JP4635514B2 - Hydrogen supply device using solid polymer water electrolyzer - Google Patents

Hydrogen supply device using solid polymer water electrolyzer Download PDF

Info

Publication number
JP4635514B2
JP4635514B2 JP2004240259A JP2004240259A JP4635514B2 JP 4635514 B2 JP4635514 B2 JP 4635514B2 JP 2004240259 A JP2004240259 A JP 2004240259A JP 2004240259 A JP2004240259 A JP 2004240259A JP 4635514 B2 JP4635514 B2 JP 4635514B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
compressor
water
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004240259A
Other languages
Japanese (ja)
Other versions
JP2006057141A (en
Inventor
加津也 佐々木
雅芳 近藤
仁志 尾白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2004240259A priority Critical patent/JP4635514B2/en
Publication of JP2006057141A publication Critical patent/JP2006057141A/en
Application granted granted Critical
Publication of JP4635514B2 publication Critical patent/JP4635514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

この発明は、固体高分子型水電解槽を用いた水素供給装置に関し、特に、燃料電池自動車等に高圧の水素ガスを供給する水素ステーションでの使用に好適な固体高分子型水電解槽を用いた水素供給装置に関する。   The present invention relates to a hydrogen supply apparatus using a solid polymer type water electrolyzer, and in particular, to a solid polymer type water electrolyzer suitable for use in a hydrogen station that supplies high-pressure hydrogen gas to a fuel cell vehicle or the like. The present invention relates to a hydrogen supply apparatus.

従来、この種の水素供給装置として、固体高分子膜を用いて陽極に酸素、陰極に水素を発生させる固体高分子型水電解槽で製造された水素ガスをガス加圧手段を用いて昇圧するものが知られている(特許文献1)。   Conventionally, as this type of hydrogen supply device, a solid polymer membrane is used to pressurize hydrogen gas produced in a solid polymer water electrolyzer that generates oxygen at the anode and hydrogen at the cathode using a gas pressurizing means. One is known (Patent Document 1).

また、固体高分子型水電解槽を圧力容器内に収め、水素ステーションで供給する圧力以上の高圧水を電解して、高圧水素を供給するものも知られている(特許文献2)。
特開2003−342766号公報 特開2003−342768号公報
In addition, there is also known a method in which a polymer electrolyte water electrolyzer is housed in a pressure vessel, and high-pressure water that is higher than the pressure supplied at the hydrogen station is electrolyzed to supply high-pressure hydrogen (Patent Document 2).
JP 2003-342766 A JP 2003-342768 A

固体高分子型水電解槽の耐圧性能は、固体高分子膜の強度やOリングを使用していることなどから1MPa程度であり、したがって、特許文献1のものでは、水素ステーション用として好適な40〜120MPaに水素ガスを昇圧するためには、ガス加圧手段は、40倍以上の圧力比を有している必要があり、ガス加圧手段を構成する圧縮機等が高価なものになり、消費電力も大きくなるという問題があった。   The pressure resistance performance of the solid polymer type water electrolysis tank is about 1 MPa because of the strength of the solid polymer film and the use of an O-ring. In order to pressurize hydrogen gas to ˜120 MPa, the gas pressurizing means needs to have a pressure ratio of 40 times or more, and the compressor constituting the gas pressurizing means becomes expensive, There was a problem that power consumption also increased.

また、圧縮機の代わりに高圧ポンプが必要となる特許文献2のものでは、高圧仕様の圧力容器、超高圧のポンプや配管などのためにコストが非常に高くなるという問題があった。また、圧縮機を使用しない代わりに高圧ポンプを使用することにより、消費電力が小さくなるが、高圧水を電解した場合には、電解によって発生した水素に同伴する水に水素が溶解したり、電流効率が低下することで、所定の圧力の水素を発生させる電力量は、トータルで大きくなるという問題があった。   Moreover, in the thing of patent document 2 which requires a high pressure pump instead of a compressor, there existed a problem that cost became very high for the pressure vessel of a high pressure specification, an ultrahigh pressure pump, piping, etc. In addition, power consumption is reduced by using a high pressure pump instead of a compressor. However, when high pressure water is electrolyzed, hydrogen is dissolved in the water accompanying the hydrogen generated by electrolysis, Due to the decrease in efficiency, there is a problem that the amount of electric power for generating hydrogen at a predetermined pressure is increased in total.

この発明は、40〜120MPaの高圧水素ガスを得るための設備費用および消費電力をトータルで低く抑えることができる固体高分子型水電解槽を用いた水素供給装置を提供することを目的とする。   An object of the present invention is to provide a hydrogen supply apparatus using a solid polymer type water electrolyzer capable of keeping facility costs and power consumption for obtaining high pressure hydrogen gas of 40 to 120 MPa in total.

この発明による固体高分子型水電解槽を用いた水素供給装置は、固体高分子膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽を備えている水素供給装置において、水電解槽が収められかつ所定圧力に維持される圧力容器と、圧力容器外に取り出された水素ガスを昇圧する少なくとも1つの圧縮機と、昇圧水素ガスを供給するためのディスペンサーとをさらに備えており、圧力容器は、その設計圧力が5〜20MPaとされて、肉厚1〜6cmのJIS規格配管で形成されており、水電解槽で得られる水素ガスの圧力が圧力容器内において5〜20MPaとされ、圧縮機によって40〜120MPaに昇圧されることを特徴とするものである。 A hydrogen supply apparatus using a solid polymer type water electrolyzer according to the present invention comprises a solid polymer type water electrolyzer that electrolyzes water using a solid polymer membrane, generates oxygen at the anode and hydrogen at the cathode. In a hydrogen supply apparatus provided, a pressure vessel in which a water electrolyzer is accommodated and maintained at a predetermined pressure, at least one compressor that pressurizes hydrogen gas taken out of the pressure vessel, and pressurized hydrogen gas are supplied further comprises a dispenser for a pressure vessel, design pressure of that is a 5 to 20 mPa, are formed in the JIS standard pipe wall thickness 1 to 6 centimeters, the hydrogen gas obtained by the water electrolyzer is a 5~20MPa in the pressure the pressure vessel is pressurized to 40~120MPa by a compressor is characterized in Rukoto.

容器内径を所定の値(例えばφ500mmなど)とした場合に、設計圧力に対する容器肉厚が計算によって決定され、設計圧力5〜20MPaは、容器肉厚が1〜6cm程度に相当する。これにより、圧力容器として、市販されているJIS規格配管を使用することができる。   When the container inner diameter is set to a predetermined value (for example, φ500 mm), the container thickness with respect to the design pressure is determined by calculation, and the design pressure of 5 to 20 MPa corresponds to the container thickness of about 1 to 6 cm. Thereby, JIS standard piping marketed can be used as a pressure vessel.

圧力容器は、例えば、ステンレス鋼製の1層構造とされてもよく、ステンレス鋼製内層および炭素鋼製外層からなる2層構造とされてもよく、また、ステンレス鋼製内層、少なくとも1層の炭素鋼製中間層および炭素鋼製外層からなる3層以上の構造とされてもよい。また、圧力容器の材料としては、ステンレス鋼製以外の金属でもよく、また、非金属でもよい。   The pressure vessel may have, for example, a stainless steel one-layer structure, a two-layer structure including a stainless steel inner layer and a carbon steel outer layer, or a stainless steel inner layer having at least one layer. You may be set as the structure of 3 or more layers which consist of a carbon steel intermediate | middle layer and a carbon steel outer layer. The material of the pressure vessel may be a metal other than stainless steel, or may be a non-metal.

圧縮機の圧力比は、圧力容器の設計圧力が5〜20MPaであり、水素ステーション用として好適な水素ガス圧力が40〜120MPaであるので、数倍程度(2〜24倍)であればよく、圧縮機としては、市販されている種々のタイプのものが使用可能である。圧縮機の数は1つとしてもよく、2以上としてももちろんよい。   The pressure ratio of the compressor may be about several times (2 to 24 times) because the design pressure of the pressure vessel is 5 to 20 MPa and the hydrogen gas pressure suitable for the hydrogen station is 40 to 120 MPa. Various types of commercially available compressors can be used. The number of compressors may be one, or two or more.

ディスペンサーは、公知のものであり、これを使用することで高圧の水素ガスを燃料電池自動車等に充填することができる。   The dispenser is a known one, and by using this, high-pressure hydrogen gas can be filled in a fuel cell vehicle or the like.

水電解槽は、水中に没した状態で圧力容器内に収められてもよく、また、水面高さが数cm程度とされて、気相(水素または酸素)で包まれた状態で圧力容器内に収められてもよい。   The water electrolyzer may be stored in the pressure vessel while immersed in water, and the water surface height is set to about several centimeters and the pressure vessel is enclosed in a gas phase (hydrogen or oxygen). It may be stored in.

圧力容器がステンレス鋼などの金属製である場合には、水電解槽の陽極および陰極のいずれか一方が圧力容器の内面に接触させられることで電気的に接続されていることが好ましい。このような形態としては、水電解槽の電極(陽極または陰極)が圧力容器の底壁内面に接触させられてもよく、頂壁内面に接触させられてもよい。この場合に、圧力容器の電極の近傍に、接続端子となる銅などの良導電体が埋設されていることがより好ましい。これにより、金属製圧力容器を電源と水電解槽の電極との電気的接続のための部材の一部として使用することができる。   When the pressure vessel is made of a metal such as stainless steel, it is preferable that either the anode or the cathode of the water electrolysis tank is electrically connected by being brought into contact with the inner surface of the pressure vessel. As such a form, the electrode (anode or cathode) of the water electrolyzer may be brought into contact with the bottom wall inner surface of the pressure vessel, or may be brought into contact with the top wall inner surface. In this case, it is more preferable that a good conductor such as copper serving as a connection terminal is embedded in the vicinity of the electrode of the pressure vessel. Thereby, a metal pressure vessel can be used as a part of member for electrical connection with a power supply and the electrode of a water electrolysis tank.

外部に供給される水素の圧力は、水素ラインに設定した圧力調整弁により常時調整され、水素ラインおよび酸素ラインの間に設置した差圧計と酸素ラインに設置した差圧調整弁とにより、水素ラインと酸素ラインとの間の差圧は、設定値(例えば1.0MPa)以下に調整される。これにより、水電解槽の電極接合体膜(固体高分子膜)が保護され、固体高分子型水電解槽自体の耐圧性能が1MPa程度であっても、圧力容器外に取り出される水素ガスの圧力を5〜20MPaとすることができる。   The pressure of hydrogen supplied to the outside is constantly adjusted by a pressure regulating valve set in the hydrogen line, and a hydrogen pressure line is installed by a differential pressure gauge installed between the hydrogen line and the oxygen line and a differential pressure regulating valve installed in the oxygen line. The differential pressure between the oxygen line and the oxygen line is adjusted to a set value (for example, 1.0 MPa) or less. Thereby, the electrode assembly membrane (solid polymer membrane) of the water electrolysis tank is protected, and the pressure of the hydrogen gas taken out from the pressure vessel even if the pressure resistance performance of the solid polymer water electrolysis tank itself is about 1 MPa. Can be set to 5 to 20 MPa.

水電解槽と圧縮機との間または圧縮機とディスペンサーとの間に蓄圧機が設けられていることが好ましい。蓄圧機には、所定圧力の水素ガスが蓄えられ、この蓄えられたガスが燃料電池自動車等に充填されることにより、短い時間での水素充填が可能となる。   It is preferable that a pressure accumulator is provided between the water electrolyzer and the compressor or between the compressor and the dispenser. The accumulator stores hydrogen gas at a predetermined pressure, and the stored gas is filled in a fuel cell vehicle or the like, so that hydrogen can be charged in a short time.

圧縮機を例えば往復圧縮機とした場合、圧縮機の動力源として、水電解槽で発生した酸素ガスを使用することも可能であり、このようにすることで、圧縮機に必要な電力または燃料の削減が可能となる。   For example, when the compressor is a reciprocating compressor, it is also possible to use oxygen gas generated in the water electrolysis tank as a power source of the compressor, and in this way, electric power or fuel necessary for the compressor is used. Can be reduced.

水電解槽の水素出口とディスペンサーとの間にバイパス配管が設けられていることが好ましい。この場合、燃料電池自動車に水素を供給するに際しては、バイパス配管を介して圧力容器圧力と同じ圧力の水素ガスを供給することで、まず、水素圧力を5〜20MPaまで上げ、次いで、圧縮機で昇圧された水素ガスを供給することで、水素ガス圧力を40〜120MPaまで上げることが可能となる。通常、燃料電池自動車に水素を供給する場合、燃料電池自動車タンク内の圧力は定格値より低下しており、ディスペンサー側の水素圧力が5〜20MPa程度であっても、水素の充填が可能であり、その後に圧縮機で定格値まで加圧することで、必要以上に圧縮機を稼動させずに済み、省エネルギーで合理的である。しかも、必要以上に高圧水素を貯留・製造しなくてもよい。   It is preferable that a bypass pipe is provided between the hydrogen outlet of the water electrolysis tank and the dispenser. In this case, when supplying hydrogen to the fuel cell vehicle, by supplying hydrogen gas having the same pressure as the pressure vessel pressure through the bypass pipe, first, the hydrogen pressure is increased to 5 to 20 MPa, and then the compressor is used. By supplying the pressurized hydrogen gas, the hydrogen gas pressure can be increased to 40 to 120 MPa. Normally, when hydrogen is supplied to a fuel cell vehicle, the pressure in the fuel cell vehicle tank is lower than the rated value, and even if the hydrogen pressure on the dispenser side is about 5 to 20 MPa, hydrogen can be charged. Then, by pressurizing to the rated value with the compressor, it is not necessary to operate the compressor more than necessary, which is energy saving and rational. Moreover, it is not necessary to store and manufacture high-pressure hydrogen more than necessary.

上記のバイパス配管を設ける場合に、段階的に圧縮可能なように圧縮機が複数設けられるとともに、各圧縮機に対応して蓄圧機も複数設けられており、各圧縮機の水素出口とディスペンサーとがそれぞれ接続されていることがある。このようにすると、より緻密に各圧力毎に水素を充填することができ、合理的である。   When providing the above bypass piping, a plurality of compressors are provided so that they can be compressed in stages, and a plurality of pressure accumulators are provided corresponding to each compressor, and a hydrogen outlet and a dispenser of each compressor May be connected to each other. In this way, hydrogen can be charged more precisely for each pressure, which is reasonable.

この発明の固体高分子型水電解槽を用いた水素供給装置によると、水電解槽が収められかつ所定圧力に維持される圧力容器と、圧力容器外に取り出された水素ガスを昇圧する少なくとも1つの圧縮機と、昇圧水素ガスを供給するためのディスペンサーとを備えているので、水素ステーション用として好適な圧力(40〜120MPa)に水素ガスを昇圧することができる。また、圧力容器の設計圧力が5〜20MPaとされているので、水素ガスを40〜120MPaとするには、圧縮機によって数倍程度に昇圧すればよく、圧縮機のコストおよび消費電力を低減することができ、しかも、圧力容器として、例えば、市販されているステンレス鋼製のJIS規格配管を使用することができるので、圧力容器のコストも低減することができる。こうして、水素ステーション用として好適な40〜120MPaの高圧水素ガスを得るための設備費用および消費電力をトータルで低く抑えることができる。   According to the hydrogen supply apparatus using the solid polymer type water electrolyzer of the present invention, the pressure vessel in which the water electrolyzer is accommodated and maintained at a predetermined pressure, and at least one for raising the pressure of the hydrogen gas taken out of the pressure vessel Since one compressor and a dispenser for supplying pressurized hydrogen gas are provided, the hydrogen gas can be pressurized to a pressure (40 to 120 MPa) suitable for a hydrogen station. Moreover, since the design pressure of the pressure vessel is 5 to 20 MPa, in order to set the hydrogen gas to 40 to 120 MPa, it is only necessary to increase the pressure by several times with a compressor, thereby reducing the cost and power consumption of the compressor. Moreover, as the pressure vessel, for example, a commercially available JIS standard pipe made of stainless steel can be used, so that the cost of the pressure vessel can be reduced. In this way, the equipment cost and power consumption for obtaining high pressure hydrogen gas of 40 to 120 MPa suitable for the hydrogen station can be kept low in total.

以下、図面を参照してこの発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1はこの発明の固体高分子型水電解槽を用いた水素供給装置の第1実施形態を示しており、固体高分子型水電解槽を用いた水素供給装置(1)は、高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽(2)と、水電解槽(2)を収める円筒形圧力容器(3)と、電解槽(2)に直流電流を供給する電源装置(4)と、圧力容器(3)の底壁(3c)に設けられた水供給ライン(5)および水素排出ライン(6)と、圧力容器(3)の頂壁(3b)に設けられた酸素排出ライン(7)と、圧力容器(3)外に取り出された水素ガスを水素ステーションに供給する水素供給ライン(10)とを備えている。   FIG. 1 shows a first embodiment of a hydrogen supply device using a solid polymer type water electrolyzer according to the present invention. The hydrogen supply device (1) using a solid polymer type water electrolyzer is a polymer electrolyte. A polymer electrolyte water electrolyzer (2) for electrolyzing water using a membrane, generating oxygen at the anode and hydrogen at the cathode, and a cylindrical pressure vessel (3) containing the water electrolyzer (2), A power supply device (4) for supplying a direct current to the electrolytic cell (2), a water supply line (5) and a hydrogen discharge line (6) provided on the bottom wall (3c) of the pressure vessel (3), and a pressure vessel An oxygen discharge line (7) provided on the top wall (3b) of (3), and a hydrogen supply line (10) for supplying hydrogen gas taken out of the pressure vessel (3) to the hydrogen station. .

固体高分子型水電解槽(2)は、公知のもので、両端に配された陽極主電極(11)および陰極主電極(12)と、これらの主電極(11)(12)の間に直列に配された複数の単位セル(13)とを有し、1つのセル(13)は、陽極給電体(13a)、電極接合体膜(13b)、および陰極給電体(13c)などから構成されている。   The polymer electrolyte water electrolyzer (2) is a well-known one, and the anode main electrode (11) and the cathode main electrode (12) disposed at both ends, and between these main electrodes (11) (12). It has a plurality of unit cells (13) arranged in series, and one cell (13) is composed of an anode feeder (13a), an electrode assembly film (13b), a cathode feeder (13c), etc. Has been.

圧力容器(3)は、ステンレス鋼製で、上下フランジ付き円筒状本体(3a)と、本体(3a)上端部にボルト(16)によって結合されてその上端開口を覆う頂壁(3b)と、本体(3a)下端部にボルト(16)によって結合されてその下端開口を覆う底壁(3c)とからなる。   The pressure vessel (3) is made of stainless steel, and has a cylindrical main body (3a) with upper and lower flanges, a top wall (3b) that is coupled to the upper end of the main body (3a) by a bolt (16) and covers the upper end opening, The main body (3a) includes a bottom wall (3c) which is coupled to the lower end portion of the main body (3a) by a bolt (16) and covers the lower end opening.

圧力容器(3)の設計圧力は5〜20MPaとされている。圧力容器(3)の設計圧力に対する容器肉厚は、高圧ガス保安法によって規定されており、図4には、内径が500mmの圧力容器(3)をSUS316Lの1層構造とした場合の設計圧力と容器肉厚との関係が示されている。同図によると、設計圧力が20MPa程度までならJISで規格された配管を用いて製作可能であるものの、それ以上では専用の圧力容器を製作しなければならないことが分かる。すなわち、圧力容器(3)から取り出された水素ガスの圧力を水素ステーション用として好適な40〜120MPaとするためには、圧力容器の肉厚が12cm以上必要で、このような圧力容器は、極めて高価なものとなってしまうのに対し、圧力容器(3)の設計圧力を5〜20MPaとすることにより、圧力容器(3)の本体(3a)として市販のJIS規格配管を使用することができ、圧力容器(3)のコストを低く抑えることができる。   The design pressure of the pressure vessel (3) is 5 to 20 MPa. The thickness of the vessel with respect to the design pressure of the pressure vessel (3) is defined by the High Pressure Gas Safety Law. FIG. 4 shows the design pressure when the pressure vessel (3) having an inner diameter of 500 mm is made of a single layer structure of SUS316L. The relationship between the container thickness and the container thickness is shown. According to the figure, it can be seen that if the design pressure is up to about 20 MPa, it can be manufactured using piping standardized by JIS, but if it is more than that, a dedicated pressure vessel must be manufactured. That is, in order to set the pressure of the hydrogen gas taken out from the pressure vessel (3) to 40 to 120 MPa suitable for the hydrogen station, the thickness of the pressure vessel is required to be 12 cm or more. On the other hand, by setting the design pressure of the pressure vessel (3) to 5 to 20 MPa, commercially available JIS standard piping can be used as the main body (3a) of the pressure vessel (3). The cost of the pressure vessel (3) can be kept low.

水電解槽(2)は、その陰極主電極(12)を圧力容器(3)の底壁(3c)内面に接触させるように、圧力容器(3)内に収められている。   The water electrolyzer (2) is housed in the pressure vessel (3) so that the cathode main electrode (12) is in contact with the inner surface of the bottom wall (3c) of the pressure vessel (3).

電源装置(4)は、直流電源(17)と、電解槽(2)の陽極主電極(11)に接続された陽極側配線(18)と、陽極側配線(18)途中に設けられたスイッチ(19)と、電解槽(2)の陰極主電極(12)に接続された陰極側配線(20)と、圧力容器(3)の側壁を貫通しかつ陽極側配線(18)を通過させる陽極側配線支持部(21)と、圧力容器(3)の底壁(3c)に設けられかつ水電解槽(2)の陰極主電極(12)への接続端子となる銅またはアルミニウム(合金を含む)製の良導電体(22)とを有している。   The power supply device (4) includes a DC power supply (17), an anode side wiring (18) connected to the anode main electrode (11) of the electrolytic cell (2), and a switch provided in the middle of the anode side wiring (18). (19), a cathode side wiring (20) connected to the cathode main electrode (12) of the electrolytic cell (2), and an anode passing through the side wall of the pressure vessel (3) and passing the anode side wiring (18) Side wiring support (21) and copper or aluminum (including alloys) provided on the bottom wall (3c) of the pressure vessel (3) and serving as a connection terminal to the cathode main electrode (12) of the water electrolysis tank (2) And a good electrical conductor (22).

水供給ライン(5)は、水電解槽(2)に当接しない箇所に設けられた水入口からポンプ(図示略)により圧力容器(3)内に純水を導入するもので、これにより、圧力容器(3)と水電解槽(2)との間隙が純水で充満され、圧力容器(3)内の純水が水電解槽(2)への供給水を兼ねるようになされている。   The water supply line (5) is for introducing pure water into the pressure vessel (3) by a pump (not shown) from a water inlet provided at a location not in contact with the water electrolyzer (2). The gap between the pressure vessel (3) and the water electrolysis tank (2) is filled with pure water, and the pure water in the pressure vessel (3) also serves as water supplied to the water electrolysis tank (2).

水素排出ライン(6)は、水電解槽(2)の陰極にて発生した水素とこれに同伴する水を取り出す排出管(23)と、これらの水素および同伴水を分離して水素を取り出す水素気液分離器(24)とを有している。   The hydrogen discharge line (6) includes a discharge pipe (23) for taking out hydrogen generated at the cathode of the water electrolyzer (2) and water accompanying it, and a hydrogen for taking out hydrogen by separating these hydrogen and accompanying water. And a gas-liquid separator (24).

酸素排出ライン(7)には、圧力調整弁(25)が設けられている。圧力容器(3)の上部には、酸素が貯留され、この酸素は、酸素排出ライン(7)によって外部に排出される。   The oxygen discharge line (7) is provided with a pressure regulating valve (25). Oxygen is stored in the upper part of the pressure vessel (3), and this oxygen is discharged to the outside through the oxygen discharge line (7).

水素供給ライン(10)は、水素気液分離器(24)により分離された水素を取り出す開閉弁(32)付き水素取出し管(31)と、水素取出し管(31)途中に設けられた蓄圧機(33)と、水素取出し管(31)端部に逆止弁(35)を介して設けられた1つの圧縮機(34)と、圧縮機(34)と逆止弁(37)付き水素供給管(36)を介して接続されたディスペンサー(38)とからなる。   The hydrogen supply line (10) includes a hydrogen extraction pipe (31) with an on-off valve (32) for extracting hydrogen separated by the hydrogen gas-liquid separator (24), and a pressure accumulator provided in the middle of the hydrogen extraction pipe (31). (33), one compressor (34) provided at the end of the hydrogen take-out pipe (31) via a check valve (35), and hydrogen supply with the compressor (34) and check valve (37) It consists of a dispenser (38) connected via a tube (36).

圧縮機(34)は、5〜20MPaの圧力の水素ガスを40MPa以上(120MPa以下)にすることができるものとされている。このような圧縮機(34)としては、例えば、油圧、空圧またはモータを動力源とした種々のものを使用することができる。圧力容器(3)において5〜20MPaの圧力とされた水素ガスは、この水素供給ライン(10)により40〜120MPaとされて、蓄圧機(33)に蓄えられ、ディスペンサー(38)を介して燃料電池自動車のタンク等へ適宜充填することができる。   The compressor (34) is capable of making hydrogen gas at a pressure of 5 to 20 MPa 40 MPa or more (120 MPa or less). As such a compressor (34), for example, various types using a hydraulic power, pneumatic pressure, or motor as a power source can be used. Hydrogen gas having a pressure of 5 to 20 MPa in the pressure vessel (3) is set to 40 to 120 MPa by the hydrogen supply line (10), stored in the pressure accumulator (33), and fuel via the dispenser (38). It can be appropriately filled in a tank of a battery car.

なお、蓄圧機(33)は、圧縮機(34)とディスペンサー(38)との間の水素供給管(36)に設けるようにしてもよい。   The pressure accumulator (33) may be provided in the hydrogen supply pipe (36) between the compressor (34) and the dispenser (38).

図5は、40MPaの圧力の水素を得るための電力と水電解で発生させる圧力との関係を示すもので、電力には、水電解に必要な電力、圧縮機電力、水供給ポンプ電力を含んでいる。この図より、水電解圧力が15MPa程度のときに、電力が最小となり、圧力増に伴って急激に必要電力が増大することが分かる。すなわち、水電解に必要な電力については、水電解圧力1MPa時の電力(4.2kwh/Nm)<水電解圧力15MPa時の電力(4.35kwh/Nm)<水電解圧力40MPa時の電力(5.2kwh/Nm)であり、圧縮機電力については、水電解圧力1MPa時の電力(0.8kwh/Nm)>水電解圧力15MPa時の電力(0.5kwh/Nm)>水電解圧力40MPa時の電力(0kwh/Nm)であり、水供給ポンプ電力については、水電解圧力1MPa時の電力(0kwh/Nm)<水電解圧力15MPa時の電力(0.075kwh/Nm)<水電解圧力40MPa時の電力(0.2kwh/Nm)であり、水電解に必要な電力の寄与が大きいことから、水電解圧力が15MPa程度のときが最適となる。このことから、水電解槽においては15MPa(5〜20MPaの範囲)で水素を発生させ、これを圧縮機(34)によって40MPa(40〜120MPaの範囲)に昇圧することが好ましいことが分かる。 FIG. 5 shows the relationship between the electric power for obtaining hydrogen at a pressure of 40 MPa and the pressure generated by water electrolysis. The electric power includes electric power necessary for water electrolysis, compressor electric power, and water supply pump electric power. It is out. From this figure, it can be seen that when the water electrolysis pressure is about 15 MPa, the electric power is minimized, and the necessary electric power increases rapidly as the pressure increases. That is, regarding the power required for water electrolysis, power at a water electrolysis pressure of 1 MPa (4.2 kwh / Nm 3 ) <power at a water electrolysis pressure of 15 MPa (4.35 kwh / Nm 3 ) <power at a water electrolysis pressure of 40 MPa (5.2 kwh / Nm 3 ) For the compressor power, the power at a water electrolysis pressure of 1 MPa (0.8 kwh / Nm 3 )> the power at a water electrolysis pressure of 15 MPa (0.5 kwh / Nm 3 )> water Electric power at electrolysis pressure of 40 MPa (0 kwh / Nm 3 ), and water supply pump power, power at water electrolysis pressure of 1 MPa (0 kwh / Nm 3 ) <power at water electrolysis pressure of 15 MPa (0.075 kwh / Nm 3) ) <a water electrolysis pressure 40MPa when the power (0.2kwh / Nm 3), since a large power contribution required for water electrolysis, water electrolysis pressure of about 15MPa When is the optimum. From this, it can be seen that it is preferable to generate hydrogen at 15 MPa (range 5 to 20 MPa) in the water electrolyzer and pressurize it to 40 MPa (range 40 to 120 MPa) by the compressor (34).

この実施形態の固体高分子型水電解槽を用いた水素供給装置(1)によると、圧力容器(3)内に導入された水は、水電解槽(2)の給水ヘッダーに加圧供給され、給水ヘッダーから各単位セル(13)内に導かれ、電極接合体膜(13b)の表面で電気分解され、陽極側では酸素、陰極側では水素がそれぞれ発生する。発生した酸素および水素はそれぞれ多孔質の給電体(13a)(13c)を通って複極板の陽極側および陰極側に達し、酸素は水電解槽(2)上部から、水素は水電解槽(2)下部からそれぞれ排出される。圧力容器(3)から外部に供給される水素の圧力は、水素ラインに設定した圧力調整弁により常時調整され、水素ラインおよび酸素ラインの間に設置した差圧計と酸素ラインに設置した差圧調整弁とにより、水素ラインと酸素ラインとの間の差圧は、設定値(例えば1.0MPa)以下に調整される。これにより、水電解槽(2)の電極接合体膜(固体高分子膜)(13b)が保護されるとともに、水電解槽(2)内外のシール性も維持される。そして、水電解槽(2)で発生した水素ガスは、圧力容器(3)内において5〜20MPaの圧力とされ、さらに、水素供給ライン(10)の圧縮機(34)によって、40〜120MPaの圧力に高められる。   According to the hydrogen supply device (1) using the polymer electrolyte water electrolyzer of this embodiment, the water introduced into the pressure vessel (3) is pressurized and supplied to the feed header of the water electrolyzer (2). Then, the water is introduced from the water supply header into each unit cell (13) and electrolyzed on the surface of the electrode assembly film (13b), and oxygen is generated on the anode side and hydrogen is generated on the cathode side. The generated oxygen and hydrogen respectively reach the anode side and the cathode side of the bipolar plate through the porous power supply bodies (13a) and (13c), oxygen comes from the upper part of the water electrolysis tank (2), and hydrogen comes from the water electrolysis tank ( 2) Each is discharged from the bottom. The pressure of hydrogen supplied to the outside from the pressure vessel (3) is constantly adjusted by the pressure regulating valve set in the hydrogen line, and the differential pressure adjustment installed in the oxygen line and the differential pressure gauge installed between the hydrogen line and the oxygen line The differential pressure between the hydrogen line and the oxygen line is adjusted to a set value (for example, 1.0 MPa) or less by the valve. As a result, the electrode assembly membrane (solid polymer membrane) (13b) of the water electrolysis tank (2) is protected and the sealing performance inside and outside the water electrolysis tank (2) is also maintained. The hydrogen gas generated in the water electrolysis tank (2) is brought to a pressure of 5 to 20 MPa in the pressure vessel (3), and further, 40 to 120 MPa is applied by the compressor (34) of the hydrogen supply line (10). Increased to pressure.

こうして、この固体高分子型水電解槽を用いた水素供給装置(1)によると、例えば燃料電池用水素ステーションで40〜120MPa(400〜1200kg/cm)の高圧水素ガスを供給することができる。 Thus, according to the hydrogen supply device (1) using this polymer electrolyte water electrolyzer, high-pressure hydrogen gas of 40 to 120 MPa (400 to 1200 kg / cm 2 ) can be supplied, for example, at a hydrogen station for a fuel cell. .

図2は、水素供給ライン(10)の他の実施形態を示している。同図に示すように、この実施形態の水素供給ライン(10)は、圧力容器(3)から水素を取り出す水素取出し管(31)と、水素取出し管(31)端部に逆止弁(35)を介して設けられ5〜20MPaの水素ガスを40〜120MPaに昇圧する圧縮機(34)と、圧縮機(34)と逆止弁(37)および開閉弁(41)付き水素供給管(36)を介して接続されたディスペンサー(38)と、水素取出し管(31)途中に設けられた開閉弁(32)付き蓄圧機(33)と、水素供給管(36)途中に設けられた開閉弁(43)付き蓄圧機(42)と、水素取出し管(31)から分岐し開閉弁(45)および逆止弁(46)を介して5〜20MPaの水素ガスをディスペンサー(38)に直接送るバイパス配管(44)とからなる。   FIG. 2 shows another embodiment of the hydrogen supply line (10). As shown in the figure, the hydrogen supply line (10) of this embodiment includes a hydrogen extraction pipe (31) for extracting hydrogen from the pressure vessel (3), and a check valve (35) at the end of the hydrogen extraction pipe (31). ) And a hydrogen supply pipe (36) with a compressor (34), a check valve (37), and a check valve (41). ), A pressure accumulator (33) with an on-off valve (32) provided in the middle of the hydrogen take-out pipe (31), and an on-off valve provided in the middle of the hydrogen supply pipe (36). (43) pressure accumulator (42) and bypass branching from the hydrogen take-off pipe (31) and sending hydrogen gas of 5 to 20 MPa directly to the dispenser (38) via the open / close valve (45) and check valve (46) It consists of piping (44).

この実施形態の水素供給ライン(10)によると、例えば、燃料電池自動車に水素を供給するに際しては、まず、バイパス配管(44)を介して圧力容器(3)圧力と同じ圧力の水素ガスを供給することで、まず、水素圧力を5〜20MPaまで上げ、次いで、圧縮機(34)で昇圧された水素ガスを供給することで、水素ガス圧力を40〜120MPaまで上げることが可能となる。これにより、必要以上に圧縮機(34)を稼動させずに済み、省エネルギーで合理的である。しかも、必要以上に高圧水素を貯留・製造しなくてもよい。   According to the hydrogen supply line (10) of this embodiment, for example, when supplying hydrogen to a fuel cell vehicle, first, hydrogen gas having the same pressure as the pressure vessel (3) is supplied via the bypass pipe (44). Thus, first, the hydrogen pressure is increased to 5 to 20 MPa, and then the hydrogen gas pressure is increased by the compressor (34), whereby the hydrogen gas pressure can be increased to 40 to 120 MPa. As a result, it is not necessary to operate the compressor (34) more than necessary, which is energy saving and rational. Moreover, it is not necessary to store and manufacture high-pressure hydrogen more than necessary.

図3は、水素供給ライン(10)のさらに他の実施形態を示している。同図に示すように、この実施形態の水素供給ライン(10)は、圧力容器(3)から水素を取り出す水素取出し管(31)と、水素取出し管(31)端部に逆止弁(35)を介して設けられ5〜20MPaの水素ガスを所定圧力まで昇圧する前段圧縮機(34)と、前段圧縮機(34)の後段に2つの逆止弁(37)(52)を介して設けられ最終的に水素ガス圧力を40〜120MPaまで上げる少なくとも1つの後段圧縮機(51)と、後段圧縮機(51)と逆止弁(53)および開閉弁(41)付き後段側水素供給管(36)を介して接続されたディスペンサー(38)と、前段圧縮機(34)とディスペンサー(38)とを接続する逆止弁(55)および開閉弁(58)付き付き前段側水素供給管(54)と、水素取出し管(31)途中に設けられた開閉弁(32)付き蓄圧機(33)と、前段側水素供給管(54)に設けられた開閉弁(43)付き蓄圧機(42)と、後段側水素供給管(36)に設けられた開閉弁(57)付き蓄圧機(56)と、水素取出し管(31)から分岐し開閉弁(45)および逆止弁(46)を介して5〜20MPaの水素ガスをディスペンサー(38)に直接送るバイパス配管(44)とからなる。   FIG. 3 shows yet another embodiment of the hydrogen supply line (10). As shown in the figure, the hydrogen supply line (10) of this embodiment includes a hydrogen extraction pipe (31) for extracting hydrogen from the pressure vessel (3), and a check valve (35) at the end of the hydrogen extraction pipe (31). ) And is provided with two check valves (37) and (52) at the rear stage of the front stage compressor (34) and the rear stage compressor (34) after increasing the pressure of 5-20 MPa hydrogen gas to a predetermined pressure. And at least one rear-stage compressor (51) that finally raises the hydrogen gas pressure to 40 to 120 MPa, a rear-stage compressor (51), a check valve (53), and a rear-stage side hydrogen supply pipe with a check valve (41) ( 36), a front-side hydrogen supply pipe (54) with a check valve (55) and an on-off valve (58) for connecting the dispenser (38) connected through the front-end compressor (34) and the dispenser (38). ), A pressure accumulator (33) with an on-off valve (32) provided in the middle of the hydrogen take-out pipe (31), and a pressure accumulator (42) with an on-off valve (43) provided in the front-stage hydrogen supply pipe (54) And the rear hydrogen supply A pressure accumulator (56) with an open / close valve (57) provided in the pipe (36), and a hydrogen of 5 to 20 MPa branched from the hydrogen take-out pipe (31) through the open / close valve (45) and the check valve (46). It consists of a bypass pipe (44) that sends gas directly to the dispenser (38).

この実施形態の水素供給ライン(10)によると、例えば、燃料電池自動車に水素を供給するに際しては、まず、バイパス配管(44)を介して圧力容器(3)圧力と同じ圧力の水素ガスを供給することで、必要以上に圧縮機(34)(51)を稼動させずに済み、省エネルギーで合理的であり、必要以上に高圧水素を貯留・製造しなくてもよいという効果に加えて、複数段の圧縮機(34)(51)によって水素ガス圧力を40〜120MPaまで上げるようにすることにより、より緻密に各圧力毎に水素を充填することができ、より一層合理的なものとなる。   According to the hydrogen supply line (10) of this embodiment, for example, when supplying hydrogen to a fuel cell vehicle, first, hydrogen gas having the same pressure as the pressure vessel (3) is supplied via the bypass pipe (44). In addition to the effect that it is not necessary to operate the compressor (34) (51) more than necessary, it is energy-saving and rational, and it is not necessary to store and manufacture high-pressure hydrogen more than necessary. By increasing the hydrogen gas pressure to 40 to 120 MPa by using the stage compressors (34) and (51), it is possible to charge hydrogen more precisely for each pressure, which is more rational.

図6はこの発明の水電解装置の第4実施形態を示しており、水電解装置(1)は、高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽(2)と、水電解槽(2)を収める円筒形圧力容器(3)と、電解槽(2)に直流電流を供給する電源装置(4)と、圧力容器(3)の底壁(3a)に設けられた水供給ライン(5)および水素排出ライン(6)と、圧力容器(3)の頂壁(3b)に設けられた酸素排出ライン(7)と、漏洩ガスの濃度を検知するガスセンサ(8)と、ガスセンサ(8)で検出されたガス濃度に基づいた制御を行う監視制御装置(9)と、圧力容器(3)外に取り出された水素ガスを水素ステーションに供給する水素供給ライン(10)とを備えている。   FIG. 6 shows a fourth embodiment of the water electrolysis apparatus of the present invention. The water electrolysis apparatus (1) electrolyzes water using a polymer electrolyte membrane, generates oxygen at the anode and hydrogen at the cathode. A polymer electrolyte water electrolyzer (2), a cylindrical pressure vessel (3) containing the water electrolyzer (2), a power supply (4) for supplying direct current to the electrolyzer (2), and a pressure vessel A water supply line (5) and a hydrogen discharge line (6) provided on the bottom wall (3a) of (3), and an oxygen discharge line (7) provided on the top wall (3b) of the pressure vessel (3) A gas sensor (8) for detecting the concentration of leaked gas, a monitoring control device (9) for performing control based on the gas concentration detected by the gas sensor (8), and hydrogen gas taken out from the pressure vessel (3) And a hydrogen supply line (10) for supplying the hydrogen to the hydrogen station.

この実施形態では、圧力容器(3)は、ステンレス鋼(例えばSUS316L)製の内層(14)および炭素鋼(例えばSCM440)製の外層(15)からなる2層構造とされている。内層(14)は、円筒状本体(14a)、ドーム状(断面形状が上に凸の円弧状)に形成された頂壁(14b)、本体(14a)下端部に設けられたフランジ部(14c)、および本体(14a)下端開口を塞ぎその外周縁部がフランジ部(14c)に重ね合わせられた底壁(14d)からなる。外層(15)は、内層(14)の円筒状本体(14a)に密接する円筒状本体(15a)、ドーム状(断面形状が上に凸の円弧状)に形成されて内層(14)の頂壁(14b)に密接する頂壁(15b)、本体(15a)下端部に設けられかつ内層(14)のフランジ部(14c)に上から重ね合わせられたフランジ部(14c)、および内層(14)の底壁(14d)に下から重ね合わせられた底壁(15d)からなり、外層(15)のフランジ部(15c)、内層(14)のフランジ部(14c)、内層(14)の底壁(14d)外周縁部および外層(15)の底壁(15d)外周縁部がボルト(16)によって結合されている。水電解槽(2)は、その陰極主電極(12)を圧力容器(3)の内層(14)の底壁(14d)内面に接触させるように、圧力容器(3)内に収められている。   In this embodiment, the pressure vessel (3) has a two-layer structure including an inner layer (14) made of stainless steel (for example, SUS316L) and an outer layer (15) made of carbon steel (for example, SCM440). The inner layer (14) includes a cylindrical main body (14a), a top wall (14b) formed in a dome shape (an arc shape having a convex cross section), and a flange portion (14c) provided at the lower end of the main body (14a). ), And a bottom wall (14d) in which a lower end opening of the main body (14a) is closed and an outer peripheral edge portion thereof is superimposed on the flange portion (14c). The outer layer (15) is formed in a cylindrical body (15a) that is in close contact with the cylindrical body (14a) of the inner layer (14), and is formed in a dome shape (an arc shape with a cross-section projecting upward) to form the top of the inner layer (14). A top wall (15b) in close contact with the wall (14b), a flange portion (14c) provided at the lower end of the main body (15a) and superimposed on the flange portion (14c) of the inner layer (14), and the inner layer (14 ) Of the bottom wall (15d) superimposed from below on the bottom wall (14d) of the outer layer (15), the flange portion (15c) of the inner layer (14), the flange portion (14c) of the inner layer (14), and the bottom of the inner layer (14). The outer peripheral edge of the wall (14d) and the outer peripheral edge of the bottom wall (15d) of the outer layer (15) are connected by a bolt (16). The water electrolyzer (2) is housed in the pressure vessel (3) so that the cathode main electrode (12) is in contact with the inner surface of the inner layer (14) of the inner wall (14d) of the pressure vessel (3). .

漏洩ガスの濃度を検知するガスセンサ(8)は、圧力容器(3)の外層(15)の円筒状本体(15a)に設けられており、圧力容器(3)の外層(15)の円筒状本体(15a)には、これを貫通して内層(14)の本体(14a)の外周面に通じる連通路(26)が設けられ、連通路(26)外側開口部にガスセンサ(8)が設置されている。圧力容器(3)の内層(14)と外層(15)とは、溶着などの手段により隙間無く密着させられているのではなく、内層(14)と外層(15)との間には、気体が通過可能な程度の隙間が存在している。したがって、内層(14)から酸素が漏洩した場合には、この酸素が連通路(26)から外部へ速やかに排出される。これにより、内層(14)に大きな圧力がかかることが防止されている。   The gas sensor (8) for detecting the concentration of leaked gas is provided in the cylindrical body (15a) of the outer layer (15) of the pressure vessel (3), and the cylindrical body of the outer layer (15) of the pressure vessel (3). (15a) is provided with a communication path (26) that passes through this and communicates with the outer peripheral surface of the main body (14a) of the inner layer (14), and a gas sensor (8) is installed at the outer opening of the communication path (26). ing. The inner layer (14) and the outer layer (15) of the pressure vessel (3) are not in close contact with each other by means such as welding, but a gas is present between the inner layer (14) and the outer layer (15). There is a gap that can pass through. Therefore, when oxygen leaks from the inner layer (14), this oxygen is quickly discharged from the communication path (26) to the outside. This prevents a large pressure from being applied to the inner layer (14).

監視制御装置(9)は、ガスセンサ(8)からのガス濃度信号が入力されるセンサ信号入力線(27)と、ガスセンサ(8)のガス濃度信号に基づいて電源のスイッチ(19)をオン・オフする電源オフ信号出力線(28)と、ガスセンサ(8)のガス濃度信号に基づいて酸素排出ライン(7)の圧力調整弁(25)を開閉するバルブ開度調整信号出力線(29)とを有しており、ガスセンサ(8)で検出されたガス濃度が所定の範囲に入ったときに、電解槽(2)への給電を停止するか、または、圧力容器(3)内の空間に貯留されたガスを排出する制御を行う。これにより、ガスの漏洩を検知して圧力容器(3)の状態を把握することができるとともに、適宜な制御を行うことができる。   The monitoring control device (9) turns the power switch (19) on and off based on the sensor signal input line (27) to which the gas concentration signal from the gas sensor (8) is input and the gas concentration signal of the gas sensor (8). A power off signal output line (28) to be turned off, and a valve opening adjustment signal output line (29) to open and close the pressure regulating valve (25) of the oxygen discharge line (7) based on the gas concentration signal of the gas sensor (8) When the gas concentration detected by the gas sensor (8) enters a predetermined range, power supply to the electrolytic cell (2) is stopped, or the space inside the pressure vessel (3) Control is performed to discharge the stored gas. As a result, it is possible to detect gas leakage and grasp the state of the pressure vessel (3), and to perform appropriate control.

水素供給ライン(10)は、水素気液分離器(24)により分離された水素を取り出す開閉弁(32)付き水素取出し管(31)と、水素取出し管(31)途中に設けられた蓄圧機(33)と、水素取出し管(31)端部に逆止弁(35)を介して設けられた1つの往復圧縮機(34)と、圧縮機(34)と逆止弁(37)付き水素供給管(36)を介して接続されたディスペンサー(38)と、酸素排出ラインから酸素ガスを取り出してこれを圧縮機(34)のシリンダ(34a)内に動力源として供給する酸素供給管(39)とからなる。   The hydrogen supply line (10) includes a hydrogen extraction pipe (31) with an on-off valve (32) for extracting hydrogen separated by the hydrogen gas-liquid separator (24), and a pressure accumulator provided in the middle of the hydrogen extraction pipe (31). (33), one reciprocating compressor (34) provided at the end of the hydrogen take-out pipe (31) via a check valve (35), hydrogen with a compressor (34) and a check valve (37) A dispenser (38) connected via a supply pipe (36) and an oxygen supply pipe (39) for taking out oxygen gas from the oxygen discharge line and supplying it as a power source into the cylinder (34a) of the compressor (34). ).

この実施形態の水素供給ライン(10)では、圧縮機(34)の動力源として、水電解槽(2)で発生した酸素ガスが使用されており、これにより、圧縮機(34)に必要な電力または燃料の削減が図られている。   In the hydrogen supply line (10) of this embodiment, the oxygen gas generated in the water electrolysis tank (2) is used as a power source for the compressor (34), and this makes it necessary for the compressor (34). Electricity or fuel is being reduced.

なお、圧力容器(3)の構成については、図1および図6に示した実施形態に代えて、水供給ライン(5)が水電解槽(2)に当接する箇所に設けられた水入口に接続され、水素と同伴水が圧力容器(3)内の空間に放出されて貯留され、酸素と電解に利用されなかった水が酸素排出ラインによって排出されるようにしてもよい。この場合、圧力容器(3)内の空間には水素ガスが貯留され、水素の漏洩がガスセンサ(8)で検知される。また、水電解槽(2)が水中に没した形態に代えて、水電解槽(2)を水没しない状態、例えば、水素電解槽(2)が設置された下部構造の内層(14d)面よりも水面高さが数cm程度上であるようにして、水電解槽(2)を水素(気相)で包むようにしても良い。この場合も、差圧計と差圧調整弁とを使用した上記の差圧制御が行われることにより、電極接合体膜(固体高分子膜)(13b)が保護されるとともに、水電解槽(2)内外のシール性も維持される。   In addition, about the structure of a pressure vessel (3), it replaces with embodiment shown to FIG. 1 and FIG. 6, and the water inlet provided in the location where a water supply line (5) contact | connects a water electrolysis tank (2) is provided. It is also possible that hydrogen and entrained water are discharged and stored in the space in the pressure vessel (3), and oxygen and water that has not been used for electrolysis may be discharged through the oxygen discharge line. In this case, hydrogen gas is stored in the space in the pressure vessel (3), and leakage of hydrogen is detected by the gas sensor (8). Also, instead of the water electrolysis tank (2) submerged in water, the water electrolysis tank (2) is not submerged, for example, from the inner layer (14d) surface of the lower structure where the hydrogen electrolysis tank (2) is installed. Alternatively, the water electrolytic cell (2) may be wrapped with hydrogen (gas phase) so that the water surface is about several centimeters above. In this case as well, the electrode assembly membrane (solid polymer membrane) (13b) is protected and the water electrolyzer (2) by performing the differential pressure control using the differential pressure gauge and the differential pressure regulating valve. ) Sealing performance inside and outside is also maintained.

この発明による固体高分子型水電解槽を用いた水素供給装置の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the hydrogen supply apparatus using the polymer electrolyte water electrolyzer by this invention. この発明による固体高分子型水電解槽を用いた水素供給装置の第2実施形態の要部を示す図である。It is a figure which shows the principal part of 2nd Embodiment of the hydrogen supply apparatus using the solid polymer type water electrolyzer by this invention. この発明による固体高分子型水電解槽を用いた水素供給装置の第3実施形態の要部を示す図である。It is a figure which shows the principal part of 3rd Embodiment of the hydrogen supply apparatus using the solid polymer type water electrolyzer by this invention. この発明による固体高分子型水電解槽を用いた水素供給装置を得る際に使用された容器設計圧力と容器肉厚との関係を示すグラフである。It is a graph which shows the relationship between the container design pressure used when obtaining the hydrogen supply apparatus using the polymer electrolyte water electrolyzer by this invention, and container thickness. この発明による固体高分子型水電解槽を用いた水素供給装置を得る際に使用された水電解圧力と電力との関係を示すグラフである。It is a graph which shows the relationship between the water electrolysis pressure used when obtaining the hydrogen supply apparatus using the polymer electrolyte water electrolyzer by this invention, and electric power. この発明による固体高分子型水電解槽を用いた水素供給装置の第4実施形態を示す図である。It is a figure which shows 4th Embodiment of the hydrogen supply apparatus using the solid polymer type water electrolyzer by this invention.

符号の説明Explanation of symbols

(1) 固体高分子型水電解槽を用いた水素供給装置
(2) 水電解槽
(3) 圧力容器
(10) 水素供給ライン
(11)(12) 水電解槽電極
(33)(42)(56)蓄圧機
(34)(51) 圧縮機
(38) ディスペンサー
(39) 酸素供給管
(44) バイパス配管
(1) Hydrogen supply device using solid polymer water electrolyzer
(2) Water electrolysis tank
(3) Pressure vessel
(10) Hydrogen supply line
(11) (12) Water electrolyzer electrode
(33) (42) (56) Pressure accumulator
(34) (51) Compressor
(38) Dispenser
(39) Oxygen supply pipe
(44) Bypass piping

Claims (5)

固体高分子膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽を備えている水素供給装置において、水電解槽が収められかつ所定圧力に維持される圧力容器と、圧力容器外に取り出された水素ガスを昇圧する少なくとも1つの圧縮機と、昇圧水素ガスを供給するためのディスペンサーとをさらに備えており、圧力容器は、その設計圧力が5〜20MPaとされて、肉厚1〜6cmのJIS規格配管で形成されており、水電解槽で得られる水素ガスの圧力が圧力容器内において5〜20MPaとされ、圧縮機によって40〜120MPaに昇圧されることを特徴とする固体高分子型水電解槽を用いた水素供給装置。 In a hydrogen supply apparatus equipped with a solid polymer water electrolyzer that electrolyzes water using a solid polymer membrane, generates oxygen at the anode, and hydrogen at the cathode, the water electrolyzer is housed and at a predetermined pressure. a pressure vessel to be maintained, at least one compressor boosts the hydrogen gas taken out of the pressure vessel, and further comprising a dispenser for supplying a boosted hydrogen gas, pressure vessels, its design pressure The pressure of hydrogen gas obtained in the water electrolysis tank is 5 to 20 MPa in a pressure vessel, and 40 to 120 MPa by a compressor. hydrogen supply apparatus using a solid polymer water electrolyzer, characterized in Rukoto boosted to. 水電解槽と圧縮機との間または圧縮機とディスペンサーとの間に蓄圧機が設けられていることを特徴とする請求項1に記載の固体高分子型水電解槽を用いた水素供給装置。   2. The hydrogen supply apparatus using a solid polymer type water electrolyzer according to claim 1, wherein a pressure accumulator is provided between the water electrolyzer and the compressor or between the compressor and the dispenser. 水電解槽で発生した酸素ガスが圧縮機の動力源とされていることを特徴とする請求項1または2に記載の固体高分子型水電解槽を用いた水素供給装置。   3. The hydrogen supply apparatus using a solid polymer type water electrolyzer according to claim 1 or 2, wherein oxygen gas generated in the water electrolyzer is used as a power source of the compressor. 水電解槽の水素出口とディスペンサーとの間にバイパス配管が設けられており、バイパス配管を介して圧力容器内の圧力と同じ圧力の水素ガスがディスペンサーに供給された後に、圧縮機で昇圧された水素ガスがディスペンサーに供給可能とされていることを特徴とする請求項1から3までのいずれかに記載の固体高分子型水電解槽を用いた水素供給装置。 A bypass pipe is provided between the hydrogen outlet of the water electrolysis tank and the dispenser, and after the hydrogen gas having the same pressure as the pressure in the pressure vessel is supplied to the dispenser through the bypass pipe, the pressure is increased by the compressor. The hydrogen supply apparatus using the solid polymer type water electrolyzer according to any one of claims 1 to 3, wherein hydrogen gas can be supplied to the dispenser . 段階的に圧縮可能なように圧縮機が複数設けられるとともに、各圧縮機に対応して蓄圧機も複数設けられており、各圧縮機の水素出口とディスペンサーとがそれぞれ接続されていることを特徴とする請求項4に記載の固体高分子型水電解槽を用いた水素供給装置。   A plurality of compressors are provided so that they can be compressed in stages, and a plurality of accumulators are provided corresponding to each compressor, and a hydrogen outlet and a dispenser of each compressor are connected to each other. A hydrogen supply apparatus using the polymer electrolyte water electrolyzer according to claim 4.
JP2004240259A 2004-08-20 2004-08-20 Hydrogen supply device using solid polymer water electrolyzer Active JP4635514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240259A JP4635514B2 (en) 2004-08-20 2004-08-20 Hydrogen supply device using solid polymer water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240259A JP4635514B2 (en) 2004-08-20 2004-08-20 Hydrogen supply device using solid polymer water electrolyzer

Publications (2)

Publication Number Publication Date
JP2006057141A JP2006057141A (en) 2006-03-02
JP4635514B2 true JP4635514B2 (en) 2011-02-23

Family

ID=36104865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240259A Active JP4635514B2 (en) 2004-08-20 2004-08-20 Hydrogen supply device using solid polymer water electrolyzer

Country Status (1)

Country Link
JP (1) JP4635514B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035440A1 (en) * 2009-07-31 2011-02-03 Siemens Aktiengesellschaft Method and device for generating hydrogen and oxygen
DE102011081178A1 (en) * 2011-04-18 2012-10-18 Siemens Aktiengesellschaft Hydrogen fueling station system and method of operation therefor
JP6622696B2 (en) 2013-07-19 2019-12-18 アイティーエム パワー (リサーチ) リミテッドITM Power (Research) Limited Decompression system
US10465300B2 (en) 2014-10-16 2019-11-05 Hsin-Yung Lin Gas generator
WO2018033951A1 (en) * 2016-08-15 2018-02-22 株式会社 東芝 Hydrogen energy utilization system and method for controlling same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295085A (en) * 2000-04-14 2001-10-26 Honda Motor Co Ltd Water electrolyzer
JP2002371396A (en) * 2001-06-13 2002-12-26 Shinko Pantec Co Ltd Apparatus and method for electrolysis
JP2003203659A (en) * 2001-11-07 2003-07-18 Robert Bosch Gmbh Fuel supply unit for supplying hydrogen-contained fuel and its method
JP2003217641A (en) * 2002-01-22 2003-07-31 Denso Corp Fuel cell system
JP2003342769A (en) * 2002-05-30 2003-12-03 Hitachi Zosen Corp Hydrogen supplying apparatus using solid polymer type water electrolytic cell
JP2004124148A (en) * 2002-10-01 2004-04-22 Mitsubishi Heavy Ind Ltd Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295085A (en) * 2000-04-14 2001-10-26 Honda Motor Co Ltd Water electrolyzer
JP2002371396A (en) * 2001-06-13 2002-12-26 Shinko Pantec Co Ltd Apparatus and method for electrolysis
JP2003203659A (en) * 2001-11-07 2003-07-18 Robert Bosch Gmbh Fuel supply unit for supplying hydrogen-contained fuel and its method
JP2003217641A (en) * 2002-01-22 2003-07-31 Denso Corp Fuel cell system
JP2003342769A (en) * 2002-05-30 2003-12-03 Hitachi Zosen Corp Hydrogen supplying apparatus using solid polymer type water electrolytic cell
JP2004124148A (en) * 2002-10-01 2004-04-22 Mitsubishi Heavy Ind Ltd Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus

Also Published As

Publication number Publication date
JP2006057141A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
CN102317505B (en) High pressure electrolyser
AU2004214963B2 (en) Electrolyzer apparatus and method for hydrogen production
CN102340013B (en) Hydrogen filling system and method of operating the same
US8557090B2 (en) High-pressure electrolysis installation and process for inertising an installation of this type
US8961748B2 (en) Water electrolysis system
US20050072688A1 (en) Electrolyzer system to produce gas at high pressure
US20120255868A1 (en) Water electrolysis system and method of operating same
US8663434B2 (en) Water electrolysis system and method for operating water electrolysis system
JP4796798B2 (en) Hydrogen supply method
US20110266142A1 (en) Unitized electrolyzer apparatus
JP2013060625A (en) Water electrolysis system and method of stopping operation of the same
JP4635514B2 (en) Hydrogen supply device using solid polymer water electrolyzer
US9096940B2 (en) High pressure water electrolysis system and method for activating same
US20030211377A1 (en) Fuel-cell based power source having internal series redundancy
US20170342579A1 (en) Pressure releasing method of high-pressure water electrolysis system and pressure releasing method in water electrolysis system
JP2012219276A (en) Water electrolysis system and method for controlling the same
US9540739B2 (en) High differential pressure water electrolysis system and method for starting the same
JP5421860B2 (en) Water electrolysis equipment shutdown method
JP2002544395A (en) Water electrolysis tank pressure control system
JP2006022378A (en) Water electrolyzer
JP2012067368A (en) Operating method of high-pressure water electrolytic system
JP2013023733A (en) Method for operating water electrolysis system
JP2013036068A (en) High-pressure water electrolytic system and method for operating the same
JP5613084B2 (en) Water electrolysis system
JP2012219277A (en) Water electrolysis system and control method for discharge water of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4635514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150