of hydrogen generated in the water electrolysis device. Note that, instead of the amount of generated hydrogen, the pressure may be synchronized with the pressure or both.
[0015]
According to the second embodiment, the compressor is controlled by the inverter and operated while synchronizing with the hydrogen generation amount of the water electrolysis device, so that the compressor is compared with the case where only the pressure regulating valve is used as in the first embodiment. The capacity of the buffer tank can be further reduced.
[0016]
【The invention's effect】
As described in detail above, according to the present invention, the inlet and the outlet of the compressor are connected by a bypass line having a pressure regulating valve interposed therebetween, and the pressure on the inlet side of the compressor is controlled to thereby increase the capacity of the buffer tank. Without increasing the pressure, it is possible to provide a pressure control method for generated hydrogen that can prevent pressure drop at the compressor inlet and stabilize the pressure when the compressor is started.
[0017]
Further, if the compressor is operated by inverter control to operate in synchronization with either the hydrogen generation amount or the pressure of the water electrolysis device, a pressure control method of generated hydrogen that can further reduce the capacity of the buffer tank can be provided. .
[0018]
Further, according to the present invention, the capacity of the buffer tank is increased by connecting the inlet and the outlet of the compressor by a bypass line having a pressure regulating valve interposed therebetween and controlling the pressure on the inlet side of the compressor. Thus, it is possible to provide a hydrogen generator capable of preventing a pressure drop at the compressor inlet and stabilizing the pressure when the compressor is started.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a generated hydrogen pressure control method according to one embodiment of the present invention.
FIG. 2 is an explanatory diagram of a conventional pressure control method for generated hydrogen.
FIG. 3 is an explanatory view of a conventional hydrogen generator.
[Explanation of symbols]
31 ... water electrolysis device (SPWE),
32 ... buffer tank,
33 ... Compressor,
34 ... hydrogen storage container,
35 ... pressure regulating valve,
36 ... Bypass line.

Claims (4)

水電解装置の下流側にバッファタンク、圧縮機、水素貯蔵容器を順次配置した水素発生装置で、水電解装置で発生した水素の圧力を制御する方法において、
前記圧縮機の入口及び出口を、圧力調整弁を介装したバイパスラインで連結し、圧縮機の入口側の圧力を制御することを特徴とする発生水素の圧力制御方法。
In a hydrogen generator in which a buffer tank, a compressor and a hydrogen storage container are sequentially arranged on the downstream side of the water electrolyzer, in a method of controlling the pressure of hydrogen generated in the water electrolyzer,
A pressure control method for generated hydrogen, wherein an inlet and an outlet of the compressor are connected by a bypass line interposed with a pressure regulating valve to control a pressure on an inlet side of the compressor.
前記圧縮機をインバータ制御することにより、前記水電解装置の水素発生量叉は圧力の少なくともいずれか一方と同期をとりながら運転することを特徴とする請求項1記載の発生水素の圧力制御方法。2. The pressure control method for generated hydrogen according to claim 1, wherein the compressor is operated by inverter control so as to operate while synchronizing with at least one of the hydrogen generation amount and the pressure of the water electrolysis device. 水電解装置と、この水電解装置の下流側に順次配置された,バッファタンク、圧縮機及び水素貯蔵容器と、前記圧縮機の入口及び出口間をつなぐ,圧力調整弁を介装したバイパスラインとを具備することを特徴とする水素発生装置。A water electrolysis device, a buffer line, a compressor, and a hydrogen storage container, which are sequentially arranged downstream of the water electrolysis device, and a bypass line interposed with a pressure regulating valve that connects between an inlet and an outlet of the compressor. A hydrogen generator comprising: 前記圧縮機をインバータ制御し、前記水電解装置の水素発生量叉は圧力の少なくともいずれか一方と同期をとりながら運転することを特徴とする請求項3記載の水素発生装置。4. The hydrogen generator according to claim 3, wherein the compressor is controlled by an inverter, and the compressor is operated in synchronization with at least one of the amount of generated hydrogen and the pressure of the water electrolyzer.
JP2002288864A 2002-10-01 2002-10-01 Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus Withdrawn JP2004124148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288864A JP2004124148A (en) 2002-10-01 2002-10-01 Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288864A JP2004124148A (en) 2002-10-01 2002-10-01 Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus

Publications (1)

Publication Number Publication Date
JP2004124148A true JP2004124148A (en) 2004-04-22

