JP2000012062A - Hydrogen gas supply device and hydrogen gas supply method therefor - Google Patents

Hydrogen gas supply device and hydrogen gas supply method therefor

Info

Publication number
JP2000012062A
JP2000012062A JP10193667A JP19366798A JP2000012062A JP 2000012062 A JP2000012062 A JP 2000012062A JP 10193667 A JP10193667 A JP 10193667A JP 19366798 A JP19366798 A JP 19366798A JP 2000012062 A JP2000012062 A JP 2000012062A
Authority
JP
Japan
Prior art keywords
hydrogen
storage tank
hydrogen storage
main
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10193667A
Other languages
Japanese (ja)
Inventor
Sai Hayakawa
菜 早川
Masafumi Kobayashi
雅史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMRA Japan Co Ltd
Original Assignee
IMRA Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMRA Japan Co Ltd filed Critical IMRA Japan Co Ltd
Priority to JP10193667A priority Critical patent/JP2000012062A/en
Publication of JP2000012062A publication Critical patent/JP2000012062A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To repeat starting with a small capacity starting hydrogen storage tank in a hydrogen gas supply device, using a starting hydrogen storage tank and a running hydrogen storage tank and in a hydrogen gas supply method. SOLUTION: Since hydrogen is supplied from a sub-tank 14 to a fuel cell 16 in starting, hydrogen can be supplied to the fuel cell 16 without heating a tank in starting. When supply of hydrogen from a main tank 12 to the fuel cell 16 is started, hydrogen is supplied from the main tank 12 to the sub-tank 14 from which hydrogen is released in starting of the fuel cell, and stored in the sub-tank 14. Thereby, starting of the fuel cell can be repeated by using the small capacity sub-tank 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池もしく
は水素エンジンに水素を供給するための水素ガス供給装
置及び水素ガス供給方法に関し、特に、電気自動車の電
源として用いられる燃料電池用に好適に用い得る水素ガ
ス供給装置及び水素ガス供給方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen gas supply device and a hydrogen gas supply method for supplying hydrogen to a fuel cell or a hydrogen engine, and more particularly to a hydrogen gas supply device and a hydrogen gas supply method suitable for a fuel cell used as a power source of an electric vehicle. The present invention relates to a hydrogen gas supply device and a hydrogen gas supply method to be obtained.

【0002】[0002]

【従来の技術】水素を燃料とする外部負荷用の水素ガス
供給装置として、水素を吸蔵及び放出する水素吸蔵合金
を水素貯蔵タンク内に収容し、該水素貯蔵タンクを冷却
することで水素を貯蔵させた後、該水素貯蔵タンクへ外
部負荷にて発生した熱を供給し水素貯蔵タンク内の水素
吸蔵合金から水素を放出させ、外部負荷側へ水素を供給
させる方式が知られている。また、ここで言う水素を燃
料とする外部負荷とは、水素を燃料として電力もしくは
駆動力を発生させる手段であり、例えば燃料電池や水素
エンジンが挙げられる。
2. Description of the Related Art As a hydrogen gas supply device for an external load using hydrogen as a fuel, a hydrogen storage alloy for storing and releasing hydrogen is accommodated in a hydrogen storage tank, and the hydrogen storage tank is cooled to store hydrogen. After that, a method is known in which heat generated by an external load is supplied to the hydrogen storage tank to release hydrogen from the hydrogen storage alloy in the hydrogen storage tank and supply hydrogen to the external load side. In addition, the external load using hydrogen as a fuel is a unit that generates electric power or driving force using hydrogen as a fuel, and examples thereof include a fuel cell and a hydrogen engine.

【0003】[0003]

【発明が解決しようとする課題】上述したように水素吸
蔵合金は所定の高温状態になった際に水素を放出するの
で、この温度状態に加熱するための熱源として、外部負
荷側からの廃熱が一般的に用いられる。しかしながら、
外部負荷の始動時においては、廃熱が発生していないの
で、水素貯蔵タンクから水素を供給させることができな
い。このため、該水素貯蔵タンクを加熱するための加熱
装置を設けたり、或いは、始動時に供給するための水素
を加圧して貯蔵するためのサージタンクを配設すること
が行われていた。ここで、加熱装置を設けると加熱装置
へのエネルギーの供給源が必要となり、また、外部負荷
が十分な廃熱を発生させる時間、外部負荷に十分な水素
を供給可能なサージタンクを設けると装置全体が大型化
するとの問題がある。
As described above, the hydrogen storage alloy releases hydrogen when it reaches a predetermined high temperature state. Therefore, as a heat source for heating to this temperature state, waste heat from the external load side is used. Is generally used. However,
At the start of the external load, no waste heat is generated, so that hydrogen cannot be supplied from the hydrogen storage tank. For this reason, a heating device for heating the hydrogen storage tank has been provided, or a surge tank for pressurizing and storing hydrogen to be supplied at the time of starting has been provided. Here, if a heating device is provided, a source of energy supply to the heating device is required, and if a surge tank capable of supplying a sufficient amount of hydrogen to the external load is provided during a period when the external load generates sufficient waste heat, the device is provided. There is a problem that the whole becomes large.

【0004】一方、低温でも水素圧力を確保するため
に、低温下(所定温度よりも低い温度)でプラトー圧の
高い水素吸蔵合金を用いることも考え得るが、係る水素
吸蔵合金を水素貯蔵タンクに収容した際には、作動環境
温度が高くなった際に、水素貯蔵タンク内の圧力が高く
なり、高圧に耐え得るようにするためには、装置の大型
化が避けられない。
On the other hand, in order to secure the hydrogen pressure even at a low temperature, it is conceivable to use a hydrogen storage alloy having a high plateau pressure at a low temperature (a temperature lower than a predetermined temperature). At the time of storage, when the operating environment temperature increases, the pressure in the hydrogen storage tank increases, and in order to withstand the high pressure, an increase in the size of the device is inevitable.

【0005】また、所定温度より低温でも水素放出でき
る水素吸蔵合金を収容する起動用水素貯蔵タンクと、高
温で水素放出する水素吸蔵合金を収容する通常走行用水
素貯蔵タンクとを用い、水素エンジンの起動時に水素を
起動用水素貯蔵タンク側から水素供給させるシステムが
特開平6−17708号にて提案されている。しかしな
がら、かかる技術においては、低温でも水素放出できる
水素吸蔵合金を収容する起動用タンクへの水素充填に問
題があった。即ち、水素エンジンを搭載した車両が始動
を繰り返した際に、該起動用タンク内の水素量が減少し
て行くため、始動を繰り返しても水素の不足が生じない
ようにするためには、起動用タンクの容量を大きくする
必要がある。しかし、該起動用タンク内の水素は、通常
の走行時に用いないため、容量の大きなタンクを構成す
るのは、使用しない水素を水素吸蔵合金に吸蔵させて車
両を走行させることになり、車両(水素エンジンを駆動
源とする車両及び燃料電池により発生した電力によりモ
ータを駆動して走行する電気自動車)の走行効率を低下
させる原因となる。特に、起動用水素貯蔵タンクは、所
定の高温状態より低い温度状態で既に高い水素圧力が発
生するため走行用水素貯蔵タンクと比較して堅牢に構成
する必要があり、容量の大きな起動タンクは、装置の大
型化及び重量増の原因となり、車両(水素エンジンを駆
動源とする車両及び燃料電池により発生した電力により
モータを駆動して走行する電気自動車)に搭載する上で
重大な問題となる。
Further, a hydrogen storage tank for starting which stores a hydrogen storage alloy capable of releasing hydrogen even at a temperature lower than a predetermined temperature, and a hydrogen storage tank for normal running which stores a hydrogen storage alloy which releases hydrogen at a high temperature are used to provide a hydrogen engine. A system in which hydrogen is supplied from the starting hydrogen storage tank at the time of start-up is proposed in JP-A-6-17708. However, in such a technique, there is a problem in filling hydrogen into a starting tank containing a hydrogen storage alloy capable of releasing hydrogen even at a low temperature. That is, when a vehicle equipped with a hydrogen engine is repeatedly started, the amount of hydrogen in the start-up tank is reduced. It is necessary to increase the capacity of the storage tank. However, since the hydrogen in the start-up tank is not used during normal traveling, a large-capacity tank is constituted by storing unused hydrogen in a hydrogen-absorbing alloy and causing the vehicle to travel. This causes a reduction in the running efficiency of a vehicle driven by a hydrogen engine and an electric vehicle running by driving a motor with electric power generated by a fuel cell. In particular, the starting hydrogen storage tank needs to be configured more robustly than the traveling hydrogen storage tank because a high hydrogen pressure is already generated in a temperature state lower than a predetermined high temperature state. This causes an increase in the size and weight of the device, and poses a serious problem when the device is mounted on a vehicle (a vehicle driven by a hydrogen engine and an electric vehicle driven by driving a motor with electric power generated by a fuel cell).

【0006】本発明は、上述した課題を解決するために
なされたものであり、その目的とするところは、起動用
水素貯蔵タンクと走行用水素貯蔵タンクを用いる水素ガ
ス供給装置及び水素ガス供給方法において、小容量の起
動用水素貯蔵タンクを用いて始動を繰り返すことを可能
にすることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a hydrogen gas supply apparatus and a hydrogen gas supply method using a starting hydrogen storage tank and a traveling hydrogen storage tank. It is an object of the present invention to make it possible to repeat starting using a small-capacity starting hydrogen storage tank.

