JPS6114101A - Hydrogen purification apparatus - Google Patents

Hydrogen purification apparatus

Info

Publication number
JPS6114101A
JPS6114101A JP59134563A JP13456384A JPS6114101A JP S6114101 A JPS6114101 A JP S6114101A JP 59134563 A JP59134563 A JP 59134563A JP 13456384 A JP13456384 A JP 13456384A JP S6114101 A JPS6114101 A JP S6114101A
Authority
JP
Japan
Prior art keywords
cylinder
hydrogen
purification
flon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59134563A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishii
博 石井
Minoru Imafuku
今福 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP59134563A priority Critical patent/JPS6114101A/en
Publication of JPS6114101A publication Critical patent/JPS6114101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To make the apparatus compact and to reduce the cost of operation by providing a specified refrigeration cycle using flon to a purification cylinder in the hydrogen purification apparatus wherein two purification cylinders packed with a hydrogen-occluding alloy are alternately changed over and used. CONSTITUTION:Compressed raw gas is forced into the firts purification cylinder 3 in the occlusion stage through a pipe 1 and a valve 2 to occlude selectively the hydrogen in the raw gas (the temp. of the cylinder 3 is elevated), and the remaining gaseous impurities are discharged through a valve 8 and a pipe 9. Meanwhile, the occluded purified hydrogen is taken out from the second purification cylinder 13 in the discharge stage through a pipe 15 (the temp. of the cylinder 13 is lowered). Simultaneously with the operation, flon consisting of a mixed phase of gas and liquid is sent to the cylinder 3 from a liquid flon storage 4 through an expansion valve 5 to cool the cylinder 3. Then the vaporized flon is compressed by a compressor 12 and heated, and sent to the cylinder 13 to heat the cylinder 13. The liquefied flon is cooled by a supercooler 20 approximately to ordinary temp., and refluxed to the liquid flon storage 4. The operations are repeated while changing over the roles of the purification cylindrs 3 and 13 by the operation of valves.

Description

【発明の詳細な説明】 技術分野 不発明は、水素吸蔵合金を利用して水素含有ガスから水
素ガスを精製する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The technical field of the invention relates to an apparatus for purifying hydrogen gas from hydrogen-containing gas using a hydrogen storage alloy.

水素吸蔵合金を使用して水素を精製する方法は。How to purify hydrogen using hydrogen storage alloys.

ある樵の合金が水素をよ(吸蔵する性質を利用したもの
であるユ容器内に水素吸蔵合金を充填し、この容器に不
純ガスを含む水素ガス化導入すると。
When a woodcutter's alloy takes advantage of its ability to absorb hydrogen, a hydrogen-absorbing alloy is filled in a container, and hydrogen gas containing impure gas is introduced into the container.

水素ガスのみが発熱を伴って合金に吸蔵され、不純ガス
が残る。この不純ガスを容器外に放出したのち1合金を
加熱下れば、吸鷺水素ガスが合金から放出され、高純水
素が得られる。そしてこのプロセスにおいて水素を吸蔵
する時は発熱を伴うため冷却水などで冷却し、温度上昇
を防止する8優があり、逆に放出する時は吸熱するため
温水などで加熱し、温度を一定に保つ必要がある。
Only hydrogen gas is occluded in the alloy with heat generation, leaving behind impure gas. After releasing this impure gas to the outside of the container, if one alloy is heated, hydrogen absorbing gas is released from the alloy, and highly pure hydrogen is obtained. In this process, when hydrogen is absorbed, it generates heat, so it is cooled with cooling water to prevent the temperature from rising.On the other hand, when it is released, it absorbs heat, so it is heated with hot water to keep the temperature constant. need to be kept.

そして、このプロセスを連続的に運転して高純水素を工
業的に製造するには、水素吸蔵合金を充填した2筒以上
の精製筒を設置し、加熱源および冷却源として温水およ
び冷却水を用意し、精製筒を水素吸蔵工程と水素放出工
程とに交互に・切換え。
In order to operate this process continuously and produce high-purity hydrogen industrially, two or more purification cylinders filled with hydrogen storage alloy are installed, and hot water and cooling water are used as heating and cooling sources. Prepare and alternately switch the refining cylinder between the hydrogen storage process and the hydrogen release process.

水素吸蔵工程にある精製筒に冷却水を、水素放出工程に
あるf#精製筒温水をそれぞれ切替えて供給するように
してい′る。
Cooling water is selectively supplied to the purification cylinder in the hydrogen storage process, and hot water is supplied to the f# purification cylinder in the hydrogen release process.

しかし、このような方法では加熱、冷却に温水および冷
却水を使用しかつこれらの顕熱を熱源としている窄め、
装置が大型化し、消費エネルギーが嵩む欠点があった。
However, in this method, hot water and cooling water are used for heating and cooling, and these sensible heats are used as the heat source.
The disadvantages are that the device becomes larger and consumes more energy.

筐た、冷却水での冷却には限界があり、吸蔵温度を十分
低(することができず、このため吸蔵圧力を高くせざる
を得ないという大きな欠点もあった。
However, there were limits to cooling with cooling water, and a major drawback was that the storage temperature could not be kept low enough, which forced the storage pressure to be high.

発明の目的 本発明は上記事情に鑑みてなされたもので、エネルギー
コストの低減、装置の小型比を図ることのできる水素吸
蔵合金を利用した水素M製装置を提供することを目的と
するものである。
Purpose of the Invention The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a hydrogen M manufacturing device using a hydrogen storage alloy that can reduce energy costs and make the device more compact. be.

発明の構成 本発明の水素精製装置は、水素吸蔵合金を充填した2筒
以上の精製筒%:設け、水素吸蔵工程にある精製筒を蒸
発器とし、水素放出工程にある精製筒を凝縮器とする冷
凍サイクルを付設したもので。
Structure of the Invention The hydrogen purification apparatus of the present invention comprises two or more refining cylinders filled with a hydrogen storage alloy, the refining cylinder in the hydrogen storage process serving as an evaporator, and the refining cylinder in the hydrogen releasing process serving as a condenser. It is equipped with a refrigeration cycle.

ある。be.

発明の具体的構成とその作用 以下1図面を参照して不発8Aを詳しく説明する。Specific structure of the invention and its operation The unexploded 8A will be explained in detail below with reference to one drawing.

図面は本発明の水素i/′ItIJ1装置の一例な示す
ものである。
The drawing shows an example of the hydrogen i/'ItIJ1 device of the present invention.

原料ガスとして不純ガスを含む水素ガスが2〜数L O
k g / c m  程度に加圧されて、管lから弁
2を経て、水素吸蔵工程にある第1稽製筒3に送り込ま
れる。第1渭裂筒3は、その内部にLaNi系合金、F
eTi系合金などの室温付近での平衡水素圧の高い水素
吸蔵金塗が充填さ載ているとともに熱交換が行えるよう
な構造となっている。第1精製筒3に導入された原料ガ
ス中の水素は選択的に水素吸蔵合金に吸蔵され、不純ガ
スが筒内の空間に残る。この水素吸蔵合金への水素の吸
或は発熱反応であるので、この水素吸蔵工程では水素吸
蔵合金および第tn製1llI3の温度が上昇する。こ
の温度が上昇すると水素平向圧力が上昇して、7に素吸
蔵速度が低下するため、冷却する必要がある。そこで、
フロン液溜4から膨張弁5   ゛を経て、気液混相状
態となったフロンな雷6.弁7を経てxis製筒3に送
り込み、冷却する0第l精製筒3に送られたフロンは気
液混相であるため、冷却に蒸発潜熱を利用でき、耐却幼
来が高(、゛フロン量は少量でよい。
Hydrogen gas containing impurity gas is used as raw material gas at 2 to several L O
It is pressurized to about kg/cm and is sent from pipe 1 through valve 2 to first production cylinder 3 which is in the hydrogen storage process. The first cylindrical tube 3 contains a LaNi-based alloy, an F
It is filled with a hydrogen-absorbing metal coating such as an eTi-based alloy that has a high equilibrium hydrogen pressure near room temperature, and has a structure that allows heat exchange. Hydrogen in the raw material gas introduced into the first refining cylinder 3 is selectively occluded by the hydrogen storage alloy, and impure gas remains in the space inside the cylinder. Since this is an exothermic reaction or absorption of hydrogen into the hydrogen storage alloy, the temperature of the hydrogen storage alloy and the No. TN 1llI3 rises in this hydrogen storage step. When this temperature rises, the horizontal hydrogen pressure increases and the elementary storage rate decreases, so it is necessary to cool it. Therefore,
Freon lightning passes from the Freon liquid reservoir 4 through the expansion valve 5 and becomes a gas-liquid mixed phase state6. The fluorocarbons sent to the XIS cylinder 3 through the valve 7 and then cooled are gas-liquid mixed phase, so the latent heat of vaporization can be used for cooling, and the fluorocarbons have a high A small amount is sufficient.

かくして、水素の吸蔵が進行し、水素吸蔵合金が飽和し
たならば原料ガスの導入を停止し、弁8を開けて、不純
ガス?第1精装筒3から導出し。
In this way, when hydrogen storage progresses and the hydrogen storage alloy becomes saturated, the introduction of the raw material gas is stopped, the valve 8 is opened, and the impure gas is removed. Derived from the first precision tube 3.

管9かも排出するとともに弁7葡閉じて第1梢製筒3へ
のフロンの供給を停止する。第1稽製筒3内で加熱され
て気化したフロンは、管10.弁11?:経てフロンコ
ンプレッサ12に送られる。
The pipe 9 is also discharged, and the valve 7 is closed to stop the supply of fluorocarbon to the first tube-making cylinder 3. The fluorocarbon heated and vaporized in the first production tube 3 is transferred to the tube 10. Valve 11? : Then sent to the freon compressor 12.

一方、第1稽製筒3と同様な構造の第2精製筒13は、
この時水素放出工程にある。丁なわち。
On the other hand, the second refining cylinder 13 having the same structure as the first refining cylinder 3 is
At this time, it is in the hydrogen release process. Ding nawachi.

前工程において上述のように充填された水素吸蔵合金が
水JJLr:吸蔵し、不純ガスが排出された状態の第2
精製筒L3からは水素吸蔵合金から放出された梢製水索
が弁14.管15な通って導出される。この水素吸蔵合
金からの水素の放出は、吸熱反応であるため、第2精裏
筒13内の温度が低下してゆく。筒内の温度が低下する
と、水素放出速度、水素放出圧力が低下してしまうので
、加熱する必要があるっそこで、第1稽製筒3かもフロ
ンコンプレッサt2に送られて昇温昇圧された気化状M
のフロンを管16.弁17を経て?A2精製筒に送り込
む。第2梢製筒【3に導入された気化状フロンガスは、
水素放出中の水素吸蔵合金を加熱するとともに自らは冷
却されて液化する。液化したフロンは弁菖8.管19を
経て、空冷または水冷方式による過冷器20でほば常温
まで冷却されたうえ、フロン液溜4に溜められる。第2
梢裂筒13に導入された70/は凝縮熱を発するため。
The hydrogen storage alloy filled as described above in the previous process stores water and impure gas is discharged.
From the refining cylinder L3, a water cable made of treetops released from the hydrogen storage alloy is connected to the valve 14. It is led out through tube 15. Since this release of hydrogen from the hydrogen storage alloy is an endothermic reaction, the temperature inside the second refiner tube 13 decreases. When the temperature inside the cylinder decreases, the hydrogen release rate and hydrogen release pressure decrease, so it is necessary to heat the cylinder.Therefore, the first production cylinder 3 is also sent to the freon compressor t2, where the temperature and pressure are increased. Condition M
Fluorocarbon pipe 16. After valve 17? Send it to the A2 refining cylinder. The vaporized fluorocarbon gas introduced into the second tree-making cylinder [3]
The hydrogen-absorbing alloy that is releasing hydrogen is heated, and at the same time, it is cooled and liquefied. Liquefied Freon is Bensho 8. It passes through a pipe 19, is cooled to approximately room temperature in an air-cooled or water-cooled subcooler 20, and is then stored in a fluorocarbon reservoir 4. Second
70/ introduced into the crack tube 13 generates condensation heat.

加熱幼果に優れ、フロン量も少量で済む。水素の゛放出
が停止丁れば、気化状フロンの供給を停止し。
Excellent for heating young fruits, requiring only a small amount of fluorocarbons. Once hydrogen release has stopped, stop supplying vaporized fluorocarbons.

第2精製筒13は次の水素吸蔵工程に入ることになる。The second refining column 13 will enter the next hydrogen storage step.

以下、この二つの工程を第1稽裏筒3と第2梢製筒13
とで又互に繰り返丁ことにより、連続的に水素を精製す
ることができる。
Hereinafter, these two steps will be explained as follows.
Hydrogen can be continuously purified by repeating the process with and .

このような水素精製装置にあっては、加熱が必要な水嵩
放出工程にある、例えば第2精製筒【3に高温のガス状
フロンを導入して加熱するとともにフロンを液化せしめ
、同時に冷却が必要な水素吸蔵工程にある第1精裂筒3
に気液混相状態のフロンを導入して冷却するとともにフ
ロンな気化せしめて、水素放出工程にあるM製筒を#縮
器とし。
In such hydrogen purification equipment, high-temperature gaseous chlorofluorocarbons are introduced into the second purification column [3] during the water bulk discharge process that requires heating, and are heated and liquefied, and cooling is required at the same time. The first semi-fiber cylinder 3 in the hydrogen storage process
Freon in a gas-liquid mixed phase state is introduced into the tank to cool it and vaporize it, and the M-made cylinder in the hydrogen release process is used as a compressor.

水素吸蔵工程にある精製筒を蒸発器とするフロン冷凍サ
イクルを形成したので、水素吸蔵工程にある、例えば第
1精製筒3の発熱を、水素放出工程にある第2精製筒L
3の吸熱に利用できるようになり、精製筒【3の加熱、
冷却に必要なエネルギー費用を低減することが可能とな
る。また、易凝縮性のフロンを使用しているので、加熱
、冷却に潜熱を利用でき、加熱冷却幼果が人きく循環フ
ロン量が少量で済み、精製筒3.t3内の温度分布を均
一に保ち易く、運転が容易で設備もコンパクトとするこ
とができる。また、水素吸蔵工程にある精製筒を十分低
い温度にまで冷却することができるので、水素の吸蔵圧
力を低下せしめることかり能となり、原料ガスの圧縮圧
力を乍げて圧縮動力を削減できる。
Since we have formed a fluorocarbon refrigeration cycle in which the refining cylinder in the hydrogen storage process is used as an evaporator, the heat generated from, for example, the first refining cylinder 3 in the hydrogen storage process is transferred to the second refining cylinder L in the hydrogen desorption process.
It can now be used for heat absorption in step 3, and the refining tube [heating in step 3,
It becomes possible to reduce energy costs required for cooling. In addition, since easily condensable fluorocarbons are used, latent heat can be used for heating and cooling, and only a small amount of fluorocarbons need to be circulated to allow heating and cooling of young fruits. It is easy to keep the temperature distribution within t3 uniform, the operation is easy, and the equipment can be made compact. In addition, since the refining column in the hydrogen storage process can be cooled to a sufficiently low temperature, the hydrogen storage pressure can be lowered, and the compression power can be reduced by reducing the compression pressure of the raw gas.

次に、本発明のN製装置と従来の精製装置とについ”を
経済性を比較する。
Next, the economic efficiency of the N-made apparatus of the present invention and a conventional refining apparatus will be compared.

水素吸蔵合金としてLaNi系合i&用い、10kg7
cm2以下の圧力で100 Nm3/hrの水素’a[
裂する場合、水素放出時の加熱エネルギーは理論上35
000Kca 1/hr必要トTxる。これt従来の電
気ヒータによる温水で賄うとすると、40Kwの′電力
が必要となり、また温水循環ポンプの運転にも電力が必
要となる。一方、本発明の装置ではフロンコンプレッサ
12(7]jb力として13〜L5Kwの電力が必要で
あるだけであり、動力費用は半分以下とrlる。
LaNi based alloy used as hydrogen storage alloy, 10kg7
100 Nm3/hr of hydrogen 'a [
In the case of cracking, the heating energy for hydrogen release is theoretically 35
000Kca 1/hr required. If this were to be covered by hot water using a conventional electric heater, 40Kw of electric power would be required, and electric power would also be required to operate the hot water circulation pump. On the other hand, the device of the present invention requires only 13 to L5 Kw of power as the Freon compressor 12 (7) jb power, and the power cost is less than half.

なお、フロント以外の塩化メタン(メチルクロライド]
やアンモニアなどの熱媒体を使用することもできる。
In addition, chlorinated methane (methyl chloride) other than the front
A heating medium such as or ammonia can also be used.

発明の詳細 な説明したように、この発明の水素精製装置は水素吸蔵
合金を充填した2筒以上の精製筒を交互に水素吸蔵工程
と水素放出工程とに切換運転する装置に、水素吸蔵工程
にある′InIIn上蒸発器とし、水素放出工程にある
f#裂製筒凝縮器とした帝凍すイクル%:設けたもので
あるので、水素吸蔵工程にある精製筒の発熱を水素放出
工程にある精#!1・筒の加熱に利用することができ、
M製筒の加熱冷却に必要なエネルギー費用を大きく低減
できる。
As described in detail, the hydrogen purification apparatus of the present invention is an apparatus that alternately operates two or more refining cylinders filled with a hydrogen storage alloy to perform a hydrogen storage process and a hydrogen release process. A Teikoku cycle with an InIIn upper evaporator and an f# cracked cylinder condenser in the hydrogen release process is installed, so the heat generated by the refining cylinder in the hydrogen absorption process is transferred to the hydrogen release process. Semen #! 1. Can be used to heat cylinders,
The energy cost required for heating and cooling M tubes can be greatly reduced.

また、水素吸蔵工程にあるI製筒を十分低温度にまで冷
却することができるので、水素吸蔵合金を低(下ること
ができ、原料ガスの圧縮動力費用も削減できる。さらに
、加熱、冷却のための設備が小型化でき、運転も荏易で
あるなどの利点を有するものである。
In addition, since the I-made cylinder in the hydrogen storage process can be cooled to a sufficiently low temperature, the hydrogen storage alloy can be lowered to a lower temperature, and the power cost for compressing raw gas can also be reduced. This has the advantage that the equipment for this process can be made smaller and it is easier to operate.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の水素精製装置の一例火示す概略構成図
である。 3・・・第1梢襄筒、4・・・フロン液溜、5・・・膨
張弁、12・・・フロンコンプレッサ、【3・・・第2
 fttR筒、20・・・過冷器。
The drawing is a schematic diagram showing an example of the hydrogen purification apparatus of the present invention. 3... First treetop tube, 4... Freon liquid reservoir, 5... Expansion valve, 12... Freon compressor, [3... Second
fttR tube, 20... supercooler.

Claims (1)

【特許請求の範囲】 水素吸蔵合金を充填した2筒以上の精製筒を有し、これ
ら精製筒を交互に水素吸蔵工程と水素放出工程とに切換
えて水素含有ガスから水素を精製する装置において、 水素吸蔵工程にある精製筒を蒸発器とし、水素放出工程
にある精製筒を凝縮器とした冷凍サイクルを設けたこと
を特徴とする水素精製装置。
[Scope of Claims] An apparatus that purifies hydrogen from a hydrogen-containing gas by having two or more refining cylinders filled with a hydrogen storage alloy and alternately switching these refining cylinders to a hydrogen storage process and a hydrogen release process, A hydrogen purification device characterized by having a refrigeration cycle in which a purification column in a hydrogen storage process is used as an evaporator and a purification column in a hydrogen release process is used as a condenser.
JP59134563A 1984-06-29 1984-06-29 Hydrogen purification apparatus Pending JPS6114101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134563A JPS6114101A (en) 1984-06-29 1984-06-29 Hydrogen purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134563A JPS6114101A (en) 1984-06-29 1984-06-29 Hydrogen purification apparatus

Publications (1)

Publication Number Publication Date
JPS6114101A true JPS6114101A (en) 1986-01-22

Family

ID=15131255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134563A Pending JPS6114101A (en) 1984-06-29 1984-06-29 Hydrogen purification apparatus

Country Status (1)

Country Link
JP (1) JPS6114101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141966A (en) * 1996-06-21 2000-11-07 Osumi; Yasuaki Power generating device employing hydrogen absorbing alloy and low heat
JP2006342014A (en) * 2005-06-08 2006-12-21 Kobe Steel Ltd Method for producing high purity hydrogen
US10576192B2 (en) 2014-04-15 2020-03-03 Tc1 Llc Catheter pump with access ports
US11786720B2 (en) 2014-04-15 2023-10-17 Tc1 Llc Catheter pump with off-set motor position

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792501A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Apparatus for storage and refining of hydrogen gas
JPS5878056A (en) * 1981-10-31 1983-05-11 松下電器産業株式会社 Heater for air-conditioning
JPS5978907A (en) * 1982-10-22 1984-05-08 Daido Steel Co Ltd Refining method of gaseous hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792501A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Apparatus for storage and refining of hydrogen gas
JPS5878056A (en) * 1981-10-31 1983-05-11 松下電器産業株式会社 Heater for air-conditioning
JPS5978907A (en) * 1982-10-22 1984-05-08 Daido Steel Co Ltd Refining method of gaseous hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141966A (en) * 1996-06-21 2000-11-07 Osumi; Yasuaki Power generating device employing hydrogen absorbing alloy and low heat
JP2006342014A (en) * 2005-06-08 2006-12-21 Kobe Steel Ltd Method for producing high purity hydrogen
US10576192B2 (en) 2014-04-15 2020-03-03 Tc1 Llc Catheter pump with access ports
US11786720B2 (en) 2014-04-15 2023-10-17 Tc1 Llc Catheter pump with off-set motor position

Similar Documents

Publication Publication Date Title
EP0015106B1 (en) Absorption-desorption system
US4055962A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
US3943719A (en) Hydride-dehydride power system and methods
US6997010B2 (en) Regenerative heat pump system
JPS6114101A (en) Hydrogen purification apparatus
JPH0545524B2 (en)
EP1550830A1 (en) Heat pump system
US3092461A (en) Process for producing liquid hydrogen
CN111298596A (en) Rare gas purification device based on low-temperature cold source
JP3923766B2 (en) Hydrogen production equipment
JPS62123001A (en) Method for purifying hydrogen
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JP4080351B2 (en) Gas hydrate production and storage method
JPH0826704A (en) Ozonizer
JP2006500542A (en) Refrigeration equipment and method using reversible sorption system
JP2607677B2 (en) Generator hydrogen purity maintenance device by metal hydride
JPH11270795A (en) Moving layer/fixed layer connecting system utilizing hydrogen storage alloy
JP2004150791A (en) Heat pump device and method
JPS6096801A (en) Steam generator
JPH0722370U (en) Cooling device with metal hydride
JPS6027602A (en) Preparation of high-purity hydrogen gas
JPH0532402A (en) Production of liquid hydrogen
JPH06109388A (en) Chemical heat accumulating method and device
JPS5819956B2 (en) Cooling device using metal hydride
SU1019188A1 (en) Periodic-action absorption refrigeration plant