Family

ID=32281239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288864A Withdrawn JP2004124148A (en) 2002-10-01 2002-10-01 Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus

Country Status (1)

Country Link
JP (1) JP2004124148A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057141A (en) * 2004-08-20 2006-03-02 Hitachi Zosen Corp Hydrogen-supplying device with the use of solid polymer type water electrolysis cell
JP2006199995A (en) * 2005-01-19 2006-08-03 Hitachi Zosen Corp Water electrolysis device enclosed in high-pressure vessel for generating hydrogen
JP2007223860A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply system
JP2007265757A (en) * 2006-03-28 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2008524107A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for hydrogen production
JP2008526657A (en) * 2004-12-17 2008-07-24 テキサコ ディベラップメント コーポレイション Apparatus and method for controlling speed of compressor motor of hydrogen production apparatus
JP2009203555A (en) * 2008-02-27 2009-09-10 Kuo-Fong Huang System for supplying fuel of hydrogen energy source
JP2010189675A (en) * 2009-02-16 2010-09-02 Toyo Tanso Kk Gas generator and gas generating method
WO2010113612A1 (en) * 2009-04-01 2010-10-07 セントラル硝子株式会社 Fluorine gas generation device
WO2011129219A1 (en) * 2010-04-16 2011-10-20 セントラル硝子株式会社 Fluorine gas generation device
WO2011129217A1 (en) * 2010-04-16 2011-10-20 セントラル硝子株式会社 Fluorine gas generation device
WO2011129057A1 (en) * 2010-04-14 2011-10-20 東洋炭素株式会社 Gas generation device and gas generation method
CN102424980A (en) * 2011-11-29 2012-04-25 泸州北方化学工业有限公司 Electrolysis system with ion membrane electrolyzer and pressure regulating method thereof
JP2014080633A (en) * 2012-10-12 2014-05-08 Honda Motor Co Ltd High-pressure water electrolysis system, and activation method of the same
JP2015206060A (en) * 2014-04-17 2015-11-19 三菱日立パワーシステムズ株式会社 Hydrogen gas generating system
GB2539700A (en) * 2015-06-25 2016-12-28 Itm Power (Trading) Ltd Renewable energy system
CN107034481A (en) * 2017-04-27 2017-08-11 福建金源泉科技发展有限公司 A kind of hydrogen generator Pneumatic controller
JP2020526662A (en) * 2017-07-12 2020-08-31 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー System for producing and dispensing pressurized hydrogen
CN114320671A (en) * 2021-12-22 2022-04-12 中船动力镇江有限公司 Natural gas pressurization system with adjustable flow

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635514B2 (en) * 2004-08-20 2011-02-23 日立造船株式会社 Hydrogen supply device using solid polymer water electrolyzer
JP2006057141A (en) * 2004-08-20 2006-03-02 Hitachi Zosen Corp Hydrogen-supplying device with the use of solid polymer type water electrolysis cell
JP2008524107A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for hydrogen production
JP2008526657A (en) * 2004-12-17 2008-07-24 テキサコ ディベラップメント コーポレイション Apparatus and method for controlling speed of compressor motor of hydrogen production apparatus
JP2006199995A (en) * 2005-01-19 2006-08-03 Hitachi Zosen Corp Water electrolysis device enclosed in high-pressure vessel for generating hydrogen
JP4706263B2 (en) * 2005-01-19 2011-06-22 日立造船株式会社 High pressure vessel-accommodated water electrolysis hydrogen generator and method for operating the device
JP2007223860A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply system
JP2007265757A (en) * 2006-03-28 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2009203555A (en) * 2008-02-27 2009-09-10 Kuo-Fong Huang System for supplying fuel of hydrogen energy source
JP2010189675A (en) * 2009-02-16 2010-09-02 Toyo Tanso Kk Gas generator and gas generating method
WO2010113612A1 (en) * 2009-04-01 2010-10-07 セントラル硝子株式会社 Fluorine gas generation device
JP2010242125A (en) * 2009-04-01 2010-10-28 Central Glass Co Ltd Fluorine gas generation device
CN102834549B (en) * 2010-04-14 2015-11-25 东洋炭素株式会社 Gas generation apparatus and gas generating processes
CN102834549A (en) * 2010-04-14 2012-12-19 东洋炭素株式会社 Gas generation device and gas generation method
WO2011129057A1 (en) * 2010-04-14 2011-10-20 東洋炭素株式会社 Gas generation device and gas generation method
JP2011219847A (en) * 2010-04-14 2011-11-04 Toyo Tanso Kk Gas generation apparatus and gas generation method
JP2011225922A (en) * 2010-04-16 2011-11-10 Central Glass Co Ltd Fluorine gas generation device
WO2011129219A1 (en) * 2010-04-16 2011-10-20 セントラル硝子株式会社 Fluorine gas generation device
WO2011129217A1 (en) * 2010-04-16 2011-10-20 セントラル硝子株式会社 Fluorine gas generation device
CN102859040A (en) * 2010-04-16 2013-01-02 中央硝子株式会社 Fluorine gas generation device
KR101384720B1 (en) 2010-04-16 2014-04-14 샌트랄 글래스 컴퍼니 리미티드 Fluorine gas generating apparatus
US9139918B2 (en) 2010-04-16 2015-09-22 Central Glass Company, Limited Fluorine gas generating apparatus
JP2011225921A (en) * 2010-04-16 2011-11-10 Central Glass Co Ltd Fluorine gas generation device
CN102424980A (en) * 2011-11-29 2012-04-25 泸州北方化学工业有限公司 Electrolysis system with ion membrane electrolyzer and pressure regulating method thereof
CN102424980B (en) * 2011-11-29 2014-03-12 泸州北方化学工业有限公司 Electrolysis system with ion membrane electrolyzer and pressure regulating method thereof
JP2014080633A (en) * 2012-10-12 2014-05-08 Honda Motor Co Ltd High-pressure water electrolysis system, and activation method of the same
JP2015206060A (en) * 2014-04-17 2015-11-19 三菱日立パワーシステムズ株式会社 Hydrogen gas generating system
GB2539700A (en) * 2015-06-25 2016-12-28 Itm Power (Trading) Ltd Renewable energy system
CN107034481A (en) * 2017-04-27 2017-08-11 福建金源泉科技发展有限公司 A kind of hydrogen generator Pneumatic controller
CN107034481B (en) * 2017-04-27 2019-01-29 福建金源泉科技发展有限公司 A kind of hydrogen generator Pneumatic controller
JP2020526662A (en) * 2017-07-12 2020-08-31 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー System for producing and dispensing pressurized hydrogen
JP7113035B2 (en) 2017-07-12 2022-08-04 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー System for producing and dispensing pressurized hydrogen
CN114320671A (en) * 2021-12-22 2022-04-12 中船动力镇江有限公司 Natural gas pressurization system with adjustable flow

Similar Documents

Publication Publication Date Title
JP2004124148A (en) Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus
TWI360911B (en) Thermally primed hydrogen-producing fuel cell syst
US7416569B2 (en) Fuel gas production apparatus and method of starting operation of fuel gas production apparatus
JP2001345112A (en) Fuel cell having dynamically controlled back pressure
JP2005008434A (en) Method and apparatus for producing fuel gas
JP6566639B2 (en) Method for operating hydrogen production apparatus and hydrogen production apparatus
TWI476038B (en) Purifying method and purifying apparatus for argon gas
JP2001520576A (en) Apparatus and method for producing gas
JP2000012062A (en) Hydrogen gas supply device and hydrogen gas supply method therefor
JP3914118B2 (en) Hydrogen supply device
EP1295847A3 (en) Hydrogen generating device having hydrogen separator membrane and control method therefor
JP2009181699A (en) Fuel battery device
JP2003163024A (en) Reform type fuel cell system
US20050244765A1 (en) Method of controlling operation of fuel gas production apparatus
JP4133628B2 (en) Cogeneration system
JP2011181268A (en) Heating method of desulfurizer for fuel cell and fuel cell system
JP2004146089A (en) Fuel cell type power generation system and its starting method
JP2002355522A (en) Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP2005293949A (en) Fuel gas manufacturing system and operation method of the same
JP2007273171A (en) Reforming device for fuel cell and its start-up method
JP2009518820A (en) Fuel cell system
JP5829205B2 (en) Hydrogen storage / release method and hydrogen storage / release apparatus
JP2001213605A (en) Hydrogen supply system for device using hydrogen as fuel
JP2003128401A (en) Apparatus for generating hydrogen and it&#39;s operating method
JP7082939B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110