【0007】[0007]

【課題を解決するための手段】請求項1の水素ガス供給
装置は、上記目的を達成するため、所定の高温状態で水
素を放出する高温用水素吸蔵合金を収容する主水素貯蔵
タンクと、前記所定の高温状態よりも低い温度状態で水
素を放出し得る低温用水素吸蔵合金を収容する副水素貯
蔵タンクと、前記主水素貯蔵タンクからの水素を外部負
荷へ供給する第1供給路と、前記副水素貯蔵タンクから
の水素を外部負荷へ供給する第2供給路と、前記主水素
貯蔵タンクから前記副水素貯蔵タンクへ水素を供給する
第3供給路と、前記外部負荷にて発生した熱を前記主水
素貯蔵タンクへ供給する熱供給装置と、前記主水素貯蔵
タンクの水素圧力を検出する主圧力検出装置と、前記主
圧力検出装置により検出された前記主水素貯蔵タンク内
の水素圧力が低い時に、前記第2供給路を介して前記副
水素貯蔵タンクから水素を前記外部負荷へ供給し、そし
て、前記主圧力検出装置により検出される前記主水素貯
蔵タンク内の水素圧力が高まった時に、前記第1供給路
を介して前記主水素貯蔵タンクからの水素の前記外部負
荷への供給を開始すると共に、前記第3供給路を介して
前記副水素貯蔵タンクへ供給し、該副水素貯蔵タンク内
に水素を貯蔵させる供給路切り替え手段と、を備えるこ
とを技術的特徴とする。
According to a first aspect of the present invention, there is provided a hydrogen gas supply device, comprising: a main hydrogen storage tank containing a high-temperature hydrogen storage alloy that releases hydrogen at a predetermined high temperature; A sub-hydrogen storage tank containing a low-temperature hydrogen storage alloy capable of releasing hydrogen at a temperature lower than a predetermined high-temperature state, a first supply path for supplying hydrogen from the main hydrogen storage tank to an external load, A second supply path for supplying hydrogen from the secondary hydrogen storage tank to an external load, a third supply path for supplying hydrogen from the main hydrogen storage tank to the secondary hydrogen storage tank, and a heat generated by the external load. A heat supply device that supplies the main hydrogen storage tank, a main pressure detection device that detects the hydrogen pressure of the main hydrogen storage tank, and a low hydrogen pressure in the main hydrogen storage tank detected by the main pressure detection device. To supply hydrogen from the sub-hydrogen storage tank to the external load via the second supply path, and when the hydrogen pressure in the main hydrogen storage tank detected by the main pressure detecting device increases, Starting the supply of hydrogen from the main hydrogen storage tank to the external load via the first supply path and supplying the hydrogen to the sub-hydrogen storage tank via the third supply path; And a supply path switching means for storing hydrogen therein.

【0008】請求項2の水素ガス供給装置は、請求項1
において、前記副水素貯蔵タンクへは前記外部負荷から
の熱が供給されないことを技術的特徴とする。
[0008] The hydrogen gas supply apparatus according to claim 2 is claim 1.
In the above, a technical feature is that heat from the external load is not supplied to the secondary hydrogen storage tank.

【0009】請求項3の水素ガス供給装置は、請求項1
又は2において、前記副水素貯蔵タンク内の圧力を検出
する副圧力検出装置を備え、前記供給路切り替え手段
が、該副圧力検出装置により検出された副水素貯蔵タン
ク内の圧力が所定値を越えた際に、該前記第3供給路を
介して該副水素貯蔵タンクから前記主水素貯蔵タンクへ
水素を放出させることを技術的特徴とする。
A third aspect of the present invention is a hydrogen gas supply device.
Or in 2, wherein the apparatus further comprises a sub-pressure detecting device for detecting a pressure in the sub-hydrogen storage tank, and wherein the supply path switching means causes the pressure in the sub-hydrogen storage tank detected by the sub-pressure detecting device to exceed a predetermined value. In this case, a technical feature is that hydrogen is released from the secondary hydrogen storage tank to the main hydrogen storage tank via the third supply path.

【0010】請求項4の水素ガス供給方法は、外部負荷
から供給された熱により水素を放出する高温用水素吸蔵
合金を収容する主水素貯蔵タンクと、前記高温用水素吸
蔵合金よりも低い温度で水素を放出し得る低温用水素吸
蔵合金を収容する副水素貯蔵タンクとを備え、該主水素
貯蔵タンク及び副水素貯蔵タンクからの水素を外部負荷
へ供給する水素ガス供給方法であって、前記外部負荷か
ら主水素貯蔵タンクに十分な熱の供給されない始動時に
おける該主水素貯蔵タンク内の水素圧力が低い時に、前
記副水素貯蔵タンクから水素を前記外部負荷へ供給し、
前記外部負荷から主水素貯蔵タンクに十分な熱が供給さ
れ該主水素貯蔵タンク内の水素圧力が高まった時に、前
記主水素貯蔵タンクからの水素の前記外部負荷への供給
を開始すると共に、当該主水素貯蔵タンクから前記副水
素貯蔵タンクへ供給し、該副水素貯蔵タンク内に水素を
貯蔵させることを技術的特徴とする。
According to a fourth aspect of the present invention, there is provided a hydrogen gas supply method, comprising: a main hydrogen storage tank containing a high-temperature hydrogen storage alloy for releasing hydrogen by heat supplied from an external load; A method for supplying hydrogen from a main hydrogen storage tank and a sub-hydrogen storage tank to an external load, comprising: a sub-hydrogen storage tank containing a low-temperature hydrogen storage alloy capable of releasing hydrogen; Supplying hydrogen from the secondary hydrogen storage tank to the external load when the pressure of hydrogen in the main hydrogen storage tank is low at the time of startup when sufficient heat is not supplied from the load to the main hydrogen storage tank;
When sufficient heat is supplied to the main hydrogen storage tank from the external load to increase the hydrogen pressure in the main hydrogen storage tank, supply of hydrogen from the main hydrogen storage tank to the external load is started, and A technical feature is to supply hydrogen from the main hydrogen storage tank to the sub-hydrogen storage tank and store hydrogen in the sub-hydrogen storage tank.

【0011】請求項5の水素ガス供給方法は、請求項4
において、前記副水素貯蔵タンク内への水素の貯蔵を開
始した後、該副水素貯蔵タンク内の圧力と前記主水素貯
蔵タンク内の圧力とがほぼ等しくなった際に、当該副水
素貯蔵タンクでの水素の貯蔵を完了することを技術的特
徴とする。
According to a fifth aspect of the present invention, there is provided a hydrogen gas supply method.
In the above, after the storage of hydrogen in the secondary hydrogen storage tank is started, when the pressure in the secondary hydrogen storage tank and the pressure in the main hydrogen storage tank become substantially equal, the secondary hydrogen storage tank The technical feature is to complete the storage of hydrogen.

【0012】請求項6は、請求項4又は5において、前
記副水素貯蔵タンク内の圧力が所定値を越えた際に、該
副水素貯蔵タンクから前記主水素貯蔵タンクへ水素を放
出させることを技術的特徴とする。
According to a sixth aspect, in the fourth or fifth aspect, when the pressure in the secondary hydrogen storage tank exceeds a predetermined value, hydrogen is released from the secondary hydrogen storage tank to the main hydrogen storage tank. Technical features.

【0013】請求項7は、請求項1ないし請求項3にお
いて、前記外部負荷が燃料電池であることを技術的特徴
とする。
A seventh aspect of the present invention is characterized in that in the first to third aspects, the external load is a fuel cell.

【0014】請求項8は、請求項4ないし請求項6にお
いて、前記外部負荷が燃料電池であることを技術的特徴
とする。
An eighth aspect of the present invention is characterized in that, in any of the fourth to sixth aspects, the external load is a fuel cell.

【0015】請求項1及び4の発明では、検出された主
水素貯蔵タンク内の水素圧力が低い時に、副水素貯蔵タ
ンクから水素を外部負荷へ供給する。このため、始動時
においても、該主水素貯蔵タンクを加熱することなく、
外部負荷へ水素を供給することができる。そして、外部
負荷が始動して、外部負荷にて発生した熱が主水素貯蔵
タンクへ供給され、主水素貯蔵タンク内の水素圧力が高
まった時に、第2供給路を介して主水素貯蔵タンクから
の水素の外部負荷への供給を開始する。このため、安定
して主水素貯蔵タンクから水素を外部負荷へ供給するこ
とができる。ここで、外部負荷の始動の際に、副水素貯
蔵タンク内の水素が放出され減圧しているが、主水素貯
蔵タンクから外部負荷側へ水素の供給を開始する際に、
該主水素貯蔵タンクから副水素貯蔵タンクへ供給し、該
副水素貯蔵タンク内に水素を貯蔵させる。このため、外
部負荷の始動に最低限必要な容量の副水素貯蔵タンクを
用いて、外部負荷の始動を繰り返すことが可能になる。
According to the first and fourth aspects of the present invention, when the detected hydrogen pressure in the main hydrogen storage tank is low, hydrogen is supplied from the secondary hydrogen storage tank to an external load. For this reason, even at the time of startup, without heating the main hydrogen storage tank,
Hydrogen can be supplied to an external load. Then, when the external load is started, the heat generated by the external load is supplied to the main hydrogen storage tank, and when the hydrogen pressure in the main hydrogen storage tank increases, the main hydrogen storage tank passes through the second supply path. Start supplying hydrogen to the external load. Therefore, hydrogen can be stably supplied from the main hydrogen storage tank to the external load. Here, when starting the external load, the hydrogen in the secondary hydrogen storage tank is released and decompressed, but when starting to supply hydrogen from the main hydrogen storage tank to the external load side,
The hydrogen is supplied from the main hydrogen storage tank to the sub-hydrogen storage tank, and hydrogen is stored in the sub-hydrogen storage tank. For this reason, the start of the external load can be repeated using the secondary hydrogen storage tank having the minimum capacity required for starting the external load.

【0016】また、請求項2の発明では、副水素貯蔵タ
ンクへは外部負荷からの熱を供給しないため、簡易に構
成することができる。
According to the second aspect of the present invention, since heat from an external load is not supplied to the secondary hydrogen storage tank, the configuration can be simplified.

【0017】請求項3または6の発明では、副水素貯蔵
タンク内の圧力が所定値を越えた際に、該副水素貯蔵タ
ンクから主水素貯蔵タンクへ水素を放出させるので、所
定の高温状態にて所定以上の水素圧力が発生し得る副水
素貯蔵タンク内の圧力を一定以内に保つことができ、安
全である。
According to the third or sixth aspect of the present invention, when the pressure in the sub-hydrogen storage tank exceeds a predetermined value, hydrogen is released from the sub-hydrogen storage tank to the main hydrogen storage tank. As a result, the pressure in the secondary hydrogen storage tank at which a predetermined or higher hydrogen pressure can be generated can be kept within a certain range, and it is safe.

【0018】請求項5の発明では、副水素貯蔵タンク内
への水素の貯蔵を開始した後、該副水素貯蔵タンク内の
圧力と主水素貯蔵タンク内の圧力とがほぼ等しくなった
際に、当該副水素貯蔵タンクの水素の貯蔵を完了する。
このため、主水素貯蔵タンクの水素圧力を用いて実現し
得る最大圧力まで副水素貯蔵タンクに水素を貯蔵させる
ことができる。
According to the fifth aspect of the invention, after the storage of hydrogen in the secondary hydrogen storage tank is started, when the pressure in the secondary hydrogen storage tank and the pressure in the main hydrogen storage tank become substantially equal, The storage of hydrogen in the secondary hydrogen storage tank is completed.
For this reason, hydrogen can be stored in the sub hydrogen storage tank to the maximum pressure that can be realized using the hydrogen pressure of the main hydrogen storage tank.

【0019】[0019]

【発明の実施の形態】以下、本発明の第1実施形態に係
る水素ガス供給装置及び水素ガス供給方法について図を
参照して説明する。図1は第1実施態様の水素ガス供給
装置の構成を示すブロック図である。該水素ガス供給装
置は、燃料電池16から供給される電力でモータを駆動
して走行する電気自動車に搭載される。なお、この実施
例では外部負荷として燃料電池16を用いた例で説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hydrogen gas supply device and a hydrogen gas supply method according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of the hydrogen gas supply device of the first embodiment. The hydrogen gas supply device is mounted on an electric vehicle that runs by driving a motor with electric power supplied from a fuel cell 16. In this embodiment, an example in which the fuel cell 16 is used as an external load will be described.

【0020】水素ガス供給装置は、PEM型燃料電池シ
ステムにおいて通常発生し得る上限温度(60°C)を
上限とする所定の高温状態(20°C〜60°C)でも
1MPa以下のプラトー圧を保つ常温動作用の水素吸蔵
合金を収容する主水素貯蔵タンク(走行用タンク)12
と、低温状態(−10°C〜20°C)でも0.1MP
aのプラトー圧を発生し得る水素吸蔵合金を収容する副
水素貯蔵タンク(起動用タンク)14と、燃料電池16
(外部負荷)にて発生した廃熱を主水素貯蔵タンク12
側へ供給する熱交換機18とを備える。なお、熱交換機
18は、燃料電池16の反応中における冷却に用いられ
た冷却水の廃熱を主水素貯蔵タンク12へ供給するため
の装置であり、該燃料電池16からの熱は副水素貯蔵タ
ンク14側へは供給されない。ここで、燃料電池16を
起動する際には、0.1MPa以上の圧力で水素を供給
する必要があるが、該副水素貯蔵タンク14には、低温
状態(例えば−10°Cでも)で該0.1MPa以上の
圧力を保持できる水素吸蔵合金が収容されている。
The hydrogen gas supply device can maintain a plateau pressure of 1 MPa or less even in a predetermined high temperature state (20 ° C. to 60 ° C.) up to an upper limit temperature (60 ° C.) which can normally be generated in a PEM type fuel cell system. Main hydrogen storage tank (running tank) 12 containing a hydrogen storage alloy for normal temperature operation to be kept
0.1MP even at low temperature (-10 ° C to 20 ° C)
a secondary hydrogen storage tank (starting tank) 14 containing a hydrogen storage alloy capable of generating a plateau pressure of a, and a fuel cell 16
(External load) generates waste heat from the main hydrogen storage tank 12
And a heat exchanger 18 for supplying to the side. The heat exchanger 18 is a device for supplying waste heat of the cooling water used for cooling during the reaction of the fuel cell 16 to the main hydrogen storage tank 12, and heat from the fuel cell 16 is used for storing the secondary hydrogen. It is not supplied to the tank 14 side. Here, when starting up the fuel cell 16, it is necessary to supply hydrogen at a pressure of 0.1 MPa or more, but the sub-hydrogen storage tank 14 is supplied to the sub-hydrogen storage tank 14 at a low temperature (for example, even at −10 ° C.). A hydrogen storage alloy capable of holding a pressure of 0.1 MPa or more is accommodated.

【0021】今回の実施例では、所定の高温状態として
20°C〜60°C、所定の低温状態(所定の温度状態
よりも低い温度状態)として−10°C〜20°Cが設
定されているが、これは使用する水素吸蔵合金の特性に
より設定が変更可能であり、前述した温度状態に限定さ
れるものではない。また、所定の高温状態の温度の上限
は、外部負荷として何を使用するかによっても当然変更
可能である。
In this embodiment, the predetermined high temperature state is set at 20 ° C. to 60 ° C., and the predetermined low temperature state (temperature state lower than the predetermined temperature state) is set at −10 ° C. to 20 ° C. However, this setting can be changed depending on the characteristics of the hydrogen storage alloy used, and is not limited to the above-mentioned temperature state. In addition, the upper limit of the temperature in the predetermined high temperature state can be naturally changed depending on what is used as the external load.

【0022】後述するように加熱されて所定の高温状態
になった時、水素を放出する主水素貯蔵タンク12側の
水素吸蔵合金としては、例えば、Ti −Fe 系合金、T
i −Mn 系合金、La 系合金、Mm 系合金、V系合金を
用いることができる。もちろん、これらの合金に限定さ
れるものではない。一方、低温状態(−10°C〜20
°C)で0.1MPaのプラトー圧を発生し得る副水素
貯蔵タンク14側の水素吸蔵合金として、例えば、Ti
0.9Zr 0.1Mn 1.7等のTi −Mn 系合金、T
i −Cr 系合金、更に、La 系合金、Mn 系合金、Ti
−Fe 系合金などのベースとなる合金にCr 、Zr 、
V、Ni 、Fe 、Ca 、Al等の添加物を加えること
で、低温での特性を高めたものを用いることができる。
もちろん、これらの合金、添加物に限定されるものでは
ない。
As will be described later, as the hydrogen storage alloy on the side of the main hydrogen storage tank 12 that releases hydrogen when heated to a predetermined high temperature state, for example, a Ti—Fe alloy, T
i-Mn-based alloys, La-based alloys, Mm-based alloys, and V-based alloys can be used. Of course, it is not limited to these alloys. On the other hand, in a low temperature state (−10 ° C. to 20 ° C.)
As a hydrogen storage alloy on the side of the secondary hydrogen storage tank 14 capable of generating a plateau pressure of 0.1 MPa at
Ti-Mn alloys such as 0.9Zr 0.1Mn 1.7, T
i-Cr alloys, La alloys, Mn alloys, Ti alloys
Cr, Zr, and base alloys such as Fe-based alloys
By adding additives such as V, Ni, Fe, Ca, and Al, it is possible to use a material having improved characteristics at low temperatures.
Of course, it is not limited to these alloys and additives.

【0023】主水素貯蔵タンク12には、内部の水素吸
蔵合金の温度を検出するための温度計32と、内部の水
素圧力を検出するための圧力計22とが配設されてい
る。同様に、副水素貯蔵タンク14にも、内部の水素吸
蔵合金の温度を検出するための温度計34と、内部の水
素圧力を検出するための圧力計24とが配設されてい
る。主水素貯蔵タンク12からの水素は、供給管52を
介して燃料電池16側へ供給される。該供給管52に
は、当該供給管52を開閉するためのバルブ44が配設
されている。また、副水素貯蔵タンク14からの水素
は、供給管54を介して燃料電池16側へ供給される。
該供給管54は、当該供給管54を開閉するためのバル
ブ42が配設されている。上記供給管52と供給管54
との結合点には、切り替えバルブ46が配設され、該バ
ルブ46により主水素貯蔵タンク12と副水素貯蔵タン
ク14との選択が行われるようになっている。そして、
主水素貯蔵タンク12と副水素貯蔵タンク14との間に
は、両者を連通する供給管56が配設され、供給管56
に配設されたバルブ40により、主水素貯蔵タンク12
及び副水素貯蔵タンク14の連通、分離が行われるよう
になっている。上述したバルブ40、42、44、46
の開閉は、制御回路10により制御されるようになって
いる。該制御回路10は、上述した主水素貯蔵タンク1
2及び副水素貯蔵タンク14の温度計32、34、圧力
計22、24により測定した温度及び圧力に基づき、該
バルブ40、42、44、46の開閉を制御する。
The main hydrogen storage tank 12 is provided with a thermometer 32 for detecting the temperature of the internal hydrogen storage alloy and a pressure gauge 22 for detecting the internal hydrogen pressure. Similarly, the secondary hydrogen storage tank 14 is also provided with a thermometer 34 for detecting the temperature of the internal hydrogen storage alloy and a pressure gauge 24 for detecting the internal hydrogen pressure. Hydrogen from the main hydrogen storage tank 12 is supplied to the fuel cell 16 via a supply pipe 52. The supply pipe 52 is provided with a valve 44 for opening and closing the supply pipe 52. Further, hydrogen from the secondary hydrogen storage tank 14 is supplied to the fuel cell 16 via the supply pipe 54.
The supply pipe 54 is provided with a valve 42 for opening and closing the supply pipe 54. The supply pipe 52 and the supply pipe 54
A switching valve 46 is provided at the connection point between the main hydrogen storage tank 12 and the sub-hydrogen storage tank 14 by the valve 46. And
Between the main hydrogen storage tank 12 and the sub-hydrogen storage tank 14, a supply pipe 56 for communicating the two is provided.
The main hydrogen storage tank 12
The communication and separation of the secondary hydrogen storage tank 14 are performed. The valves 40, 42, 44, 46 described above
Is controlled by a control circuit 10. The control circuit 10 includes the main hydrogen storage tank 1 described above.
Based on the temperatures and pressures measured by the thermometers 32 and 34 and the pressure gauges 22 and 24 of the second and auxiliary hydrogen storage tanks 14, the opening and closing of the valves 40, 42, 44 and 46 are controlled.

【0024】該水素ガス供給装置は、主水素貯蔵タンク
12から水素が出せない時(始動時の燃料電池16にて
熱の発生していない時、あるいは主水素貯蔵タンク12
が十分に暖まってなく、中の水素圧が十分に高くなって
いない時等が例として挙げられる)に、先ず、副水素貯
蔵タンク14から水素を燃料電池16側へ供給する。そ
して、該副水素貯蔵タンク14からの水素により燃料電
池16が起動させた後に発生した熱で主水素貯蔵タンク
12を加熱する。そして、主水素貯蔵タンク12からの
水素を燃料電池16側へ供給すると共に、主水素貯蔵タ
ンク12からの水素を副水素貯蔵タンク14側へ送り、
副水素貯蔵タンク14内に貯蔵させる。
The hydrogen gas supply device is used when hydrogen cannot be discharged from the main hydrogen storage tank 12 (when no heat is generated in the fuel cell 16 at the time of starting, or when the main hydrogen storage tank 12
Is not sufficiently warmed and the inside hydrogen pressure is not sufficiently high, for example). First, hydrogen is supplied from the auxiliary hydrogen storage tank 14 to the fuel cell 16 side. Then, the main hydrogen storage tank 12 is heated by the heat generated after the fuel cell 16 is activated by the hydrogen from the secondary hydrogen storage tank 14. Then, while supplying hydrogen from the main hydrogen storage tank 12 to the fuel cell 16 side, hydrogen from the main hydrogen storage tank 12 is sent to the sub-hydrogen storage tank 14 side,
It is stored in the auxiliary hydrogen storage tank 14.

【0025】この一連の動作について、図2のグラフ及
び図3のフローチャートを参照して更に詳細に説明す
る。図2(A)は、横軸に経過時間を、縦軸に副水素貯
蔵タンク14及び主水素貯蔵タンク12の温度(°C)
を取ったグラフを示し、図2(B)は経過時間及び圧力
(MPa)を取ったグラフを示し、図2(C)は水素供
給量(L/min )を取ったグラフを示している。ここ
で、燃料電池16の起動時に(図2中の時刻t0)、制
御回路10は、図1中に示す主水素貯蔵タンク12の温
度計32で測定した温度が10°C以下で、且つ、圧力
計22で測定した圧力が0.12MPa以上かを判断す
る(図3中のS12)。現在主水素貯蔵タンク12の圧
力が0.12MPa以上の場合、例えば、車両を一旦停
止させたが、停止から長時間経過しておらず主水素貯蔵
タンク12が冷却されていないため、主水素貯蔵タンク
12内に水素圧力が十分にある場合には(S12がYe
s)、ステップ28へ移行し、バルブ44を閉じると共
にバルブ42を開いて、主水素貯蔵タンク12側から供
給管52を介して燃料電池16へ水素を供給すること
で、定常運転を直ちに開始する。
This series of operations will be described in more detail with reference to the graph of FIG. 2 and the flowchart of FIG. In FIG. 2A, the horizontal axis represents the elapsed time, and the vertical axis represents the temperature (° C.) of the secondary hydrogen storage tank 14 and the main hydrogen storage tank 12.
2 (B) shows a graph of elapsed time and pressure (MPa), and FIG. 2 (C) shows a graph of hydrogen supply amount (L / min). Here, when the fuel cell 16 is started (time t0 in FIG. 2), the control circuit 10 determines that the temperature measured by the thermometer 32 of the main hydrogen storage tank 12 shown in FIG. It is determined whether the pressure measured by the pressure gauge 22 is 0.12 MPa or more (S12 in FIG. 3). When the pressure of the main hydrogen storage tank 12 is currently 0.12 MPa or more, for example, the vehicle is temporarily stopped, but the main hydrogen storage tank 12 has not been cooled because the stop has not been performed for a long time and the main hydrogen storage tank 12 has not been cooled. If the hydrogen pressure is sufficient in the tank 12 (S12
s) Go to step 28, close the valve 44 and open the valve 42, supply hydrogen from the main hydrogen storage tank 12 side to the fuel cell 16 via the supply pipe 52, and immediately start the steady operation. .

【0026】他方、主水素貯蔵タンク12の温度が10
°C以下、或いは、圧力が0.12MPa未満の場合に
は(S12がNo)、ステップ14へ進み、主水素貯蔵
タンク12側のバルブ42を閉じると共に副水素貯蔵タ
ンク14側のバルブ44を開いて、副水素貯蔵タンク1
4から供給管54を介して水素を燃料電池16側へ供給
する。今回の実施例では、主水素貯蔵タンク12の温度
と圧力の両方の状態から、主水素貯蔵タンク12から水
素が出せる状態か否かを判断しているが、温度もしくは
圧力のいずれか一方の状態により、前記判断を行っても
よい。なお、この際、切り替えバルブ46を切り替え、
該供給管54側からの水素を燃料電池16側へ通すよう
にする。これにより燃料電池16が起動し(図2中の時
刻t0)、図2(A)に示すように燃料電池16の廃熱
温度(冷却水温度)が上昇すると共に、発生した熱が熱
交換機18を介して送られ主水素貯蔵タンク12の温度
が上昇する。そして、温度の上昇に伴い主水素貯蔵タン
ク12内の圧力が上昇して行く(図2(B)参照)。
On the other hand, when the temperature of the main hydrogen storage tank 12 is 10
If the temperature is equal to or lower than ° C or the pressure is less than 0.12 MPa (No in S12), the process proceeds to step 14, where the valve 42 on the main hydrogen storage tank 12 is closed and the valve 44 on the sub hydrogen storage tank 14 is opened. And the secondary hydrogen storage tank 1
4 supplies hydrogen to the fuel cell 16 via a supply pipe 54. In the present embodiment, whether or not hydrogen can be discharged from the main hydrogen storage tank 12 is determined based on both the temperature and the pressure of the main hydrogen storage tank 12. However, either the temperature or the pressure is determined. The above determination may be made. At this time, the switching valve 46 is switched,
The hydrogen from the supply pipe 54 is passed to the fuel cell 16. As a result, the fuel cell 16 is started (time t0 in FIG. 2), the waste heat temperature (cooling water temperature) of the fuel cell 16 rises as shown in FIG. And the temperature of the main hydrogen storage tank 12 rises. Then, as the temperature increases, the pressure in the main hydrogen storage tank 12 increases (see FIG. 2B).

【0027】一方、これとは反対に、副水素貯蔵タンク
14側は、水素の供給により内部圧力が徐々に低下して
行く(図2(B)参照)と共に、内部の水素吸蔵合金か
ら水素が放出される際の吸熱反応により温度が低下して
行く。該時刻t0からの副水素貯蔵タンク14側からの
水素供給量を図2(C)中に示す。
On the other hand, on the other hand, on the side of the sub-hydrogen storage tank 14, the internal pressure is gradually decreased by the supply of hydrogen (see FIG. 2B), and the hydrogen is absorbed from the internal hydrogen storage alloy. The temperature decreases due to the endothermic reaction when released. FIG. 2C shows the amount of hydrogen supply from the sub-hydrogen storage tank 14 from the time t0.

【0028】制御回路10は、主水素貯蔵タンク12内
の圧力が0.12MPa以上になったかを判断し続ける
(S16)。ここで、主水素貯蔵タンク12の圧力が
0.12MPa未満の場合には(S16がNo)、ステ
ップ14へ戻り、副水素貯蔵タンク14からの水素供給
を続ける。他方、燃料電池16からの熱供給により主水
素貯蔵タンク12の圧力が0.12MPa以上になると
(S16がYes)、ステップ18へ進み、水素の放出
により副水素貯蔵タンク14内の圧力が0.12MPa
以下まで低下したかを判断する(S18)。ここで、圧
力が0.12MPaまで低下しない間は(S18がN
o)、ステップ14へ戻り当該副水素貯蔵タンク14か
らの水素供給を続ける。
The control circuit 10 continues to determine whether the pressure in the main hydrogen storage tank 12 has become 0.12 MPa or more (S16). Here, when the pressure of the main hydrogen storage tank 12 is less than 0.12 MPa (S16: No), the process returns to step 14, and the supply of hydrogen from the sub hydrogen storage tank 14 is continued. On the other hand, when the pressure of the main hydrogen storage tank 12 becomes 0.12 MPa or more due to the heat supply from the fuel cell 16 (Yes in S16), the process proceeds to step 18, where the pressure in the sub-hydrogen storage tank 14 becomes 0.1 due to the release of hydrogen. 12MPa
It is determined whether the temperature has decreased to the following (S18). Here, while the pressure does not decrease to 0.12 MPa (S18 is N
o), returning to step 14 to continue supplying hydrogen from the secondary hydrogen storage tank 14;

【0029】他方、図2中の時刻t1において副水素貯
蔵タンク14内の圧力が0.12MPa以下まで下がる
と(S18がYes)、ステップ20へ進み、副水素貯
蔵タンク14側のバルブ44を閉じるとともに、バルブ
42を開いて、主水素貯蔵タンク12側から供給管52
を介して水素を燃料電池16側へ供給する。このS18
による、副水素貯蔵タンク14の圧力を判断すること
で、中の水素を十分使い切ったかどうかを確認してい
る。このため、副水素貯蔵タンク14の水素を有効に利
用することを可能にしている。この際に、切り替えバル
ブ46を切り替え、供給管52側からの水素を通すよう
にする。この主水素貯蔵タンク12からの水素の供給開
始と合わせて、バルブ40を開き主水素貯蔵タンク12
側の水素を副水素貯蔵タンク14へ供給し、副水素貯蔵
タンク14の充填を開始する(S22)。
On the other hand, when the pressure in the secondary hydrogen storage tank 14 drops to 0.12 MPa or less at time t1 in FIG. 2 (Yes in S18), the process proceeds to step 20, and the valve 44 on the secondary hydrogen storage tank 14 side is closed. At the same time, the valve 42 is opened and the supply pipe 52 is opened from the main hydrogen storage tank 12 side.
The hydrogen is supplied to the fuel cell 16 side via the. This S18
By judging the pressure of the secondary hydrogen storage tank 14 according to the above, it is confirmed whether or not the hydrogen inside has been sufficiently used. For this reason, it is possible to effectively use the hydrogen in the secondary hydrogen storage tank 14. At this time, the switching valve 46 is switched so that hydrogen from the supply pipe 52 is passed. When the supply of hydrogen from the main hydrogen storage tank 12 is started, the valve 40 is opened to open the main hydrogen storage tank 12.
The hydrogen on the side is supplied to the sub-hydrogen storage tank 14, and the filling of the sub-hydrogen storage tank 14 is started (S22).

【0030】上述したように副水素貯蔵タンク14側
は、水素の放出により内部の圧力が0.12MPa以下
まで低下している(図2(B)参照)と共に、吸熱反応
により温度が−10°Cまで低下している(図2(A)
参照)。他方、燃料電池16からの廃熱で加熱されてい
る主水素貯蔵タンク12内の圧力は上昇している。この
ため、バルブ40を開くことで、主水素貯蔵タンク12
側の水素が副水素貯蔵タンク14側に供給され、副水素
貯蔵タンク14内の低温用水素吸蔵合金内に吸蔵され
る。この副水素貯蔵タンク14への水素の充填により、
時刻t1から該副水素貯蔵タンク14内の温度及び圧力
が上昇して行く。
As described above, the internal pressure of the secondary hydrogen storage tank 14 is reduced to 0.12 MPa or less due to the release of hydrogen (see FIG. 2 (B)), and the temperature is lowered by -10 ° by the endothermic reaction. C (Fig. 2 (A)
reference). On the other hand, the pressure in the main hydrogen storage tank 12 heated by the waste heat from the fuel cell 16 is increasing. Therefore, by opening the valve 40, the main hydrogen storage tank 12
Is supplied to the side of the sub-hydrogen storage tank 14 and stored in the low-temperature hydrogen storage alloy in the sub-hydrogen storage tank 14. By filling the secondary hydrogen storage tank 14 with hydrogen,
From time t1, the temperature and pressure in the secondary hydrogen storage tank 14 increase.

【0031】制御回路10は、主水素貯蔵タンク12内
の圧力と副水素貯蔵タンク14内の圧力を監視し、両者
の圧力が等しくなったかを判断する(S24)。ここ
で、副水素貯蔵タンク14側の圧力が低い内は(S24
がNo)、ステップ22へ戻り、副水素貯蔵タンク14
への水素の充填を続ける。そして、図2中に示す時刻t
2にて両者の圧力が等しくなると(S24がYes)、
バルブ40を閉じ、副水素貯蔵タンク14への水素の充
填を完了し(S26)、上述したようにバルブ44を閉
じバルブ42を開き、主水素貯蔵タンク12からの水素
供給を続ける(S28)。
The control circuit 10 monitors the pressure in the main hydrogen storage tank 12 and the pressure in the sub-hydrogen storage tank 14 and determines whether the two pressures are equal (S24). Here, while the pressure on the side of the secondary hydrogen storage tank 14 is low (S24
No), the process returns to step 22, and the secondary hydrogen storage tank 14
Continue filling hydrogen into the reactor. Then, the time t shown in FIG.
When the pressures of the two become equal at 2 (Yes at S24),
The valve 40 is closed to complete the filling of the secondary hydrogen storage tank 14 with hydrogen (S26). As described above, the valve 44 is closed and the valve 42 is opened, and the supply of hydrogen from the main hydrogen storage tank 12 is continued (S28).

【0032】上述したように本実施形態では、燃料電池
16の始動の際に、副水素貯蔵タンク14内の水素が放
出されているが、主水素貯蔵タンク12から燃料電池側
へ水素の供給を開始する際に、該主水素貯蔵タンク12
から副水素貯蔵タンク14へ水素を供給し、該副水素貯
蔵タンク14内に貯蔵させる。このため、小容量、即
ち、燃料電池16を1回起動し得る容量の副水素貯蔵タ
ンク14を用いて、燃料電池の始動を繰り返すことが可
能になる。
As described above, in the present embodiment, when the fuel cell 16 is started, the hydrogen in the sub-hydrogen storage tank 14 is released, but the supply of hydrogen from the main hydrogen storage tank 12 to the fuel cell side is performed. When starting, the main hydrogen storage tank 12
The hydrogen is supplied to the sub-hydrogen storage tank 14 from the sub-hydrogen storage tank 14 and stored in the sub-hydrogen storage tank 14. Therefore, it is possible to repeat the start of the fuel cell using the small hydrogen storage tank 14 having a small capacity, that is, a capacity capable of starting the fuel cell 16 once.

【0033】なお、燃料電池16を1回起動し得る副水
素貯蔵タンク14の容量は、主水素貯蔵タンク12が水
素放出できる温度・圧力になるまでに要する時間と、そ
の間に放出する水素ガス流量で決まる。これは、環境温
度、主水素貯蔵タンク容量、熱交換機の性能によって変
わってくる。さらには、副水素貯蔵タンク14に収容さ
れている低温動作用水素吸蔵合金は、水素を放出しなが
ら温度が低下するので、吸蔵している水素を全て放出で
きる訳でもない。特に、低温動作用水素吸蔵合金の水素
放出量は、吸熱反応による温度低下よって影響を受ける
ので、これも環境温度や合金の特性により変わる。本実
施形態では、上述した点を考慮して副水素貯蔵タンク1
4の容量及び低温用水素吸蔵合金の材質が決定されてい
る。
The capacity of the sub-hydrogen storage tank 14 that can start the fuel cell 16 once depends on the time required for the main hydrogen storage tank 12 to reach a temperature and pressure at which hydrogen can be released, and the flow rate of hydrogen gas released during that time. Is determined by This depends on the ambient temperature, the capacity of the main hydrogen storage tank, and the performance of the heat exchanger. Furthermore, since the temperature of the low-temperature operating hydrogen storage alloy stored in the sub-hydrogen storage tank 14 decreases while releasing hydrogen, not all of the stored hydrogen can be released. In particular, the amount of hydrogen released from the low-temperature operation hydrogen storage alloy is affected by the temperature drop due to the endothermic reaction, and this also depends on the environmental temperature and the characteristics of the alloy. In the present embodiment, the secondary hydrogen storage tank 1
4 and the material of the low-temperature hydrogen storage alloy are determined.

【0034】一方、上述したように、従来技術の主水素
貯蔵タンク(走行用水素吸蔵タンク)及び副水素貯蔵タ
ンク(起動用水素吸蔵タンク)を備える水素ガス供給装
置においては、外部の水素充填装置により水素の充填を
行う際に主水素貯蔵タンク及び副水素貯蔵タンクを同時
に行い、その後、燃料電池等を始動する度に副水素貯蔵
タンク側から水素を供給していた。このため、該副水素
貯蔵タンクに多くの水素を蓄え得るように大型化を避け
えなかった。即ち、1回の水素の充填で、5回燃料電池
を起動し得るようにするには、本実施形態に係る副水素
貯蔵タンクの約5倍近い容量が必要となる。
On the other hand, as described above, in the conventional hydrogen gas supply device including the main hydrogen storage tank (running hydrogen storage tank) and the auxiliary hydrogen storage tank (starting hydrogen storage tank), an external hydrogen filling device is used. The main hydrogen storage tank and the sub-hydrogen storage tank were simultaneously performed when hydrogen was charged, and thereafter, the hydrogen was supplied from the sub-hydrogen storage tank side every time the fuel cell or the like was started. For this reason, it was unavoidable to enlarge the secondary hydrogen storage tank so that a large amount of hydrogen could be stored. That is, in order to be able to start the fuel cell five times with one hydrogen filling, the capacity of the sub-hydrogen storage tank according to the present embodiment is required to be approximately five times as large.

【0035】ここで、該副水素貯蔵タンクは、低温(例
えば、−10°C)でも燃料電池を起動し得る0.1M
Paを発生し得るようにすると、該水素ガス供給装置の
許容上限温度(例えば60°C)において圧力が非常に
高い値まで上昇する。このため、副水素貯蔵タンクの耐
圧を高めるよう、主水素貯蔵タンクと比較して堅牢に構
成する必要があり、単位容量当たり装置が大型化すると
共に重量が増大する。このため、本実施形態の5倍の容
量を有する副水素貯蔵タンク(起動用タンク)は、電気
自動車に搭載した際に、エネルギー損失に直接結びつく
ことになる。
Here, the secondary hydrogen storage tank has a capacity of 0.1 M which can start the fuel cell even at a low temperature (for example, -10 ° C.).
When Pa can be generated, the pressure rises to a very high value at the allowable upper limit temperature (for example, 60 ° C.) of the hydrogen gas supply device. For this reason, in order to increase the pressure resistance of the sub-hydrogen storage tank, it is necessary to make the structure more robust than the main hydrogen storage tank, and the device per unit capacity becomes larger and the weight increases. Therefore, a secondary hydrogen storage tank (starting tank) having a capacity five times that of the present embodiment is directly linked to energy loss when mounted on an electric vehicle.

【0036】更に、従来技術の水素ガス供給装置では、
該起動用タンク内の水素は、通常の走行時に必ずしも用
いない。例えば、5回始動し得るよう設定された起動タ
ンクを備える水素ガス供給装置においても、実際に使用
されるのは通常1〜2回程度である。このため、残りの
4〜3回分の水素は、起動用タンク内の貯蔵されたまま
使用されない場合もある。従って、従来技術の水素ガス
供給装置では、使用しない水素を水素吸蔵合金に吸蔵さ
せて車両を走行させることになり、電気自動車の走行効
率を低下させる可能性があった。これに対して、本実施
形態の水素ガス供給装置では、使用しない水素を副水素
貯蔵タンク14側に蓄えておくことがないため、効率よ
く電気自動車を走行させることができる。
Further, in the conventional hydrogen gas supply device,
The hydrogen in the starting tank is not always used during normal running. For example, even in a hydrogen gas supply device having a starting tank set to be able to start five times, it is usually used only once or twice. Therefore, the remaining four to three times of hydrogen may not be used while being stored in the starting tank. Therefore, in the hydrogen gas supply device of the related art, the vehicle is driven by storing unused hydrogen in the hydrogen storage alloy, and there is a possibility that the running efficiency of the electric vehicle is reduced. On the other hand, in the hydrogen gas supply device of the present embodiment, since the unused hydrogen is not stored in the auxiliary hydrogen storage tank 14 side, the electric vehicle can be efficiently driven.

【0037】また、本実施形態の水素ガス供給装置及び
水素ガス供給方法においては、副水素貯蔵タンク14に
特に加熱装置を配設しないため、装置を簡易且つ軽量に
構成することができる。
Further, in the hydrogen gas supply device and the hydrogen gas supply method of the present embodiment, since a heating device is not particularly arranged in the secondary hydrogen storage tank 14, the device can be configured simply and lightly.

【0038】引き続き、該第1実施形態の水素ガス供給
装置による通常時の主水素貯蔵タンク12と副水素貯蔵
タンク14との管理について図4のフローチャートを参
照して説明する。制御回路10は、燃料電池16を運転
しているか否かに関わらず、常に副水素貯蔵タンク14
内の圧力を監視している。ここで、副水素貯蔵タンク1
4内の圧力が予め設定された値(例えば1MPa)未満
の時には(S30がNo)、図1に示す主水素貯蔵タン
ク12と副水素貯蔵タンク14とを連通する供給管56
のバルブ40を閉じている(S34)。一方、環境温度
が非常に高い温度まで上昇し、副水素貯蔵タンク14内
の圧力が予め設定された1MPaを越えると(S30が
Yes)、供給管56のバルブ40を開き(S32)、
副水素貯蔵タンク14内の水素を主水素貯蔵タンク12
側に逃がし、該主水素貯蔵タンク12内で高温用水素吸
蔵合金に吸着されることで、該副水素貯蔵タンク14内
の圧力を1MPa以下に保つ。
Next, the management of the main hydrogen storage tank 12 and the sub-hydrogen storage tank 14 in the normal state by the hydrogen gas supply device of the first embodiment will be described with reference to the flowchart of FIG. The control circuit 10 always operates the secondary hydrogen storage tank 14 regardless of whether the fuel cell 16 is operating.
The pressure inside is monitored. Here, the secondary hydrogen storage tank 1
When the pressure in the fuel tank 4 is less than a preset value (for example, 1 MPa) (No in S30), the supply pipe 56 that connects the main hydrogen storage tank 12 and the sub hydrogen storage tank 14 shown in FIG.
Is closed (S34). On the other hand, when the environmental temperature rises to a very high temperature and the pressure in the secondary hydrogen storage tank 14 exceeds a preset 1 MPa (S30: Yes), the valve 40 of the supply pipe 56 is opened (S32).
The hydrogen in the secondary hydrogen storage tank 14 is
Side, and is adsorbed by the high-temperature hydrogen storage alloy in the main hydrogen storage tank 12 to maintain the pressure in the sub-hydrogen storage tank 14 at 1 MPa or less.

【0039】なお、この実施形態では、制御回路が副水
素貯蔵タンク14内の圧力を監視してバルブ40を制御
したが、この制御の代わりに、或いは、この制御と共
に、副水素貯蔵タンク14と主水素貯蔵タンク12との
間にリリーフバルブを設け、例えば、副水素貯蔵タンク
14内の圧力が1.1MPaに成った際に、副水素貯蔵
タンク14からの水素を主水素貯蔵タンク12へ放出
し、副水素貯蔵タンク14内の圧力を下げるようにも構
成できる。
In this embodiment, the control circuit monitors the pressure in the secondary hydrogen storage tank 14 to control the valve 40. However, instead of or together with this control, the control circuit and the secondary hydrogen storage tank 14 A relief valve is provided between the main hydrogen storage tank 12 and, for example, when the pressure in the sub-hydrogen storage tank 14 reaches 1.1 MPa, hydrogen from the sub-hydrogen storage tank 14 is released to the main hydrogen storage tank 12. Alternatively, the pressure in the secondary hydrogen storage tank 14 may be reduced.

【0040】このように低温でも所定の圧力を発生する
水素吸蔵合金を収容する副水素貯蔵タンク14は、常温
以上に温度が上昇した際に、内部の圧力が高い値まで上
昇し得る。このため、従来技術の始動タンクは、非常に
堅牢な構成が必要となり、上述したように比較的大きな
容量が必要となるのと相乗して大型化せざるを得なかっ
た。これに対して本実施形態では、副水素貯蔵タンク1
4を所定値まで耐え得るように構成すれば良いため、小
型に構成することができる。
As described above, when the temperature of the secondary hydrogen storage tank 14 containing the hydrogen storage alloy that generates a predetermined pressure even at a low temperature rises to a normal temperature or higher, the internal pressure can rise to a high value. For this reason, the starting tank of the prior art requires a very robust configuration and has to be enlarged in synergy with the relatively large capacity required as described above. In contrast, in the present embodiment, the secondary hydrogen storage tank 1
4 may be configured to withstand a predetermined value, so that it is possible to reduce the size.

【0041】[0041]

【発明の効果】以上のように、請求項1及び4の発明で
は、始動の際に副水素貯蔵タンクから水素を燃料電池
(外部負荷)へ供給するため、始動時に水素貯蔵タンク
を加熱することなく燃料電池へ水素を供給することがで
きる。更に、主水素貯蔵タンクから燃料電池側へ水素の
供給を開始する際に、該主水素貯蔵タンクから、燃料電
池の始動の際に水素を放出した副水素貯蔵タンクへ供給
し、該副水素貯蔵タンク内に水素を貯蔵させるため、燃
料電池の起動に最小限必要な小容量の副水素貯蔵タンク
を用いて、燃料電池の始動を繰り返すことが可能にな
る。
As described above, according to the first and fourth aspects of the present invention, the hydrogen storage tank is heated at the start to supply hydrogen from the secondary hydrogen storage tank to the fuel cell (external load) at the start. Hydrogen can be supplied to the fuel cell without the need. Further, when the supply of hydrogen from the main hydrogen storage tank to the fuel cell side is started, the hydrogen is supplied from the main hydrogen storage tank to the sub-hydrogen storage tank from which hydrogen was released when the fuel cell was started. Since hydrogen is stored in the tank, it is possible to repeat the start of the fuel cell using a small-capacity sub-hydrogen storage tank that is minimum necessary for starting the fuel cell.

【0042】また、請求項2の発明では、副水素貯蔵タ
ンクへは燃料電池からの熱を供給しないため、簡易に構
成することができる。
According to the second aspect of the present invention, since the heat from the fuel cell is not supplied to the secondary hydrogen storage tank, the configuration can be simplified.

【0043】請求項3または6の発明では、副水素貯蔵
タンク内の圧力が所定値を越えた際に、該副水素貯蔵タ
ンクから主水素貯蔵タンクへ水素を放出させるので、高
温にて所定以上の水素圧力が発生し得る副水素貯蔵タン
ク内の圧力を一定以内に保つことができ、安全である。
According to the third or sixth aspect of the present invention, when the pressure in the sub-hydrogen storage tank exceeds a predetermined value, hydrogen is released from the sub-hydrogen storage tank to the main hydrogen storage tank. The pressure in the sub-hydrogen storage tank where the hydrogen pressure can be generated can be kept within a certain level, which is safe.

【0044】請求項5の発明では、副水素貯蔵タンク内
への水素の貯蔵を開始した後、該副水素貯蔵タンク内の
圧力と主水素貯蔵タンク内の圧力とがほぼ等しくなった
際に、当該副水素貯蔵タンクの水素の貯蔵を完了する。
このため、主水素貯蔵タンクの水素圧力を用いて実現し
得る最大圧力まで副水素貯蔵タンクに水素を貯蔵させる
ことができる。
According to the fifth aspect of the present invention, after the storage of hydrogen in the secondary hydrogen storage tank is started, when the pressure in the secondary hydrogen storage tank and the pressure in the main hydrogen storage tank become substantially equal, The storage of hydrogen in the secondary hydrogen storage tank is completed.
For this reason, hydrogen can be stored in the sub hydrogen storage tank to the maximum pressure that can be realized using the hydrogen pressure of the main hydrogen storage tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る水素ガス供給装置
の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a hydrogen gas supply device according to a first embodiment of the present invention.

【図2】図2(A)は主水素貯蔵タンク及び副水素貯蔵
タンクの温度と経過時間とを示すグラフであり、図2
(B)は、圧力と経過時間とを示すグラフであり、図2
(C)は、水素供給量と経過時間とを示すグラフであ
る。
FIG. 2A is a graph showing the temperature and elapsed time of a main hydrogen storage tank and a sub-hydrogen storage tank.
FIG. 2B is a graph showing pressure and elapsed time, and FIG.
(C) is a graph showing a hydrogen supply amount and an elapsed time.

【図3】本発明の第1実施形態に係る水素ガス供給装置
における、燃料電池起動時の処理を示すフローチャート
である。
FIG. 3 is a flowchart showing a process when the fuel cell is started in the hydrogen gas supply device according to the first embodiment of the present invention.

【図4】本発明の第1実施形態に係る水素ガス供給装置
における通常時の処理を示すフローチャートである。
FIG. 4 is a flowchart showing a normal process in the hydrogen gas supply device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 制御回路(供給路切り替え手段) 12 主水素貯蔵タンク 14 副水素貯蔵タンク 16 燃料電池 18 熱交換機(熱供給装置) 22 圧力計(主圧力検出装置) 24 圧力計(副圧力検出装置) 32、34 温度計 40、42、44、46 バルブ 52 供給管(第1供給路) 54 供給管(第2供給路) 56 供給管(第3供給路) Reference Signs List 10 control circuit (supply path switching means) 12 main hydrogen storage tank 14 sub hydrogen storage tank 16 fuel cell 18 heat exchanger (heat supply device) 22 pressure gauge (main pressure detection device) 24 pressure gauge (sub pressure detection device) 32, 34 thermometer 40, 42, 44, 46 valve 52 supply pipe (first supply path) 54 supply pipe (second supply path) 56 supply pipe (third supply path)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 雅史 北海道札幌市厚別区下野幌テクノパーク2 丁目3番6号 イムラ・ジャパン株式会社 内 Fターム(参考) 5H027 AA06 BA14 CC06 KK01 MM01 MM08 MM09  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masafumi Kobayashi F-term (reference) 5-3-0-6 Imura Japan Co., Ltd. 2-3-6 Shimonopporo Techno Park, Atsubetsu-ku, Sapporo, Hokkaido 5H027 AA06 BA14 CC06 KK01 MM01 MM08 MM09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 所定の高温状態で水素を放出する高温用
水素吸蔵合金を収容する主水素貯蔵タンクと、 前記所定の高温状態よりも低い温度状態で水素を放出し
得る低温用水素吸蔵合金を収容する副水素貯蔵タンク
と、 前記主水素貯蔵タンクからの水素を外部負荷へ供給する
第1供給路と、 前記副水素貯蔵タンクからの水素を外部負荷へ供給する
第2供給路と、 前記主水素貯蔵タンクから前記副水素貯蔵タンクへ水素
を供給する第3供給路と、 前記外部負荷にて発生した熱を前記主水素貯蔵タンクへ
供給する熱供給装置と、 前記主水素貯蔵タンクの水素圧力を検出する主圧力検出
装置と、 前記主圧力検出装置により検出された前記主水素貯蔵タ
ンク内の水素圧力が低い時に、前記第2供給路を介して
前記副水素貯蔵タンクから水素を前記外部負荷へ供給
し、そして、前記主圧力検出装置により検出される前記
主水素貯蔵タンク内の水素圧力が高まった時に、前記第
1供給路を介して前記主水素貯蔵タンクからの水素の前
記外部負荷への供給を開始すると共に、前記第3供給路
を介して前記副水素貯蔵タンクへ供給し、該副水素貯蔵
タンク内に水素を貯蔵させる供給路切り替え手段と、を
備えることを特徴とする水素ガス供給装置。
1. A main hydrogen storage tank containing a high-temperature hydrogen storage alloy that releases hydrogen at a predetermined high temperature, and a low-temperature hydrogen storage alloy that can release hydrogen at a temperature lower than the predetermined high temperature. A secondary hydrogen storage tank to be accommodated; a first supply path for supplying hydrogen from the main hydrogen storage tank to an external load; a second supply path for supplying hydrogen from the secondary hydrogen storage tank to an external load; A third supply path for supplying hydrogen from the hydrogen storage tank to the sub-hydrogen storage tank, a heat supply device for supplying heat generated by the external load to the main hydrogen storage tank, and a hydrogen pressure of the main hydrogen storage tank When the hydrogen pressure in the main hydrogen storage tank detected by the main pressure detection device is low, removing hydrogen from the sub-hydrogen storage tank through the second supply path. Supply to a load, and when the hydrogen pressure in the main hydrogen storage tank detected by the main pressure detection device increases, the external load of hydrogen from the main hydrogen storage tank through the first supply path Supply path switching means for starting supply of hydrogen to the secondary hydrogen storage tank via the third supply path and storing hydrogen in the secondary hydrogen storage tank. Gas supply device.
【請求項2】 前記副水素貯蔵タンクへは前記外部負荷
からの熱が供給されないことを特徴とする請求項1の水
素ガス供給装置。
2. The hydrogen gas supply device according to claim 1, wherein heat from the external load is not supplied to the secondary hydrogen storage tank.
【請求項3】 前記副水素貯蔵タンク内の圧力を検出す
る副圧力検出装置を備え、 前記供給路切り替え手段が、該副圧力検出装置により検
出された副水素貯蔵タンク内の圧力が所定値を越えた際
に、該前記第3供給路を介して該副水素貯蔵タンクから
前記主水素貯蔵タンクへ水素を放出させることを特徴と
する請求項1又は2に記載の水素ガス供給装置。
3. A sub-pressure detecting device for detecting a pressure in the sub-hydrogen storage tank, wherein the supply path switching means sets the pressure in the sub-hydrogen storage tank detected by the sub-pressure detecting device to a predetermined value. 3. The hydrogen gas supply device according to claim 1, wherein, when the hydrogen gas is exceeded, hydrogen is released from the secondary hydrogen storage tank to the main hydrogen storage tank via the third supply path. 4.
【請求項4】 外部負荷から供給された熱により水素を
放出する高温用水素吸蔵合金を収容する主水素貯蔵タン
クと、常温で水素を放出し得る低温用水素吸蔵合金を収
容する副水素貯蔵タンクとを備え、該主水素貯蔵タンク
及び副水素貯蔵タンクからの水素を外部負荷へ供給する
水素ガス供給方法であって、 前記外部負荷から主水素貯蔵タンクに熱の供給されない
始動時における該主水素貯蔵タンク内の水素圧力が低い
時に、前記副水素貯蔵タンクから水素を前記外部負荷へ
供給し、 前記外部負荷から主水素貯蔵タンクに熱が供給され該主
水素貯蔵タンク内の水素圧力が高まった時に、前記主水
素貯蔵タンクからの水素の前記外部負荷への供給を開始
すると共に、当該主水素貯蔵タンクから前記副水素貯蔵
タンクへ供給し、該副水素貯蔵タンク内に水素を貯蔵さ
せることを特徴とする水素ガス供給方法。
4. A main hydrogen storage tank for storing a high-temperature hydrogen storage alloy that releases hydrogen by heat supplied from an external load, and a sub-hydrogen storage tank for storing a low-temperature hydrogen storage alloy that can release hydrogen at room temperature. A hydrogen gas supply method for supplying hydrogen from the main hydrogen storage tank and the sub-hydrogen storage tank to an external load, wherein the main hydrogen at the time of startup when heat is not supplied from the external load to the main hydrogen storage tank When the hydrogen pressure in the storage tank is low, hydrogen is supplied from the sub-hydrogen storage tank to the external load, heat is supplied from the external load to the main hydrogen storage tank, and the hydrogen pressure in the main hydrogen storage tank increases. At the same time, the supply of hydrogen from the main hydrogen storage tank to the external load is started, and the supply of hydrogen from the main hydrogen storage tank to the sub-hydrogen storage tank is performed. Hydrogen gas supply wherein the to store hydrogen within.
【請求項5】 前記副水素貯蔵タンク内への水素の貯蔵
を開始した後、該副水素貯蔵タンク内の圧力と前記主水
素貯蔵タンク内の圧力とがほぼ等しくなった際に、当該
副水素貯蔵タンクでの水素の貯蔵を完了することを特徴
とする請求項4に記載の水素ガス供給方法。
5. After starting storage of hydrogen in the secondary hydrogen storage tank, when the pressure in the secondary hydrogen storage tank and the pressure in the main hydrogen storage tank become substantially equal, the secondary hydrogen The hydrogen gas supply method according to claim 4, wherein the storage of hydrogen in the storage tank is completed.
【請求項6】 前記副水素貯蔵タンク内の圧力が所定値
を越えた際に、該副水素貯蔵タンクから前記主水素貯蔵
タンクへ水素を放出させることを特徴とする請求項4又
は5に記載の水素ガス供給方法。
6. The method according to claim 4, wherein when the pressure in the secondary hydrogen storage tank exceeds a predetermined value, hydrogen is released from the secondary hydrogen storage tank to the main hydrogen storage tank. Hydrogen gas supply method.
【請求項7】 前記外部負荷は、燃料電池であることを
特徴とする請求項1ないし請求項3のいずれか1つに記
載の水素ガス供給装置。
7. The hydrogen gas supply device according to claim 1, wherein the external load is a fuel cell.
【請求項8】 前記外部負荷は、燃料電池であることを
特徴とする請求項4ないし請求項6のいずれか1つに記
載の水素ガス供給方法。
8. The method for supplying hydrogen gas according to claim 4, wherein the external load is a fuel cell.
JP10193667A 1998-06-24 1998-06-24 Hydrogen gas supply device and hydrogen gas supply method therefor Pending JP2000012062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10193667A JP2000012062A (en) 1998-06-24 1998-06-24 Hydrogen gas supply device and hydrogen gas supply method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10193667A JP2000012062A (en) 1998-06-24 1998-06-24 Hydrogen gas supply device and hydrogen gas supply method therefor

Publications (1)

Publication Number Publication Date
JP2000012062A true JP2000012062A (en) 2000-01-14

Family

ID=16311783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10193667A Pending JP2000012062A (en) 1998-06-24 1998-06-24 Hydrogen gas supply device and hydrogen gas supply method therefor

Country Status (1)

Country Link
JP (1) JP2000012062A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291524A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen feeding device and method for fuel cell
JP2001302201A (en) * 2000-04-14 2001-10-31 Toyota Motor Corp Apparatus for storing and supplying hydrogen, fuel cell system, and movable body carrying the same
JP2001313051A (en) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd Hydrogen supply device for fuel cell and hydrogen storage method
JP2001313049A (en) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd Hydrogen supply device for fuel cell
KR20020058671A (en) * 2000-12-30 2002-07-12 이계안 Fuel cell system for vehicles
US6651701B2 (en) 2001-01-26 2003-11-25 Honda Giken Kogyo Kabushiki Kaisha Hydrogen storage apparatus and charging method therefor
KR100819602B1 (en) 2006-09-25 2008-04-07 엘에스전선 주식회사 Cogeneration system for a fuel cell and Method thereof
WO2010134472A1 (en) * 2009-05-18 2010-11-25 株式会社 豊田自動織機 Hydrogen gas supply device
DE102009030358A1 (en) * 2009-06-18 2010-12-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fuel cell system is provided with fuel cell stack and fuel storage, which is connected with fuel cell stack over fuel line
US8197988B2 (en) 2007-07-26 2012-06-12 Hyundai Motor Company Hydrogen supply system for fuel cell
US8304138B2 (en) * 2010-05-26 2012-11-06 Ford Global Technologies, Llc Fuel cell system and method of use
US9343754B2 (en) 2010-03-09 2016-05-17 Toyota Jidosha Kabushiki Kaisha High pressure gas supply system and fuel cell system
JP2016105381A (en) * 2014-12-01 2016-06-09 株式会社豊田自動織機 Hydrogen gas supply apparatus
US9845918B2 (en) 2014-05-09 2017-12-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Gas storage/supply system
DE102019122227A1 (en) * 2019-08-19 2021-02-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hydrogen system for a mobile unit and method for operating a hydrogen system, control program and computer-readable storage medium
JP2021174728A (en) * 2020-04-28 2021-11-01 清水建設株式会社 Pressure control system and pressure control method
CN113707909A (en) * 2021-07-21 2021-11-26 广东电网有限责任公司广州供电局 Fuel cell emergency power generation system based on solid-state hydrogen storage technology
KR20220014452A (en) * 2020-07-28 2022-02-07 주식회사 패리티 Loss-free Cryogenic Hydrogen Supply System
US11251444B2 (en) 2017-02-10 2022-02-15 Toyota Jidosha Kabushiki Kaisha Gas supply system
US11424462B2 (en) 2010-10-06 2022-08-23 Ford Global Technologies, Llc Method of operating a fuel cell during a soak time period
JP2023551664A (en) * 2020-12-21 2023-12-12 プラスチック・オムニウム・アドヴァンスド・イノベーション・アンド・リサーチ Ammonia storage system temperature control process

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291524A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen feeding device and method for fuel cell
JP4644333B2 (en) * 2000-04-10 2011-03-02 日本重化学工業株式会社 Hydrogen supply apparatus and method for fuel cell
JP2001302201A (en) * 2000-04-14 2001-10-31 Toyota Motor Corp Apparatus for storing and supplying hydrogen, fuel cell system, and movable body carrying the same
JP2001313051A (en) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd Hydrogen supply device for fuel cell and hydrogen storage method
JP2001313049A (en) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd Hydrogen supply device for fuel cell
JP4644335B2 (en) * 2000-04-28 2011-03-02 日本重化学工業株式会社 Hydrogen supply device for fuel cell and hydrogen storage method
JP4644334B2 (en) * 2000-04-28 2011-03-02 日本重化学工業株式会社 Hydrogen supply device for fuel cell
KR20020058671A (en) * 2000-12-30 2002-07-12 이계안 Fuel cell system for vehicles
US6651701B2 (en) 2001-01-26 2003-11-25 Honda Giken Kogyo Kabushiki Kaisha Hydrogen storage apparatus and charging method therefor
KR100819602B1 (en) 2006-09-25 2008-04-07 엘에스전선 주식회사 Cogeneration system for a fuel cell and Method thereof
US8197988B2 (en) 2007-07-26 2012-06-12 Hyundai Motor Company Hydrogen supply system for fuel cell
WO2010134472A1 (en) * 2009-05-18 2010-11-25 株式会社 豊田自動織機 Hydrogen gas supply device
DE102009030358B4 (en) * 2009-06-18 2013-07-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fuel cell system and method for its operation and its use
DE102009030358A1 (en) * 2009-06-18 2010-12-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fuel cell system is provided with fuel cell stack and fuel storage, which is connected with fuel cell stack over fuel line
DE102009030358C5 (en) * 2009-06-18 2016-09-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fuel cell system and method for its operation and its use
US9343754B2 (en) 2010-03-09 2016-05-17 Toyota Jidosha Kabushiki Kaisha High pressure gas supply system and fuel cell system
US8304138B2 (en) * 2010-05-26 2012-11-06 Ford Global Technologies, Llc Fuel cell system and method of use
US11424462B2 (en) 2010-10-06 2022-08-23 Ford Global Technologies, Llc Method of operating a fuel cell during a soak time period
US9845918B2 (en) 2014-05-09 2017-12-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Gas storage/supply system
JP2016105381A (en) * 2014-12-01 2016-06-09 株式会社豊田自動織機 Hydrogen gas supply apparatus
US11251444B2 (en) 2017-02-10 2022-02-15 Toyota Jidosha Kabushiki Kaisha Gas supply system
DE102019122227A1 (en) * 2019-08-19 2021-02-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hydrogen system for a mobile unit and method for operating a hydrogen system, control program and computer-readable storage medium
DE102019122227B4 (en) 2019-08-19 2024-04-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hydrogen system for a mobile unit and method for operating a hydrogen system, control program and computer-readable storage medium
JP2021174728A (en) * 2020-04-28 2021-11-01 清水建設株式会社 Pressure control system and pressure control method
KR20220014452A (en) * 2020-07-28 2022-02-07 주식회사 패리티 Loss-free Cryogenic Hydrogen Supply System
KR102422306B1 (en) * 2020-07-28 2022-07-19 주식회사 패리티 Loss-free Cryogenic Hydrogen Supply System
JP2023551664A (en) * 2020-12-21 2023-12-12 プラスチック・オムニウム・アドヴァンスド・イノベーション・アンド・リサーチ Ammonia storage system temperature control process
CN113707909A (en) * 2021-07-21 2021-11-26 广东电网有限责任公司广州供电局 Fuel cell emergency power generation system based on solid-state hydrogen storage technology

Similar Documents

Publication Publication Date Title
JP2000012062A (en) Hydrogen gas supply device and hydrogen gas supply method therefor
EP1291949B1 (en) Fuel cell system, method of controlling the same, and vehicle mounted with the same
JP5147831B2 (en) Hydrogen consumption system and operation method thereof
CN101128952B (en) Method of using hydrogen storage tank and hydrogen storage tank
JP4944300B2 (en) Fuel cell system
WO2006068227A1 (en) Fuel cell system
JP3883125B2 (en) Fuel cell system and method for stopping fuel cell system
JP2002121001A (en) Hydrogen supply device
JP2000100461A (en) Hydrogen storage tank device
JP2003056799A (en) Boil off-gas treating device
JP2989332B2 (en) Fuel cell system
JP2004014213A (en) Fuel cell system
JP2004273164A (en) Fuel cell system
JP2014192047A (en) Method for controlling fuel cell vehicle
JP2004253258A (en) Fuel cell system and its control method
JP2008522367A (en) Water removal by a reactive air pump powered by a fuel cell system operable during the shutdown process
US9362578B2 (en) Fuel cell power plant operating system and method for use in sub-freezing ambient conditions
JP2003500824A (en) Liquid-cooled fuel cell and method of operating liquid-cooled fuel cell
US7112382B2 (en) Fuel cell hydrogen recovery system
TW201840352A (en) Hydrogen storage and supply system
JP2019149250A (en) Fuel cell system
JP2004232777A (en) High-pressure gas cylinder for vehicle
JP2002373690A (en) Fuel cell system
JP4673617B2 (en) Fuel cell system and control method thereof
JP2005183012A (en) Fuel cell system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623