JP2579179B2 - Pressure fluctuation adsorption separation method - Google Patents

Pressure fluctuation adsorption separation method

Info

Publication number
JP2579179B2
JP2579179B2 JP62336443A JP33644387A JP2579179B2 JP 2579179 B2 JP2579179 B2 JP 2579179B2 JP 62336443 A JP62336443 A JP 62336443A JP 33644387 A JP33644387 A JP 33644387A JP 2579179 B2 JP2579179 B2 JP 2579179B2
Authority
JP
Japan
Prior art keywords
adsorption
component
adsorbed
tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62336443A
Other languages
Japanese (ja)
Other versions
JPH01176417A (en
Inventor
隆 野島
守 白石
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP62336443A priority Critical patent/JP2579179B2/en
Publication of JPH01176417A publication Critical patent/JPH01176417A/en
Application granted granted Critical
Publication of JP2579179B2 publication Critical patent/JP2579179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、組成や流量が変動する原料ガスから吸着工
程−再生工程−昇圧工程を基本工程とする各工程の繰り
返しにより特定成分を分離する圧力変動式吸着分離法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a pressure fluctuation for separating a specific component from a raw material gas whose composition and flow rate fluctuates by repeating each of the basic steps of an adsorption step, a regeneration step, and a pressure increase step. The present invention relates to an adsorption separation method.

従来の技術 不純物を含む原料ガスから不純物成分と目的製品ガス
成分とを分離する方法の一つとして、圧力変動式吸着分
離法(PSA法)が知られている。この方法は、吸着工程
−再生工程−昇圧工程を基本工程とし、その繰り返しに
より不純物を含む原料ガスから製品ガス成分を分離する
ものである。
2. Description of the Related Art As one of methods for separating an impurity component and a target product gas component from a source gas containing impurities, a pressure fluctuation type adsorption separation method (PSA method) is known. In this method, a product gas component is separated from a raw material gas containing impurities by repeating an adsorption step-regeneration step-pressurization step as a basic step.

上述の圧力変動式吸着分離法は、吸着剤に目的とする
製品ガス成分を吸着させるか、あるいは不純物成分を吸
着させるかにより、次の2つの態様にわけられる。
The above-mentioned pressure fluctuation type adsorption separation method is classified into the following two modes depending on whether the adsorbent adsorbs a target product gas component or an impurity component.

吸着塔に充填した吸着剤に製品ガス成分を吸着させ
ると共に、不純物成分をスルーさせ、ついで再生工程に
おける減圧操作により製品ガス成分を回収する方式。
A method in which the product gas component is adsorbed on the adsorbent filled in the adsorption tower, the impurity component is allowed to pass through, and then the product gas component is recovered by pressure reduction in the regeneration step.

吸着塔に充填した吸着剤に不純物成分を吸着させる
と共に、製品ガス成分をスルーさせて回収する方式。
A method in which impurity components are adsorbed by the adsorbent filled in the adsorption tower, and product gas components are passed through and collected.

従来の圧力変動式吸着分離法においては、吸着工程を
1塔で行っているが、その際吸着操作は原料ガス中の被
吸着成分が破過する直前まで行うのが常である。
In the conventional pressure fluctuation type adsorption separation method, the adsorption step is performed in one column. At this time, the adsorption operation is usually performed until immediately before the component to be adsorbed in the raw material gas breaks through.

なお、特開昭59−147620号公報や特開昭61−146317号
公報には、吸着工程を2塔で行う方式が示されており、
いずれの場合も1塔目において被吸着成分が破過する前
に1塔目を2塔目と切り離し、2塔目に原料ガスを導入
するようにしている。
Incidentally, JP-A-59-147620 and JP-A-61-146317 disclose a method in which the adsorption step is performed in two columns.
In any case, the first column is separated from the second column before the adsorbed component breaks through in the first column, and the source gas is introduced into the second column.

発明が解決しようとする問題点 しかしながら、従来の吸着工程を1塔で行う方式は、
原料ガスの組成や流量が一定している場合は問題を生じ
ないが、原料ガスの組成や流量が変動する場合には種々
の問題に直面する。
Problems to be Solved by the Invention However, the conventional method of performing the adsorption step in one column is as follows.
Although no problem occurs when the composition and flow rate of the source gas are constant, various problems are encountered when the composition and flow rate of the source gas fluctuate.

すなわち、原料ガス中の被吸着成分が増加した場合
は、一定量の原料ガスを吸着塔に供給すると被吸着成分
が当該吸着塔を破過することがあるため、それに見合う
吸着剤の量を確保しない限りは通過ガス中に被吸着成分
が混入し、被吸着成分が製品ガスである場合は製品ガス
がロスになって回収率が低下し、被吸着成分が不純物成
分である場合は製品ガスの純度が低下する。一方吸着剤
の量を多い目にすることは、塔設置コストおよび吸着剤
コストの点で不利となる上、過剰の吸着剤部分に本来通
過すべき成分が吸着されるため、吸着剤に吸着されてい
る成分の回収時に被吸着成分中の他の成分の割合が増加
することになる。
In other words, when the amount of the component to be adsorbed in the source gas increases, the component to be adsorbed may break through the adsorption tower when a certain amount of the source gas is supplied to the adsorption tower. Unless the adsorbed component is mixed in the passing gas, the product gas is lost if the adsorbed component is a product gas and the recovery rate is reduced.If the adsorbed component is an impurity component, the product gas is lost. Purity decreases. On the other hand, the appearance of a large amount of adsorbent is disadvantageous in terms of tower installation cost and adsorbent cost, and the excess adsorbent portion adsorbs components that should originally pass through, so it is adsorbed by adsorbent. When recovering the component, the proportion of the other component in the component to be adsorbed increases.

また、原料ガス中の被吸着成分が減少した場合も、過
剰の吸着剤部分に本来通過すべき成分が吸着されるた
め、吸着剤に吸着されている成分の回収時に被吸着成分
中の他の成分の割合が増加することになる。
Further, even when the amount of the component to be adsorbed in the raw material gas is reduced, the component that should originally pass through is adsorbed to the excess adsorbent portion. The proportion of components will increase.

同様に、上述の吸着工程を2塔で行う方式も、原料ガ
スの組成や流量が一定している場合は問題を生じない
が、原料ガスの組成や流量が変動する場合には、1塔目
において被吸着成分が破過する前に1塔目を2塔目と切
り離して2塔目に原料ガスを導入するタイミングが難し
く、原料ガス中の被吸着成分が増加した場合は1塔目に
おいて破過を起こしたり、原料ガス中の被吸着成分が減
少した場合は1塔目における過剰の吸着剤部分に本来通
過すべき成分が吸着されることになり、前記従来の吸着
工程を1塔で行う方式の場合と同様の問題点を生ずる。
Similarly, in the method in which the above-mentioned adsorption step is performed in two columns, no problem occurs when the composition and the flow rate of the source gas are constant, but when the composition and the flow rate of the source gas fluctuate, the first column is not used. In this case, it is difficult to separate the first column from the second column before the adsorbed component breaks down and introduce the raw material gas into the second column. If the amount of the adsorbed component in the raw material gas increases, the first column breaks. If the amount of the components to be adsorbed in the raw material gas is reduced, or the excess adsorbent portion in the first column is adsorbed, the components to be passed are adsorbed, and the conventional adsorption step is performed in one column. The same problems occur as in the case of the system.

このような問題点は、炉または反応器から連続的に発
生するガスをラインで処理する際には常に生ずる事柄で
あり、その根本的な解決が強く要望されている。
Such a problem always occurs when a gas continuously generated from a furnace or a reactor is treated in a line, and a fundamental solution is strongly demanded.

本発明は、圧力変動式吸着分離法において、組成や流
量が変動する原料ガスから特定成分を分離するときの上
述の問題点を解決すべくなされたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems when a specific component is separated from a raw material gas having a variable composition or flow rate in a pressure fluctuation adsorption separation method.

問題点を解決するための手段 本発明の圧力変動式吸着分離法は、組成や流量が変動
する原料ガスから吸着工程−再生工程−昇圧工程を基本
工程とする各工程の繰り返しにより特定成分を分離する
圧力変動式吸着分離法において、吸着工程を、予め昇圧
した2塔の吸着塔を直列に結ぶことにより行い、1塔目
の吸着塔は原料ガス中の被吸着成分がその変動巾の下限
であっても必ず破過し、2塔目の吸着塔は原料ガス中の
被吸着成分の変動巾の如何にかかわらず破過しないよう
に設定し、以下次の吸着工程は、前記2塔目の吸着塔を
1塔目の吸着塔とすると共に、他の予め昇圧した吸着塔
を2塔目の吸着塔として同様の操作を実施することを特
徴とするものである。
Means for Solving the Problems In the pressure fluctuation type adsorption separation method of the present invention, a specific component is separated from a raw material gas whose composition and flow rate fluctuates by repeating each of the basic steps of an adsorption step, a regeneration step and a pressure increase step. In the pressure fluctuation type adsorption separation method, the adsorption step is performed by connecting two pre-pressurized adsorption towers in series, and the first adsorption tower is configured such that the components to be adsorbed in the raw material gas are at the lower limit of the fluctuation range. The second adsorption tower is set so as not to break through regardless of the fluctuation width of the component to be adsorbed in the raw material gas. The same operation is performed by using the adsorption tower as a first adsorption tower and using another pre-pressurized adsorption tower as a second adsorption tower.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の圧力変動式吸着分離法は、組成や流量が変動
する原料ガスから吸着工程−再生工程−昇圧工程を基本
工程とする各工程の繰り返しにより特定成分を分離する
ものである。
The pressure fluctuation type adsorption separation method of the present invention separates a specific component from a raw material gas whose composition and flow rate fluctuates by repeating respective steps including an adsorption step, a regeneration step, and a pressure increase step as basic steps.

この方法には従来の技術の項で述べたように次の2つ
の態様があり、本発明はそのいずれの態様の場合にも適
用できるが、特にの態様が重要である。
This method has the following two aspects as described in the section of the prior art, and the present invention can be applied to either of the aspects, but the particular aspect is important.

吸着塔に充填した吸着剤に製品ガス成分を吸着させ
ると共に、不純物成分をスルーさせ、ついで再生工程に
おける減圧操作により製品ガス成分を回収する方式。
A method in which the product gas component is adsorbed on the adsorbent filled in the adsorption tower, the impurity component is allowed to pass through, and then the product gas component is recovered by pressure reduction in the regeneration step.

吸着塔に充填した吸着剤に不純物成分を吸着させる
と共に、製品ガス成分をスルーさせて回収する方式。
A method in which impurity components are adsorbed by the adsorbent filled in the adsorption tower, and product gas components are passed through and collected.

吸着工程は、昇圧状態において、原料ガスから製品ガ
ス成分または不純物成分のいずれかを吸着剤に吸着させ
る工程である。
The adsorption step is a step of adsorbing either the product gas component or the impurity component from the raw material gas to the adsorbent in a pressurized state.

吸着塔に充填される吸着剤としては、原料ガスの組成
に応じ、たとえば、活性炭、活性炭素繊維、天然ゼオラ
イト、合成ゼオライト、モレキュラーシービングカーボ
ン、シリカ、アルミナ、シリカ−アルミナ、カーボンコ
ートを施したシリカまたは/およびアルミナなどの多孔
質物質をはじめ、多種の吸着剤が用いられる。
Depending on the composition of the raw material gas, for example, activated carbon, activated carbon fiber, natural zeolite, synthetic zeolite, molecular sieving carbon, silica, alumina, silica-alumina, and carbon coat were applied as the adsorbent to be filled in the adsorption tower. Various adsorbents are used, including porous materials such as silica and / or alumina.

再生工程は、吸着工程において吸着剤に吸着された成
分を減圧下に回収(製品成分が吸着されているとき)ま
たは排出(不純物成分が吸着されているとき)すると共
に、塔内を洗浄する工程である。減圧とは、圧力を大気
圧まで下げる操作、およびさらに大気圧以下に下げる操
作の双方を含む。減圧に先立ち他の塔との均圧工程を設
けることも多い。
In the regeneration step, the components adsorbed by the adsorbent in the adsorption step are collected under reduced pressure (when product components are adsorbed) or discharged (when impurity components are adsorbed), and the column is washed. It is. Decompression includes both an operation of reducing the pressure to atmospheric pressure and an operation of further reducing the pressure to atmospheric pressure or lower. Prior to the pressure reduction, a pressure equalization step with another column is often provided.

昇圧工程は、吸着塔を製品ガスで昇圧する工程であ
る。製品ガスに代えあるいは製品ガスと共に、原料ガ
ス、排出ガス、洗浄ガス等で昇圧することもできる。
The pressure increasing step is a step of increasing the pressure of the adsorption tower with the product gas. The pressure can be increased by a raw material gas, an exhaust gas, a cleaning gas or the like instead of or together with the product gas.

組成や流量が変動する原料ガスとしては、各種の炉ま
たは反応器から発生するガスや燃焼ガスがあげられ、た
とえば、コークス炉から発生するコークス炉ガスまたは
それに由来するガス、電気炉、転炉、高炉、発生炉から
発生するガス、メタン化反応ガス、あるいはこれらに副
生するガスなどなどが用いられる。特にコークス炉ガス
またはそれに由来するガスが重要である。
Examples of the raw material gas whose composition and flow rate fluctuate include gas and combustion gas generated from various furnaces or reactors.For example, coke oven gas generated from a coke oven or gas derived therefrom, electric furnace, converter, A gas generated from a blast furnace or a generating furnace, a methanation reaction gas, or a gas produced as a by-product thereof is used. Particularly, coke oven gas or gas derived therefrom is important.

そして本発明においては、吸着工程を、予め昇圧した
2塔の吸着塔を直列に結ぶことにより行う。この場合、
1塔目の吸着塔は原料ガス中の被吸着成分がその変動巾
の下限であっても必ず破過し、2塔目の吸着塔は原料ガ
ス中の被吸着成分の変動巾の如何にかかわらず破過しな
いように設定する。
In the present invention, the adsorption step is performed by connecting two adsorption towers, which have been pre-pressurized, in series. in this case,
The first adsorption tower always breaks through even if the component to be adsorbed in the source gas is at the lower limit of the fluctuation range, and the second adsorption tower does not depend on the fluctuation range of the component to be adsorbed in the source gas. Set to prevent breakthrough.

上記吸着工程にある塔以外の塔については、それぞれ
並行して再生工程、昇圧工程を実施することになる。
For the columns other than the column in the adsorption step, the regeneration step and the pressure increasing step are respectively performed in parallel.

以下次の吸着工程は、前記2塔目の吸着塔を1塔目の
吸着塔とすると共に、他の予め昇圧した吸着塔を2塔目
の吸着塔として同様の操作を実施する。
In the following adsorption step, the same operation is performed using the second adsorption tower as the first adsorption tower and the other pre-pressurized adsorption tower as the second adsorption tower.

作用および発明の効果 次に本発明の作用および効果を図面を参考にして説明
する。
Next, the operation and effect of the present invention will be described with reference to the drawings.

第1図は単位時間当りの被吸着成分負荷量と塔内吸着
線との関係を示した説明図であり、上段のブロック図は
原料ガス中の被吸着成分が変動巾の上限に達した場合、
下段のブロック図は原料ガス中の被吸着成分が変動巾の
下限である場合を示したものである。なお第1図におい
ては被吸着成分がCH4である場合を示してある。
FIG. 1 is an explanatory diagram showing the relationship between the amount of adsorbed component per unit time and the adsorption line in the tower. The upper block diagram shows the case where the adsorbed component in the raw material gas reaches the upper limit of the fluctuation range. ,
The lower block diagram shows the case where the component to be adsorbed in the source gas has the lower limit of the fluctuation range. FIG. 1 shows a case where the component to be adsorbed is CH4.

第1図中、新1塔目は直前の旧2塔目の塔に相当す
る。lは変動域(変動の上限−下限巾)、Feedは原料ガ
スの流れ、Thr.は通過ガスの流れである。
In FIG. 1, the new first tower is equivalent to the old second tower immediately before. l is a fluctuation range (upper limit-lower limit width of fluctuation), Feed is a flow of a source gas, and Thr. is a flow of a passing gas.

第1図中、斜線部分は吸着剤に被吸着成分が吸着され
た状態を示す。
In FIG. 1, the hatched portion indicates a state in which the component to be adsorbed is adsorbed on the adsorbent.

新1塔目の右下りの斜線の領域は、旧2塔目において
吸着した部分であり、新1塔目および新2塔目の右上り
の斜線の領域は、新1塔目と新2塔目を直列につないで
原料ガスを供給したときに新たに吸着した部分である。
The hatched area on the right of the new first tower is the portion adsorbed in the old second tower, and the hatched area on the upper right of the new first and new towers is the new first tower and new two tower. It is the portion that is newly adsorbed when the raw material gas is supplied by connecting the eyes in series.

新1塔目においては、原料ガス中の被吸着成分がその
変動巾の下限であっても必ず破過させる。また新2塔目
の吸着塔は原料ガス中の被吸着成分の変動巾の如何にか
かわらず破過させない。つまり、原料ガス中の被吸着成
分の変動巾を専ら新2塔目において吸収するのである。
In the first new tower, the component to be adsorbed in the raw material gas is always passed even if it is at the lower limit of the fluctuation range. The second adsorption tower does not break through regardless of the fluctuation range of the component to be adsorbed in the raw material gas. That is, the fluctuation range of the component to be adsorbed in the raw material gas is exclusively absorbed in the second new tower.

以下説明の便宜のため、被吸着成分が製品ガス成分、
通過成分が不純物成分である場合を例にとると、新1塔
目においては、原料ガス中の製品成分が破過した状態に
あるので、新1塔目の吸着剤は全て製品ガス成分の吸着
に優先的に使われ、本来通過すべき不純物成分が吸着さ
れるおそれが最小となる。その結果、新1塔目に吸着さ
れた製品成分は最も効率良くかつ高純度で回収されるこ
とになる。そして、新1塔目で吸着されずに破過した製
品ガス成分も新2塔目では吸着され、この新2塔目が次
の段階では新しい1塔目(新新1塔目)になるから、製
品ガス成分がロスになることはない。
For the convenience of the description below, the component to be adsorbed is a product gas component,
Taking the case where the passing component is an impurity component as an example, in the first new tower, since the product components in the raw material gas are in a breakthrough state, all of the adsorbents in the first new tower absorb the product gas components. , And the risk of adsorbing impurity components that should pass through is minimized. As a result, the product components adsorbed in the new first column are most efficiently recovered with high purity. Then, the product gas component that has passed without being adsorbed in the first new tower is also adsorbed in the second new tower, and this new second tower becomes a new first tower (new new first tower) in the next stage. In addition, there is no loss of product gas components.

このように本発明においては、組成や流量が変動する
原料ガスを対象としながらも、製品ガス成分をロスする
ことなく最も有効に吸着がなされ、しかもPSAサイクル
の制御が簡便になされるのである。
As described above, in the present invention, the adsorption is most effectively performed without losing the product gas component, and the control of the PSA cycle can be easily performed, even if the target gas is a raw material gas whose composition and flow rate fluctuate.

実 施 例 次に実施例をあげて本発明をさらに説明する。EXAMPLES Next, the present invention will be further described with reference to examples.

実施例1 吸着塔を4塔用い、そのうちの直列につないだ2塔が
吸着工程にあるときに、残りの2塔のうち1塔が再生工
程、他の1塔が昇圧工程にあるようにプログラムを組ん
で、 吸着圧力:6kg/cm2G 再生圧力:110torr 製品回収圧:1kg/cm2G〜110torr 空間速度:200/h 温度:常温 の条件で圧力変動式吸着分離法を実施した。
Example 1 When four adsorption towers were used, and two of them connected in series were in the adsorption step, one of the remaining two towers was in the regeneration step, and the other was in the pressure step. It formed a suction pressure: 6 kg / cm 2 G regeneration pressure: 110Torr product recovery pressure: 1kg / cm 2 G~110torr space velocity: 200 / h temperature: was performed the pressure swing adsorption separation process at ambient temperature conditions.

この場合、吸着工程における直列につないだ2塔のう
ち、1塔目においては原料ガス中のCH4濃度の変動巾の
下限であっても必ず破過させるようにし、2塔目におい
ては変動巾の上限であっても破過させないように(原料
ガス中のCH4濃度の変動巾を専ら2塔目において吸収す
るように)切り換えタイミングをタイマーで設定した。
また上記2塔目は、次の段階では吸着工程の1塔目とな
るようにした。
In this case, of the two towers connected in series in the adsorption step, the first tower must always break through even if it is the lower limit of the fluctuation range of the CH4 concentration in the feed gas, and the second tower has the fluctuation width The switching timing was set by a timer so as not to break through even at the upper limit (so that the fluctuation range of the CH4 concentration in the raw material gas is exclusively absorbed in the second column).
Further, the second column was set to be the first column in the adsorption step in the next stage.

原料ガスとしてはコークス炉より発生するコークス炉
ガスを改質して得られた粗合成天然ガスを用い、吸着剤
としては平均粒径約0.8〜2.4mmの活性炭を用いた。
As a raw material gas, a crude synthetic natural gas obtained by reforming a coke oven gas generated from a coke oven was used, and as an adsorbent, activated carbon having an average particle size of about 0.8 to 2.4 mm was used.

結果を第2図に示す。 The results are shown in FIG.

比較例1 吸着塔を3塔用い、そのうちの1塔が吸着工程にある
ときに、他の1塔が再生工程、残りの1塔が昇圧工程に
あるようにプログラムを組んだほかは実施例1と同様の
条件で圧力変動式吸着分離法を実施した。
Comparative Example 1 Example 1 was repeated except that three adsorption towers were used, and one of the towers was in the adsorption step, the other was in the regeneration step, and the remaining one was in the pressure step. The pressure fluctuation type adsorption separation method was carried out under the same conditions as described above.

この場合、吸着工程にある塔は製品ガスが破過する直
前に切り換えるように切り換えタイミングをタイマーで
設定した。
In this case, the switching timing of the tower in the adsorption step was set by a timer so as to be switched immediately before the product gas breaks through.

結果を第3図に示す。 The results are shown in FIG.

なお、第2図および第3図中の略号の意味は次の通り
である。
The meanings of the abbreviations in FIGS. 2 and 3 are as follows.

Time:経過時間(h) Feed Gas CH4(vol%): 原料ガス中のCH4濃度(vol%) Thr.Gas CH4(vol%): 通過ガス中のCH4濃度(vol%) Dep.Gas CH4 yield(%): 製品ガスのCH4回収率(%) Dep.Gas N2(vol%): 製品ガス中のN2濃度(vol%) 第2図に示したように、本発明(実施例1)によれ
ば、原料ガス中のCH4濃度は上限値と下限値とでは4%
程度の振れがあるにもかかわらず、通過ガス中のCH4濃
度、製品ガスのCH4回収率および製品ガス中のN2濃度は
いずれも極めて安定していることがわかる。
Time: Elapsed time (h) Feed Gas CH 4 ( vol%): CH4 concentration in the raw material gas (vol%) Thr.Gas CH 4 ( vol%): CH4 concentration (vol%) of the passing gas Dep.Gas CH 4 yield (%): CH4 recovery rate of product gas (%) Dep.Gas N 2 (vol%): N2 concentration in product gas (vol%) As shown in FIG. 2, the present invention (Example 1) According to), the CH4 concentration in the source gas is 4% at the upper and lower limits.
It can be seen that the CH4 concentration in the passing gas, the CH4 recovery rate of the product gas, and the N2 concentration in the product gas are all extremely stable despite the fluctuation.

これに対し従来の吸着工程を1塔で行う方式(比較例
1)によれば、第3図に示したように、原料ガス中のCH
4濃度が変動すると、それに応じて通過ガス中のCH4濃
度、製品ガスのCH4回収率および製品ガス中のN2濃度が
いずれも大きく振れることがわかる。
On the other hand, according to the conventional method in which the adsorption step is performed in one column (Comparative Example 1), as shown in FIG.
4 It can be seen that when the concentration fluctuates, the CH4 concentration in the passing gas, the CH4 recovery rate of the product gas, and the N2 concentration in the product gas all fluctuate accordingly.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、単位時間当りの被吸着成分負荷量と塔内吸着
線との関係を示した説明図であり、上段のブロック図は
原料ガス中の被吸着成分が変動巾の上限に達した場合、
下段のブロック図は原料ガス中の被吸着成分が変動巾の
下限である場合を示したものである。 第2図は、実施例1における実験結果を示したグラフで
ある。 第3図は、比較例1における実験結果を示したグラフで
ある。
FIG. 1 is an explanatory diagram showing the relationship between the load of the adsorbed component per unit time and the adsorption line in the tower. The upper block diagram shows that the adsorbed component in the raw material gas reached the upper limit of the fluctuation range. If
The lower block diagram shows the case where the component to be adsorbed in the source gas has the lower limit of the fluctuation range. FIG. 2 is a graph showing experimental results in Example 1. FIG. 3 is a graph showing experimental results in Comparative Example 1.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成や流量が変動する原料ガスから吸着工
程−再生工程−昇圧工程を基本工程とする各工程の繰り
返しにより特定成分を分離する圧力変動式吸着分離法に
おいて、吸着工程を、予め昇圧した2塔の吸着塔を直列
に結ぶことにより行い、1塔目の吸着塔は原料ガス中の
被吸着成分がその変動巾の下限であっても必ず破過し、
2塔目の吸着塔は原料ガス中の被吸着成分の変動巾の如
何にかかわらず破過しないように設定し、以下次の吸着
工程は、前記2塔目の吸着塔を1塔目の吸着塔とすると
共に、他の予め昇圧した吸着塔を2塔目の吸着塔として
同様の操作を実施することを特徴とする圧力変動式吸着
分離法。
In a pressure fluctuation type adsorption separation method in which a specific component is separated from a raw material gas whose composition and flow rate fluctuates by repeating respective steps including an adsorption step, a regeneration step, and a pressure increase step as a basic step, the adsorption step is performed in advance. The two adsorption towers are connected in series, and the first adsorption tower always breaks through even if the component to be adsorbed in the raw material gas has the lower limit of the fluctuation range.
The second adsorption tower is set so as not to break through regardless of the fluctuation width of the component to be adsorbed in the raw material gas. In the following adsorption step, the second adsorption tower is replaced with the first adsorption tower. A pressure fluctuation type adsorption separation method, wherein the same operation is performed as a second adsorption tower while using another pre-pressurized adsorption tower as a tower.
【請求項2】吸着工程における被吸着成分が製品ガス成
分である特許請求の範囲第1項記載の圧力変動式吸着分
離法。
2. The pressure fluctuation adsorption separation method according to claim 1, wherein the component to be adsorbed in the adsorption step is a product gas component.
【請求項3】吸着工程における被吸着成分が不純物成分
である特許請求の範囲第1項記載の圧力変動式吸着分離
法。
3. The pressure fluctuation type adsorption separation method according to claim 1, wherein the component to be adsorbed in the adsorption step is an impurity component.
JP62336443A 1987-12-30 1987-12-30 Pressure fluctuation adsorption separation method Expired - Fee Related JP2579179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336443A JP2579179B2 (en) 1987-12-30 1987-12-30 Pressure fluctuation adsorption separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336443A JP2579179B2 (en) 1987-12-30 1987-12-30 Pressure fluctuation adsorption separation method

Publications (2)

Publication Number Publication Date
JPH01176417A JPH01176417A (en) 1989-07-12
JP2579179B2 true JP2579179B2 (en) 1997-02-05

Family

ID=18299192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336443A Expired - Fee Related JP2579179B2 (en) 1987-12-30 1987-12-30 Pressure fluctuation adsorption separation method

Country Status (1)

Country Link
JP (1) JP2579179B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603614B2 (en) * 2010-02-23 2014-10-08 大阪瓦斯株式会社 Methane purification method

Also Published As

Publication number Publication date
JPH01176417A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
EP0261111B1 (en) Pressure swing adsorption process and apparatus
EP0166013B1 (en) Improved product recovery in pressure swing adsorption process and system
EP0194334B1 (en) Pressure swing adsorption with intermediate product recovery
US4726816A (en) Reformer-pressure swing adsorption process for the production of carbon monoxide
US3338030A (en) Depressuring technique for deltap adsorption process
CA1062629A (en) Fractionation of air by adsorption
US3102013A (en) Heatless fractionation utilizing zones in series and parallel
US4448592A (en) Adsorptive method for the separation of a gas mixture
US4650501A (en) Pressure swing adsorption process
EP0276309A1 (en) Process for separation of high purity gas from mixed gas
EP0215843B1 (en) Enhanced pressure swing adsorption process and system
JPH1066819A (en) Separation of isoalkane and normal-alkane by adsorption in gaseous phase using pressure change and four adsorbers
JPS6246911A (en) Method for concentrating gaseous co
JP2579179B2 (en) Pressure fluctuation adsorption separation method
CN1074448C (en) Pressure swing adsorption process for concentration and purification of carbon monooxide in blast furnace gas
JP2579180B2 (en) Stepless pressure equalizing PSA method
JP2581944B2 (en) Method for recovering specific gas components from mixed gas
JPS62273025A (en) Separation of gaseous mixture
KR100680016B1 (en) Very large-scale pressure swing adsorption processes
JPH01245828A (en) Pressure fluctuation type adsorption separation
US3388532A (en) Process for the pretreatment of gases
KR890002145B1 (en) Product recovery in pressure swing adsorption process and system
JP4008092B2 (en) Method for recovering carbon monoxide from acetic acid plant off-gas
CN86102699A (en) Improved pressure-swing absorption process and equipment
JPH0356088B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees