JPS59128202A - Method for reforming methanol while recycling purge gas - Google Patents
Method for reforming methanol while recycling purge gasInfo
- Publication number
- JPS59128202A JPS59128202A JP209083A JP209083A JPS59128202A JP S59128202 A JPS59128202 A JP S59128202A JP 209083 A JP209083 A JP 209083A JP 209083 A JP209083 A JP 209083A JP S59128202 A JPS59128202 A JP S59128202A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- methanol
- gas
- water
- units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、PSA水素精製ユニットの掃気ガスを粗水素
発生部にリサイクルすることによって、装置の安定運転
と高純度水素を高収率にて得るメタノール改質水素製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing methanol-reformed hydrogen in which the scavenging gas of the PSA hydrogen purification unit is recycled to the crude hydrogen generation section, thereby achieving stable operation of the device and obtaining high-purity hydrogen at a high yield. Regarding.
メタノールのスチームリホーミングによる水素製造法は
、一般に純メタノール溶液と水及びコンデンセ−1・の
混合溶液を、改質器出口ガスにて予熱し、蒸発器に送入
してメタノール、水を蒸発し、このメタノール蒸気、ス
チームの混合ガスを過熱して反応器に送り、改質反応に
より、水素的74%(水分を除くドライ成分中)、その
他炭酸ガス、スチーム、−酸化炭素等を含む粗水素ガス
とし、これを冷却、水分をコンデンセートとして分離後
PSA水素精製ユニットに通し、炭酸ガス、−酸化炭素
、微量のメクノール、水分などの不純成分を選択的に吸
着除去することにより、999%以上の高純度水素を取
得する。Hydrogen production by steam reforming of methanol generally involves preheating a mixed solution of pure methanol solution, water, and condenser 1 with gas at the outlet of a reformer, and feeding it into an evaporator to evaporate methanol and water. This mixed gas of methanol vapor and steam is superheated and sent to a reactor, and a reforming reaction produces crude hydrogen containing 74% hydrogen (in dry components excluding water) and other carbon dioxide gas, steam, carbon oxide, etc. The gas is cooled, the water is separated as a condensate, and then passed through a PSA hydrogen purification unit to selectively adsorb and remove impurity components such as carbon dioxide, carbon oxide, trace amounts of Meknol, and water. Obtain high purity hydrogen.
この方法では、改質反応器入口ガス相において、JJX
料メタノールとスチームが十分混合している必要があ
る。即ちメタノール溶液と水及びコンデンセートを単に
配管で混合し、蒸発器に送り込む程度では、蒸発器にお
いてメタノールと水の沸点の相違から、メタノールの突
沸現象が生じ、安定運転の維持が困難である。、又蒸発
メタノール蒸気とスチームの混合比も、反応に必要な適
正モル比1.5〜25の一定値に保持することも難しい
。In this method, JJX
The methanol and steam must be sufficiently mixed. That is, if a methanol solution, water, and condensate are simply mixed in a pipe and sent to an evaporator, bumping of methanol occurs in the evaporator due to the difference in boiling point of methanol and water, making it difficult to maintain stable operation. It is also difficult to maintain the mixing ratio of evaporated methanol vapor and steam at a constant value of 1.5 to 25, which is the appropriate molar ratio necessary for the reaction.
一方、改質反応で生成した約74%(ド?イ成分中)の
粗水素ガスをPSA水素精製ユニットに通し、999%
以上の高純度水素を得るには、吸着塔の再生時において
、減圧脱着後、製品水素ガスを浴出口側から送入して、
塔内を掃気する必要がある。On the other hand, approximately 74% (in the dry component) of the crude hydrogen gas generated in the reforming reaction is passed through the PSA hydrogen purification unit to produce a 999%
In order to obtain the above-mentioned high-purity hydrogen, during regeneration of the adsorption tower, product hydrogen gas is fed from the bath outlet side after desorption under reduced pressure.
It is necessary to scavenge the inside of the tower.
従来は、減圧脱着ガスの一部及び掃気ガスは全量オフガ
スとして大気放出するか、燃料ガスラインに送っていた
。即ちオフガス中水素濃度は通常40〜50%であるの
で製品水素損失となり、PSA水素精製装置の製品水素
収率(人口、出口の水素量の比率)は入口水素濃度70
〜75%の場合、通゛常75〜80%程度である。従っ
て所望の製品水素量を得るためには、供給粗水素ガス量
を12〜1.25倍とする必要があり、これがPSA法
水素精製の唯一の不利な点とされていた。Conventionally, a portion of the reduced pressure desorption gas and the scavenging gas were either completely released into the atmosphere as off-gas or sent to a fuel gas line. That is, since the hydrogen concentration in the off-gas is usually 40 to 50%, there is a loss of product hydrogen, and the product hydrogen yield (ratio of population to outlet hydrogen amount) of the PSA hydrogen purification equipment is 70% at the inlet hydrogen concentration.
-75%, it is usually about 75-80%. Therefore, in order to obtain the desired amount of product hydrogen, it is necessary to increase the amount of crude hydrogen gas supplied by 12 to 1.25 times, and this has been considered the only disadvantage of hydrogen purification by the PSA method.
本発明者等は、蒸発器の突沸防止と安定運転。The inventors of the present invention aimed to prevent bumping and stable operation of the evaporator.
水素製造設備の水素収率向上を目的として、種々実験研
究の結果、粗水素発生部のメタノール水蒸発器にガスミ
キシング装置を設け・、これにPSA水素精製装置の水
素リッチの掃気ガスをサージクンクに回収し、コンブヒ
ノサーで昇圧して前記ミキシング装置に送入することに
より、原料メタノールと水及びコンデンセ−1・の混合
が改善され、蒸発器の突沸が防止され、副次効果として
、蒸気気相中のメタノール蒸気とスチームのモル比力;
密になり、粗水素発生部の運転が安定することを見い出
した。In order to improve the hydrogen yield of hydrogen production equipment, as a result of various experimental studies, we installed a gas mixing device in the methanol water evaporator of the crude hydrogen generation section, and added a gas mixing device to the methanol water evaporator of the crude hydrogen generation section. By recovering the methanol, pressurizing it with Combuhinocer, and sending it to the mixing device, the mixing of raw methanol, water and condensate 1 is improved, bumping of the evaporator is prevented, and as a side effect, molar specific power of methanol vapor and steam;
It has been found that the operation of the crude hydrogen generating section becomes stable.
本方法において、PSA水素精製ユニットオフガス中の
水素リッチの掃気ガスの殊んど全量を改質反応器前にリ
サイクル回収するので、全体として水素収率は10〜1
5%向上する。In this method, the entire hydrogen-rich scavenging gas in the PSA hydrogen purification unit off-gas is recycled and recovered before the reforming reactor, so the overall hydrogen yield is 10 to 1.
Improve by 5%.
次に本発明の実施方法を第1図のフローシートで説明す
る。Next, a method of implementing the present invention will be explained with reference to a flow sheet shown in FIG.
原料メタノール1と水2及びコンチンセード15はそれ
ぞれポンプで昇圧され、配管で混合後、原料予熱器4に
て蒸発前温度まで予熱される。次にミキシング装置5に
入り、ここでPSA水素精製ユニットの回収掃気ガスが
ミキシングされる。メタノールと水が十分混合した液は
蒸発器6にて蒸発され、メタノール、スチームモル比1
.5〜25の一部モル比のベーパーとなり1反応器度に
加熱され、改質反応器前ル
反ノ、しにより、H2約74%(ドライ成分中)、その
他CO2,CO、水分、少量の未反応メタノールよりな
る粗水素ガスとなる。改質ガスは予熱器4、ガスクーラ
ー8で冷却でれ、水分、少量のメタノールはセパレーク
−9でコンデン七−+−とじ−c分離される。コンチン
+−1・は水、クンク3て原料の水と一緒になり、ポン
プでリサイクルされる。The raw materials methanol 1, water 2, and continsade 15 are each boosted in pressure by a pump, mixed in piping, and then preheated in a raw material preheater 4 to a pre-evaporation temperature. Next, it enters the mixing device 5, where the scavenging gas recovered from the PSA hydrogen purification unit is mixed. A sufficiently mixed solution of methanol and water is evaporated in the evaporator 6, and the methanol/steam molar ratio is 1.
.. It becomes vapor with a partial molar ratio of 5 to 25, and is heated to 1 reactor temperature, and about 74% of H2 (in the dry component) and other CO2, CO, moisture, and small amounts are generated by the reaction in front of the reforming reactor. Crude hydrogen gas consists of unreacted methanol. The reformed gas is cooled by a preheater 4 and a gas cooler 8, and moisture and a small amount of methanol are separated from condensate by a separator lake 9. Contin+-1 is combined with water, the raw material water, and recycled by a pump.
16は熱媒加熱器で蒸発器6.改質反応器7の熱源であ
る。16 is a heat medium heater and an evaporator 6. This is the heat source for the reforming reactor 7.
水素温度約74%(ドライ成分°中)の粗水素ガスは通
常のPSA水素精製ユニット10に通し、PSA法にて
999%以」二の高純度水素を得るが、このPSA水素
精製ユニットの吸着剤再生時の製品水素による吸着塔出
口からの掃気ガスをサージクンク12に貯め、コンプレ
ッサー14で昇圧して前記メタノール水のミキシング装
置5のノズルより吹き込み、メタノールと水′の混合が
十分行われ、同時にPSA水素精製ユニット10の掃気
ガスが粗水素発生部に回収される。Crude hydrogen gas with a hydrogen temperature of approximately 74% (in dry components) is passed through a normal PSA hydrogen purification unit 10 to obtain hydrogen with a purity of 999% or higher using the PSA method. Scavenging gas from the adsorption tower outlet due to product hydrogen during agent regeneration is stored in the surge pump 12, pressurized by the compressor 14, and blown through the nozzle of the methanol water mixing device 5, so that methanol and water' are sufficiently mixed, and at the same time. The scavenging gas from the PSA hydrogen purification unit 10 is recovered to the crude hydrogen generation section.
第1図では一例として掃気ガスの粗水素回収部への回収
は、原料液配管途中、蒸発器6前のミキシング装置5へ
送入しているが、これを直接蒸発器6の底部へミキシン
グさせることも勿論可能で同様効果が得られる。In FIG. 1, as an example, the scavenging gas is recovered to the crude hydrogen recovery section by feeding it into the mixing device 5 in front of the evaporator 6 in the middle of the raw material liquid pipe, but it is mixed directly to the bottom of the evaporator 6. Of course, this is also possible and the same effect can be obtained.
以」二説明の如く、PSA水素精製ユニットの水素によ
る掃気ガスを粗水素発生部のメタノール水蒸発器前、メ
タノール、水及びコンデン七−1・のミキシング装置ノ
ズルに吹き込み回収することによって、通常方法の水素
収率75〜80%のものが90%以」ユに向上すると共
に、反応系の運転安定にも効果がある。As explained in Section 2 below, the conventional method is carried out by blowing and recovering hydrogen scavenging gas from the PSA hydrogen purification unit into the nozzle of the mixing device for methanol, water and condensate in front of the methanol water evaporator in the crude hydrogen generation section. In addition to improving the hydrogen yield from 75 to 80% to more than 90%, it is also effective in stabilizing the operation of the reaction system.
第1図は本発明のオフガスリサイクルによるメタノール
改質水素製造方法のフローシートを示す。
■=原料メタノール
2:水
3:水タンク
4:原料予熱器
5:ミギシング装置
6:蒸発器
7:改質反応器
8:ガスクーラー
9:セパレーク−
10:PSA水素精製ユニット
11:製品高純度水素
12:掃気ガスサージタンク
13:オフガス燃料サージタンク
14:コンプレツサー
15:コンデンセート
16:熱媒加熱器
17:燃料
特許出願人 日本化学技術株式会社
代表者佐野司朗
オ 1 図FIG. 1 shows a flow sheet of the method for producing methanol-reformed hydrogen by off-gas recycling according to the present invention. ■ = Raw material methanol 2: Water 3: Water tank 4: Raw material preheater 5: Missing device 6: Evaporator 7: Reforming reactor 8: Gas cooler 9: Separate lake - 10: PSA hydrogen purification unit 11: Product high purity hydrogen 12: Scavenging gas surge tank 13: Off-gas fuel surge tank 14: Compressor 15: Condensate 16: Heat medium heater 17: Fuel Patent applicant Shiroo Sano, representative of Nihon Kagaku Gijutsu Co., Ltd. 1 Figure
Claims (1)
プション・・・・・ 以下PSAと記す)水素精製ユニ
ットの氷゛素リッチの掃気ガスを回収し、粗水素発生部
のメタノール水蒸発器入口のメタノール・水混合液配管
又は該蒸発器に設けたミキシングノズルに吹き込むこと
を特徴とする、掃気ガスリサイクルによるメタノール改
質水素製造方法。Pressure swing adsorption (hereinafter referred to as PSA) recovers ice-rich scavenging gas from the hydrogen purification unit, and collects methanol and water at the inlet of the methanol water evaporator in the crude hydrogen generation section. A method for producing methanol-reformed hydrogen by recycling scavenging gas, the method comprising blowing into a mixed liquid pipe or a mixing nozzle provided in the evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP209083A JPS59128202A (en) | 1983-01-10 | 1983-01-10 | Method for reforming methanol while recycling purge gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP209083A JPS59128202A (en) | 1983-01-10 | 1983-01-10 | Method for reforming methanol while recycling purge gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59128202A true JPS59128202A (en) | 1984-07-24 |
Family
ID=11519645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP209083A Pending JPS59128202A (en) | 1983-01-10 | 1983-01-10 | Method for reforming methanol while recycling purge gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59128202A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168501A (en) * | 1985-01-23 | 1986-07-30 | Nippon Kagaku Gijutsu Kk | Production of hydrogen by methanol reformation |
JPS6241701A (en) * | 1985-08-13 | 1987-02-23 | Mitsubishi Heavy Ind Ltd | Pressure swing type gas separator in methanol decomposition apparatus |
JPS6252105A (en) * | 1985-08-28 | 1987-03-06 | Kao Corp | Recovery of hydrogen |
JPS62292602A (en) * | 1986-06-09 | 1987-12-19 | Kao Corp | Method for recovering hydrogen |
FR2631949A1 (en) * | 1988-05-27 | 1989-12-01 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF HIGH PURITY HYDROGEN BY CATALYTIC REFORMING OF METHANOL |
JP2008195585A (en) * | 2007-02-15 | 2008-08-28 | Toshiba Corp | Hydrogen production device |
CN102627259A (en) * | 2012-03-27 | 2012-08-08 | 成都赛普瑞兴科技有限公司 | Method for preparing hydrogen by methanol-water reforming |
US8959799B2 (en) | 2009-07-06 | 2015-02-24 | Asics Corporation | Shoe having lace fitting structure |
-
1983
- 1983-01-10 JP JP209083A patent/JPS59128202A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168501A (en) * | 1985-01-23 | 1986-07-30 | Nippon Kagaku Gijutsu Kk | Production of hydrogen by methanol reformation |
JPS6241701A (en) * | 1985-08-13 | 1987-02-23 | Mitsubishi Heavy Ind Ltd | Pressure swing type gas separator in methanol decomposition apparatus |
JPS6252105A (en) * | 1985-08-28 | 1987-03-06 | Kao Corp | Recovery of hydrogen |
JPS62292602A (en) * | 1986-06-09 | 1987-12-19 | Kao Corp | Method for recovering hydrogen |
FR2631949A1 (en) * | 1988-05-27 | 1989-12-01 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF HIGH PURITY HYDROGEN BY CATALYTIC REFORMING OF METHANOL |
US5093102A (en) * | 1988-05-27 | 1992-03-03 | Institut Francais Du Petrole | Process for the production of high purity hydrogen by catalytic reforming of methanol |
JP2008195585A (en) * | 2007-02-15 | 2008-08-28 | Toshiba Corp | Hydrogen production device |
US8959799B2 (en) | 2009-07-06 | 2015-02-24 | Asics Corporation | Shoe having lace fitting structure |
CN102627259A (en) * | 2012-03-27 | 2012-08-08 | 成都赛普瑞兴科技有限公司 | Method for preparing hydrogen by methanol-water reforming |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230242395A1 (en) | Ammonia Cracking for Green Hydrogen | |
US4681745A (en) | Ammonia production process | |
CN108698985B (en) | Process for supplying carbon dioxide for the synthesis of urea | |
US20240253982A1 (en) | Ammonia cracking for green hydrogen | |
US20240294376A1 (en) | Ammonia Cracking Process | |
JPS58189153A (en) | Manufacture of urea | |
SU1064863A3 (en) | Process for producing urea | |
JPS59128202A (en) | Method for reforming methanol while recycling purge gas | |
US20240279053A1 (en) | Ammonia cracking for green hydrogen with nox removal | |
US4123508A (en) | Apparatus and method for manufacturing deuterium enriched water | |
KR870001143B1 (en) | Process for preparing urea | |
JP4168210B2 (en) | Methanol / ammonia production method | |
JP6965345B2 (en) | Methods for producing ammonia and urea in common equipment | |
JP2001097906A (en) | Method for producing methanol | |
US20240270569A1 (en) | Recovery of a renewable hydrogen product from an ammonia cracking process | |
JP2002321904A (en) | Method for producing hydrogen | |
JPH03242302A (en) | Production of hydrogen and carbon monoxide | |
US4986978A (en) | Process for reforming impure methanol | |
JP2001097905A (en) | Method for producing methanol | |
JPH11292501A (en) | Production of hydrogen from methanol and equipment for its production | |
JPS6365718B2 (en) | ||
JP2507296B2 (en) | Method for producing hydrogen reforming methanol | |
CN220642594U (en) | Novel methanol hydrogen production device | |
WO2024013968A1 (en) | Methane synthesis system | |
JP2000219508A (en) | Production of co from off-gas in hydrogen pressure swing adsorption (psa) |