JP2579180B2 - Stepless pressure equalizing PSA method - Google Patents

Stepless pressure equalizing PSA method

Info

Publication number
JP2579180B2
JP2579180B2 JP62336444A JP33644487A JP2579180B2 JP 2579180 B2 JP2579180 B2 JP 2579180B2 JP 62336444 A JP62336444 A JP 62336444A JP 33644487 A JP33644487 A JP 33644487A JP 2579180 B2 JP2579180 B2 JP 2579180B2
Authority
JP
Japan
Prior art keywords
pressure
gas
tower
adsorption
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62336444A
Other languages
Japanese (ja)
Other versions
JPH01176418A (en
Inventor
隆 野島
守 白石
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP62336444A priority Critical patent/JP2579180B2/en
Publication of JPH01176418A publication Critical patent/JPH01176418A/en
Application granted granted Critical
Publication of JP2579180B2 publication Critical patent/JP2579180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、吸着工程における被吸着成分が製品ガス成
分であって、吸着工程−均圧工程−脱着工程−昇圧工程
を基本工程とする各工程の繰り返しにより製品ガス成分
を分離するPSA法(圧力変動式吸着分離法)に関し、特
にその際の均圧工程の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrial process in which components to be adsorbed in an adsorption process are product gas components, and each of the processes having an adsorption process, a pressure equalization process, a desorption process, and a pressure increase process as basic processes. The present invention relates to a PSA method (pressure fluctuation type adsorption separation method) for separating product gas components by repetition, and more particularly to an improvement in a pressure equalization step at that time.

従来の技術 不純物を含む原料ガスから不純物成分と製品ガス成分
とを分離する方法の一つとして、PSA法が知られてい
る。この方法は、吸着工程−均圧工程−脱着工程−昇圧
工程を基本工程とし、その繰り返しにより不純物を含む
原料ガスから製品ガス成分を分離するものである。
2. Description of the Related Art A PSA method is known as one of methods for separating an impurity component and a product gas component from a source gas containing impurities. This method is based on an adsorption step, a pressure equalization step, a desorption step, and a pressurization step, and separates a product gas component from a source gas containing impurities by repeating the steps.

PSA法は、吸着剤に吸着させる成分が製品ガス成分で
あるか不純物成分であるかにより2つの態様にわけられ
るが、このうち前者の態様は、吸着塔に充填した吸着剤
に製品ガス成分を吸着させると共に、不純物成分をスル
ーさせるものである。
The PSA method is divided into two modes depending on whether the component to be adsorbed on the adsorbent is a product gas component or an impurity component.The former mode is one in which the product gas component is added to the adsorbent filled in the adsorption tower. In addition to the adsorption, the impurity component is allowed to pass through.

この場合、均圧工程終了後の高圧域の塔Aはまず脱着
工程終了後の他の塔Bと連通させて均圧させるが、この
均圧によりA塔はおよそ半分の圧力となる。
In this case, the tower A in the high pressure region after the completion of the pressure equalization step is first communicated with the other tower B after the completion of the desorption step to equalize the pressure.

均圧後の塔Aは、引き続き減圧脱着工程に移行して脱
着ガスを製品ガスとして回収する。一方均圧後の塔B
は、通常スルーガスで昇圧して吸着圧力にまで高め、次
工程である均圧工程に備える。
After the pressure equalization, the tower A continuously shifts to the vacuum desorption step and recovers the desorbed gas as a product gas. On the other hand, tower B after pressure equalization
Is usually raised to the adsorption pressure by increasing the pressure with a through gas and preparing for the next pressure equalization step.

発明が解決しようとする問題点 上述のように、従来は、吸着工程終了後の高圧域の塔
Aを他の1塔Bと連通させて均圧させ、ついで均圧後の
塔Aを減圧して脱着ガスを製品ガスとして回収していた
が、均圧後の圧力は吸着圧力の半分程度とかなり高いの
で、製品ガス中に不純物成分がかなり混入することを免
かれなかった。
Problems to be Solved by the Invention As described above, conventionally, the column A in the high-pressure region after the end of the adsorption step is communicated with another column B to equalize the pressure, and then the column A after the pressure equalization is depressurized. Although the desorbed gas was recovered as a product gas, the pressure after the pressure equalization was as high as about half the adsorption pressure, so that it was inevitable that impurity components were considerably mixed in the product gas.

このような不利を避けるためには、均圧後の圧力をで
きるだけ下げることが望ましいが、均圧工程終了後の高
圧域の塔Aを他の1塔Bと均圧させるだけでは均圧後の
圧力は半分程度にしかならないので、さらに均圧後の圧
力を下げるためには均圧させる相手方の塔の数を2塔、
3塔というように増やして多塔化しなければならない。
たとえば、塔Aと均圧させる塔をBおよびCの2塔にす
れば均圧後の圧力はおよそ1/3になり、塔Aと均圧させ
る塔をB、CおよびDの3塔にすれば均圧後の圧力はお
よそ1/4になる。
In order to avoid such disadvantages, it is desirable to lower the pressure after equalization as much as possible. Since the pressure is only about half, in order to further reduce the pressure after equalization, the number of counterparts to be equalized is two,
It must be increased to three towers to increase the number of towers.
For example, if the tower A and the tower to be equalized are two towers B and C, the pressure after the equalization will be about 1/3, and the tower to be equalized with the tower A will be three towers B, C and D. For example, the pressure after equalization is reduced to about 1/4.

しかしながら、多塔化により均圧後の圧力を下げて製
品回収圧を低くし、製品ガスの純度を高めることはでき
るが、装置コストおよび工程制御の点では著しく不利に
なる。
However, by increasing the number of columns, the pressure after pressure equalization can be lowered to lower the product recovery pressure, and the purity of the product gas can be increased, but this is extremely disadvantageous in terms of equipment cost and process control.

そこで多塔化に代る方法として、吸着工程終了後の高
圧域の塔Aを他の1塔Bと均圧させた後、塔Aの減圧工
程における減圧初期のガスを系外にパージしてから製品
ガスの回収を行う方法も採用されているが、均圧後の圧
力は吸着圧力の半分程度とかなり高いためパージガスの
量が多量となり、その結果、パージガス中に含まれる製
品ガス成分がロスとなり、製品回収率が低下するという
問題点があった。
Therefore, as an alternative to multi-column operation, after the column A in the high-pressure region after the adsorption step is equalized with the other column B, the gas in the initial stage of pressure reduction in the pressure reduction step of the column A is purged out of the system. However, since the pressure after pressure equalization is quite high, about half of the adsorption pressure, the amount of purge gas is large, resulting in loss of product gas components contained in the purge gas. Thus, there is a problem that the product recovery rate decreases.

本発明は、このような状況に鑑み、均圧工程を無段階
化することによって製品回収圧を低下させる方法を提供
するものである。
The present invention has been made in view of the above circumstances, and provides a method of reducing the product recovery pressure by making the pressure equalization step instep.

問題点を解決するための手段 本発明の無段階均圧式PSA法は、均圧工程における被
吸着成分が製品ガス成分であって、吸着工程−均圧工程
−脱着工程−昇圧工程を基本工程とする各工程の繰り返
しにより、不純物を含む原料ガスから製品ガス成分を分
離回収するPSA法において、吸着工程終了後の高圧域の
塔Aを他の塔Bと連通させて均圧ガスを塔Aから塔Bに
送ると共に、塔Bでは送り込まれた均圧ガス中の製品ガ
ス成分は吸着するが非吸着ガスは導出させるようにし、
もって均圧工程を、塔Aと均圧させる相手の塔Bにおい
て非吸着ガスを系外に排出させながら実施することを特
徴とするものである。
Means for Solving the Problems The stepless pressure equalizing PSA method of the present invention is characterized in that the component to be adsorbed in the pressure equalization step is a product gas component, and the adsorption step-pressure equalization step-desorption step-pressure increase step is a basic step. In the PSA method in which product gas components are separated and recovered from the raw material gas containing impurities by repeating the respective steps, the column A in the high pressure region after the end of the adsorption step is communicated with another column B, and the equalized gas is removed from the column A. At the same time as sending to the tower B, the product gas component in the equalized gas sent in the tower B is adsorbed, but the non-adsorbed gas is led out,
Thus, the pressure equalizing step is carried out while discharging the non-adsorbed gas out of the system in the tower B to be equalized with the tower A.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の方法は、吸着工程−均圧工程−脱着工程−昇
圧工程を基本工程とする各工程の繰り返しにより、不純
物を含む原料ガスから製品ガス成分を分離回収するPSA
法であって、吸着工程における被吸着成分が製品ガス成
分である場合に適用できる。
The method of the present invention comprises a PSA that separates and recovers a product gas component from a raw material gas containing impurities by repeating each of the basic steps including an adsorption step, a pressure equalization step, a desorption step, and a pressure increase step.
This method is applicable when the component to be adsorbed in the adsorption step is a product gas component.

不純物を含む原料ガスとしては、各種の炉または反応
器から発生するガスや燃焼ガスがあげられ、たとえば、
コークス炉から発生するコークス炉ガスまたはそれに由
来するガス、電気炉、転炉、高炉、発生炉から発生する
ガス、メタン化反応ガス、あるいはこれらに副生するガ
スなどなどが用いられる。特にコークス炉ガスまたはそ
れに由来するガスあるいは高炉から発生するガスが重要
である。
Examples of the source gas containing impurities include gases and combustion gases generated from various furnaces or reactors.
A coke oven gas generated from a coke oven or a gas derived therefrom, an electric furnace, a converter, a blast furnace, a gas generated from a generator, a methanation reaction gas, a gas produced as a by-product thereof, and the like are used. In particular, a coke oven gas or a gas derived therefrom or a gas generated from a blast furnace is important.

吸着工程は、昇圧状態において、原料ガス中の製品ガ
ス成分を吸着剤に吸着させる工程である。
The adsorption step is a step of adsorbing the product gas component in the raw material gas to the adsorbent in a pressurized state.

吸着塔に充填される吸着剤としては、原料ガスの組成
に応じ、たとえば、活性炭、活性炭素繊維、天然ゼオラ
イト、合成ゼオライト、モレキュラーシービングカーボ
ン、シリカ、アルミナ、シリカ−アルミカ、カーボンコ
ートを施したシリカまたは/およびアルミナなどの多孔
質物質をはじめ、多種の吸着剤が用いられる。
Depending on the composition of the raw material gas, for example, activated carbon, activated carbon fiber, natural zeolite, synthetic zeolite, molecular sieving carbon, silica, alumina, silica-alumina, and carbon coat were applied as the adsorbent to be filled in the adsorption tower. Various adsorbents are used, including porous materials such as silica and / or alumina.

均圧工程は、吸着工程終了後の高圧域の塔Aを他の塔
Bと連通させて均圧する工程であるが、本発明が従来法
と異なる点はこの工程にあるので、後に詳述することに
する。
The equalizing step is a step in which the column A in the high-pressure region after the adsorption step is communicated with another column B to equalize the pressure. However, the present invention is different from the conventional method in this step. I will.

脱着工程は、均圧後の塔Aの吸着剤に吸着されている
製品ガス成分を減圧下に回収すると共に、塔Aを再生す
る工程である。減圧とは、圧力を大気圧まで下げる操
作、およびさらに大気圧以下に下げる操作の双方を含
む。減圧初期の脱着ガスは、これを系外にパージした
り、他塔の昇圧に用いたりすることもできる。
The desorption step is a step of recovering the product gas components adsorbed by the adsorbent of the tower A after the pressure equalization under reduced pressure and regenerating the tower A. Decompression includes both an operation of reducing the pressure to atmospheric pressure and an operation of further reducing the pressure to atmospheric pressure or lower. The desorbed gas at the initial stage of depressurization can be purged out of the system or used for increasing the pressure of another column.

昇圧工程は、上記の均圧後の塔Bを通常スルーガスで
吸着圧力にまで昇圧する工程である。
The pressure increasing step is a step of increasing the pressure of the column B after the above pressure equalization to the adsorption pressure with a normal through gas.

そして本発明においては、前記均圧工程を次のように
実施する。
In the present invention, the equalizing step is performed as follows.

すなわち、均圧工程終了後の高圧域の塔Aを他の塔B
と連通させて均圧ガスを塔Aから塔Bに送ると共に、塔
Bでは送り込まれた均圧ガス中の製品ガス成分は吸着す
るが非吸着ガスは導出させるようにする。つまり均圧工
程を、塔Aと均圧させる相手の塔Bにおいて非吸着ガス
を系外に排出させながら実施するのである。
That is, the tower A in the high pressure area after the equalization step is
In addition, the pressure equalizing gas is sent from the tower A to the tower B in communication with the column A, and the product gas component in the sent pressure equalizing gas is adsorbed in the tower B, but the non-adsorbed gas is led out. That is, the pressure equalizing step is performed while discharging the non-adsorbed gas to the outside of the system in the tower B to be equalized with the tower A.

このように均圧操作は、塔Bに送り込まれた均圧ガス
を系外に排出しながら行うので、均圧後の圧力を大気圧
に近い圧力まで任意に設定できる。たとえば吸着圧力が
6kg/cm2Gの場合、塔Aの圧力を1kg/cm2G、0.8kg/cm2G、
0.5kg/cm2Gというように設定できる。
Since the equalizing operation is performed while discharging the equalizing gas sent into the tower B to the outside of the system, the pressure after the equalizing can be arbitrarily set to a pressure close to the atmospheric pressure. For example, if the adsorption pressure is
In the case of 6 kg / cm 2 G, the pressure of tower A is increased to 1 kg / cm 2 G, 0.8 kg / cm 2 G,
It can be set as 0.5kg / cm 2 G.

この均圧操作後の塔Aからの吸着成分の脱着は、塔A
を大気圧まで減圧し、さらに適当な真空度にまで真空ポ
ンプを用いて減圧すればよい。
The desorption of the adsorbed components from the column A after the equalizing operation is performed by the column A
May be reduced to atmospheric pressure, and further reduced to an appropriate degree of vacuum using a vacuum pump.

脱着ガスは、その全てを製品ガスとすることができ
る。また、製品ガスの純度を高めるべく減圧初期の脱着
ガスを系外にパージし、残余を製品ガスとすることでき
るが、この場合でも従来の通常の2塔間均圧法に比すれ
ばパージガスの量を著しく減少させることができるの
で、製品回収率が大きく低下することはない。
The desorption gas can be entirely a product gas. In order to increase the purity of the product gas, the desorbed gas in the initial stage of depressurization can be purged out of the system, and the remainder can be used as the product gas. Can be significantly reduced, so that the product recovery rate does not significantly decrease.

作用および発明の効果 本発明においては、均圧工程終了後の高圧域の塔Aと
他の塔Bとの均圧を、塔Aと均圧させる相手の塔Bにお
いて非吸着ガスを系外に排出させながら行っている。言
わば無段階均圧法を採用してしている。
Function and Effect of the Invention In the present invention, the pressure equalization between the tower A and the other tower B in the high-pressure region after the completion of the pressure equalization step is performed, and the non-adsorbed gas is removed from the system in the tower B to be equalized with the tower A. We go while discharging. In other words, the stepless pressure equalization method is adopted.

この方法を採用することにより、均圧後の圧力を大気
圧に近い低い圧力まで任意に設定できる。
By employing this method, the pressure after equalization can be arbitrarily set to a low pressure close to the atmospheric pressure.

そのため、製品回収圧が低くなり、引き続き脱着工程
へ移行する際、純度をそれほど低下させずに製品ガスを
得ることができる。
For this reason, the product recovery pressure is lowered, and when the process proceeds to the desorption step, product gas can be obtained without significantly lowering the purity.

また、減圧初期の脱着ガスを系外にパージする場合で
も、パージガスの量を著しく減少させることができるの
で、製品回収率が大きく低下することはない。
Further, even when the desorbed gas in the initial stage of the depressurization is purged out of the system, the amount of the purge gas can be significantly reduced, so that the product recovery rate does not significantly decrease.

そして製品回収圧を低く設定できることは、昇圧時の
ガス量が増加することになるので、塔内の製品ガス成分
の吸着線の押し下げ効果が働き、吸着剤の単位容量当り
の吸着容量が増加することになる。
And, since the product collection pressure can be set low, the gas amount at the time of pressure increase increases, so the effect of depressing the adsorption line of the product gas component in the column works, and the adsorption capacity per unit capacity of the adsorbent increases. Will be.

このように本発明においては、回収した製品ガス中の
不純物成分が少なくなり、また製品ガス成分の回収率
は、吸着剤の吸着容量が増加する上、他の1塔で回収が
行われるので、低下することがない。
As described above, in the present invention, the impurity components in the recovered product gas are reduced, and the recovery rate of the product gas component is increased because the adsorption capacity of the adsorbent is increased and the recovery is performed in another column. It does not drop.

加えて、本発明の方法を採用しても塔数が増えること
にはならないので、装置的にも不利は生じない。
In addition, since the number of towers does not increase even if the method of the present invention is adopted, there is no disadvantage in terms of equipment.

よって本発明は、工業的意義が大きいものである。 Therefore, the present invention has great industrial significance.

実 施 例 次に実施例をあげて本発明をさらに説明する。EXAMPLES Next, the present invention will be further described with reference to examples.

実施例1 原料ガスとして、コークス炉より発生するコークス炉
ガスを改質して得られた粗合成天然ガス(C1〜C4の炭化
水素を主成分とし、不純物としてH2やN2を含むガス、CH
4含量は60〜70vol%)を用い、かつ吸着剤として平均粒
径約0.8〜2.4mmの活性炭を用い、 吸着塔:3塔式 吸着圧力:6kg/cm2G 再生圧力:200torr 製品回収圧:均圧後圧力〜200torr 空間速度:100/h 温度:常温 の条件でPSAサイクルを実施した。
Example 1 As a raw material gas, a crude synthetic natural gas obtained by reforming a coke oven gas generated from a coke oven (a gas mainly containing C1 to C4 hydrocarbons and containing H2 or N2 as impurities, CH
(4 content is 60-70vol%) and activated carbon with an average particle size of about 0.8-2.4mm is used as an adsorbent. Adsorption tower: 3 towers Adsorption pressure: 6kg / cm 2 G Regeneration pressure: 200torr Product recovery pressure: PSA cycle was performed under the conditions of pressure after pressure equalization to 200 torr space velocity: 100 / h temperature: normal temperature.

吸着工程終了後の高圧域の塔Aは、脱着工程終了後の
塔Bと連通させて均圧ガスを塔Bに送り込んだが、その
際、塔Bにおいては均圧ガス中の製品ガス成分を吸着さ
せつつ非吸着ガスを系外に排出するようにし、均圧後の
塔Aの圧力が、0.98kg/cm2G、0.85kg/cm2Gまたは0.51kg
/cm2Gになるようにした。
The tower A in the high pressure region after the adsorption step was connected to the tower B after the desorption step and sent the equalized gas to the tower B. At this time, the product gas component in the equalized gas was adsorbed in the tower B. The non-adsorbed gas is discharged out of the system while the pressure is maintained, and the pressure of the tower A after the pressure equalization is 0.98 kg / cm 2 G, 0.85 kg / cm 2 G or 0.51 kg.
/ cm 2 G.

また比較のため、塔Aと塔Bとの均圧操作を塔Bから
パージガスを排出することなく閉鎖系で実施した。この
ときの均圧後の圧力は2.2kg/cm2Gであった。
For comparison, the equalizing operation of the tower A and the tower B was performed in a closed system without discharging the purge gas from the tower B. The pressure after equalization at this time was 2.2 kg / cm 2 G.

結果を第1図に示す。 The results are shown in FIG.

第1図は、製品回収圧と製品ガス組成との関係を示し
たグラフである。
FIG. 1 is a graph showing the relationship between product recovery pressure and product gas composition.

第1図から、本発明の無段階均圧法を採用したとき
は、通常の1段均圧法を採用した場合に比し、製品であ
るCH4の純度は向上し、かつ製品中の不純物成分であるH
2やN2の割合が低下することが理解される。
From FIG. 1, it can be seen that when the stepless pressure equalization method of the present invention is adopted, the purity of CH4, which is a product, is higher than when a normal one-stage pressure equalization method is adopted, and is an impurity component in the product. H
It is understood that the ratios of 2 and N2 decrease.

実施例2 原料ガスとして、高炉ガス(N2、H2、COなどを不純物
成分とし、CO2を製品成分として20vol%含む)を用い、
かつ吸着剤として合成ゼオライトを用い、 吸着塔:3塔式 吸着圧力:6kg/cm2G 再生圧力:50torr 製品回収圧:0.2kg/cm2G〜50torr 空間速度:100/h 温度:常温 の条件でPSAサイクルを実施した。
Example 2 As a raw material gas, a blast furnace gas (containing N2, H2, CO, etc. as an impurity component and containing CO2 as a product component at 20 vol%) was used.
And a synthetic zeolite used as an adsorbent, the adsorption tower: 3-tower adsorption pressure: 6 kg / cm 2 G regeneration pressure: 50 torr product recovery pressure: 0.2kg / cm 2 G~50torr space velocity: 100 / h Temperature: normal temperature conditions Performed the PSA cycle.

吸着工程終了後の高圧域の塔Aは、脱着工程終了後の
塔Bと連通させて均圧ガスを塔Bに送り込んだが、その
際、塔Bにおいては均圧ガス中の製品ガス成分を吸着さ
せつつ非吸着ガスを系外に排出するようにし、均圧後の
塔Aの圧力が、0.2kg/cm2Gになるようにした。
The tower A in the high pressure region after the adsorption step was connected to the tower B after the desorption step and sent the equalized gas to the tower B. At this time, the product gas component in the equalized gas was adsorbed in the tower B. While adsorbing, the non-adsorbed gas was discharged out of the system, and the pressure of the tower A after equalization was adjusted to 0.2 kg / cm 2 G.

回収した製品ガス中のCO2の割合は95vol%であった。 The proportion of CO2 in the recovered product gas was 95 vol%.

また比較のため、塔Aと塔Bとの均圧操作を塔Bから
パージガスを排出することなく閉鎖系で実施した。この
ときの均圧後の圧力は2.0kg/cm2Gであった。
For comparison, the equalizing operation of the tower A and the tower B was performed in a closed system without discharging the purge gas from the tower B. The pressure after equalization at this time was 2.0 kg / cm 2 G.

回収した製品ガス中のCO2の割合は88vol%であり、実
施例2に比し劣っていた。
The proportion of CO2 in the recovered product gas was 88 vol%, which was inferior to Example 2.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1における製品回収圧と製品ガス組成
との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between product recovery pressure and product gas composition in Example 1.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸着工程における被吸着成分が製品ガス成
分であって、吸着工程−均圧工程−脱着工程−昇圧工程
を基本工程とする各工程の繰り返しにより、不純物を含
む原料ガスから製品ガス成分を分離回収するPSA法にお
いて、吸着工程終了後の高圧域の塔Aを他の塔Bと連通
させて均圧ガスを塔Aから塔Bに送ると共に、塔Bでは
送り込まれた均圧ガス中の製品ガス成分は吸着するが非
吸着ガスは導出させるようにし、もって均圧工程を、塔
Aと均圧させる相手の塔Bにおいて非吸着ガスを系外に
排出させながら実施することを特徴とする無段階均圧式
PSA法。
1. A component to be adsorbed in an adsorption step is a product gas component. By repeating each step including an adsorption step, a pressure equalization step, a desorption step, and a pressure increase step as a basic step, a product gas containing impurities is removed from a product gas. In the PSA method for separating and recovering the components, the column A in the high-pressure region after the end of the adsorption step is communicated with another column B to send the pressure-equalized gas from the column A to the column B. The product gas component inside is adsorbed, but the non-adsorbed gas is led out, so that the equalizing step is performed while discharging the non-adsorbed gas out of the system in the tower A and the counterpart B to be equalized. Stepless pressure equalizing type
PSA method.
JP62336444A 1987-12-30 1987-12-30 Stepless pressure equalizing PSA method Expired - Fee Related JP2579180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336444A JP2579180B2 (en) 1987-12-30 1987-12-30 Stepless pressure equalizing PSA method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336444A JP2579180B2 (en) 1987-12-30 1987-12-30 Stepless pressure equalizing PSA method

Publications (2)

Publication Number Publication Date
JPH01176418A JPH01176418A (en) 1989-07-12
JP2579180B2 true JP2579180B2 (en) 1997-02-05

Family

ID=18299203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336444A Expired - Fee Related JP2579180B2 (en) 1987-12-30 1987-12-30 Stepless pressure equalizing PSA method

Country Status (1)

Country Link
JP (1) JP2579180B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141836A1 (en) * 2001-08-27 2003-03-27 Hartmann Paul Ag Medical kit for use in the supply of probe or catheter exit sites
JP5603614B2 (en) * 2010-02-23 2014-10-08 大阪瓦斯株式会社 Methane purification method

Also Published As

Publication number Publication date
JPH01176418A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
EP0008882B1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
US6210466B1 (en) Very large-scale pressure swing adsorption processes
EP0361541B1 (en) Pressure swing adsorption process
US3338030A (en) Depressuring technique for deltap adsorption process
US4775394A (en) Process for separation of high purity gas from mixed gas
US4070164A (en) Adsorption-desorption pressure swing gas separation
US5026406A (en) Adsorptive process for producing two gas streams from a gas mixture
US3252268A (en) Gas separation by adsorption process
US4359328A (en) Inverted pressure swing adsorption process
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US6849106B2 (en) Method for purifying hydrogen-based gas mixtures using a calcium x-zeolite
JP3557323B2 (en) Improved vacuum pressure swing adsorption process
EP0501344B1 (en) Separation of multicomponent gas mixtures by selective adsorption
JP3073917B2 (en) Simultaneous pressure change adsorption method
EP0273723A2 (en) Separating a gas enriched in oxygen
EP0257493A1 (en) Adsorptive separation of gas mixtures
US5441558A (en) High purity nitrogen PSA utilizing controlled internal flows
JPS6137968B2 (en)
CA1238868A (en) Method for obtaining high-purity carbon monoxide
EP0215843B1 (en) Enhanced pressure swing adsorption process and system
CA2016613C (en) Adsorptive process for producing two gas streams from a gas mixture
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JP2579180B2 (en) Stepless pressure equalizing PSA method
JP2000317245A (en) Separation and purification of gas
JPH0525801B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees