JPS6027602A - Preparation of high-purity hydrogen gas - Google Patents

Preparation of high-purity hydrogen gas

Info

Publication number
JPS6027602A
JPS6027602A JP13135283A JP13135283A JPS6027602A JP S6027602 A JPS6027602 A JP S6027602A JP 13135283 A JP13135283 A JP 13135283A JP 13135283 A JP13135283 A JP 13135283A JP S6027602 A JPS6027602 A JP S6027602A
Authority
JP
Japan
Prior art keywords
gas
hydrogen gas
hydrogen
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13135283A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tezuka
手塚 廣吉
Nobuhiro Ogawa
小川 展弘
Norio Sato
紀雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP13135283A priority Critical patent/JPS6027602A/en
Publication of JPS6027602A publication Critical patent/JPS6027602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To purify a crude hydrogen gas and to use energy of heat generation absorption, by liquefying impurities of the crude hydrogen gas to separate a purified hydrogen gas, occluding it in a hydrogen occlusion alloy and releasing it. CONSTITUTION:A raw material of a crude hydrogen gas is subjected to heat exchange with a low-temperature gas, the temperature of the gas is reduced to T4, and its pressure is also slightly lowered to P4. The pressure is lowered to P1 by repetition of adiabatic expansion, the temperature is reduced to T1, components except hydrogen in the crude hydrogen gas are liquefied, sent to a gas-liquid separator, and it is separated into a purified hydrogen gas and impurities. When the pressure of the prepared purified gas is raised P1-P3 by a compressor, the temperature is elevated from T2 to T5, further the temperature is raised to T9, and the pressure is slightly lowered to P2. The purified hydrogen gas is occluded in the alloy 2 in this state. While, the high-purity hydrogen is released from the alloy 1, absorption of heat takes place with it, and the temperature of the alloy 1 is reduced to T5. Heat generated in the alloy 2 is transferred through a heating medium to a heat engine.

Description

【発明の詳細な説明】 本発明は高純度水素ガスの製造方法の改良に関し、詳し
くは、水素吸蔵含金への吸蔵お、1.び放出により水素
の精製を行4「うどど1〕に、吸蔵L13よびIJA 
III = 11’ 、/ 7シn+v lυ o−L
/ ’1.K l’i’+J リノ −イー/し −L
 −’tY fl’l III する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing high-purity hydrogen gas, and more particularly, the present invention relates to the improvement of a method for producing high-purity hydrogen gas, and more particularly, to the improvement of a method for producing high-purity hydrogen gas. Purification of hydrogen is carried out by 4 "Udo 1", storage L13 and IJA
III = 11', / 7shin+v lυ o-L
/ '1. K l'i'+J Lino -i/shi -L
-'tY fl'l III.

たとえば半導体製品の材わ1どなる?:!I純川11用
素の製造に、99.999%ま1.:はそれ以」の、1
1左・1!度水素が必要とされ、イの需要は近年の一ル
り1−ロ二りス産業の発展に伴なっC増大しつ−)ある
For example, what happens to the materials used in semiconductor products? :! 99.999% or 1. :is after that, 1
1 left, 1! The demand for hydrogen has been increasing in recent years with the development of the hydrogen industry.

このような高純度の水素を製造りるには、水電解のよう
な比較的純度の高い原料ガスj)’ 6出イわ・するか
、5したは各種合成反応の刊刀スやCOG< 、、+−
クス炉ガス)から分MI L、た粗製水素ガスを犯1j
 !jし゛C原料とし、活f1炭や合成!!Δライトの
ようイ1吸着剤に不純物を吸着させて除去づるといった
I)ン人がどられてき1こ。 11製水素カスの精1す
1こ(31、吸収法、化学反応法、拡rII法、深冷分
R1法イ1どがある。 深冷分離法は、ガスを冷却し)
(含まれでいる不純物を凝縮させ、気液分離して水素を
lrN f:するプロセスである。 これを吸着法と組
み合わせて高純度化を行なうこと(よ、すでに提案され
ている(特開昭49−1488号)。
In order to produce such high-purity hydrogen, it is necessary to use a relatively pure raw material gas such as water electrolysis, or to use various synthetic reaction gases or COG. ,,+-
The crude hydrogen gas was taken from the furnace gas).
! Used as raw material for activated F1 carbon and synthesis! ! People like ΔLight, which uses an adsorbent to adsorb impurities and remove them, have been around for a long time. Preparation of hydrogen sludge made in 11 (31, absorption method, chemical reaction method, expanded RII method, cryogenic separation R1 method, etc.).The cryogenic separation method cools the gas.
(It is a process of condensing the impurities contained in the hydrogen, separating it into gas and liquid, and converting it into hydrogen.) This process can be combined with an adsorption method to achieve high purity. No. 49-1488).

一方、特殊な合金による水素の吸蔵−放出の研究が進む
につれて、これを水素ガスの精製に利用することが試み
られたく特開昭56−88803号)。 開示された方
法↓よ、水素吸蔵合金の容器を2個、互いに熱交換可能
に連結し、一方に水素を吸蔵させ、それに伴なう発熱を
他方に伝え、水素の放出に際して起る吸熱を補うもので
ある。
On the other hand, as research into the absorption and desorption of hydrogen by special alloys progresses, attempts have been made to utilize them for the purification of hydrogen gas (Japanese Patent Application Laid-open No. 88803/1983). According to the disclosed method↓, two hydrogen-absorbing alloy containers are connected to each other so that they can exchange heat, one stores hydrogen, and the accompanying heat is transmitted to the other to compensate for the heat absorption that occurs when hydrogen is released. It is something.

本発明者らは、深冷分離にJ、る粗製水素ガスの精製と
水素吸蔵合金を用いる高度な精製とを組み合わせ、その
際に水素の吸蔵に伴なう発熱を水素の放出のための水素
吸蔵合金の加熱に使用Jるのではなく、熱機関により動
力に変換して、深冷分離のための粗製水素ガスの圧縮な
どに必要な動力の補助どづることを着想し、本発明に至
”’11: 。
The present inventors have combined purification of crude hydrogen gas using cryogenic separation with advanced purification using hydrogen storage alloys, and in this process, the heat generated by hydrogen storage is replaced by hydrogen gas for release of hydrogen. Instead of using it to heat the storage alloy, we came up with the idea of converting it into power using a heat engine to supplement the power necessary for compressing crude hydrogen gas for cryogenic separation, and this led to the present invention. 11:.

すなわち、本発明の高純痘水素ガスの製造方法は、粗製
水素ガスの温度を低下させることによりガス中の不純物
を液化させ、気液分離して精製水素ガスを得、この精製
水素ガスをいつIこΔ、水水成吸蔵合金吸蔵させてから
放出させることによつ(、より高いItli度の水素ガ
スを得ることからなり、水素吸蔵合金への水素の吸蔵に
伴なう発熱を熱機関により動力に変換し、この動力を′
Vj製系のガス81、Iこはその他のガスの圧縮などの
動力どして利用づることを特徴と覆る。 一 本発明の代表的な態様におい【は、J:’、 ffL熱
(;4閏の低温源として、水素ガスを放出し−)つあり
、従って熱を吸収しつつある水素吸蔵合金を使用・する
That is, in the method for producing high purity hydrogen gas of the present invention, impurities in the gas are liquefied by lowering the temperature of crude hydrogen gas, and purified hydrogen gas is obtained through gas-liquid separation. By occluding and releasing water into the hydrogen storage alloy, hydrogen gas with a higher Itli degree can be obtained, and the heat generated by the storage of hydrogen in the hydrogen storage alloy can be absorbed by a heat engine. Convert this power into power by ′
Gas 81 and I made by Vj are characterized by being used as power for compressing other gases. In one exemplary embodiment of the present invention, a hydrogen storage alloy is used which is generating hydrogen gas (as a low-temperature source, releasing hydrogen gas) and is therefore absorbing heat. do.

水素吸蔵合金は、MCI系合金、−1−i −1” a
系合金、l−a Ni 51”ri Mn s系合金な
ど多種1’n tin究されている。 各合金はそれぞ
れ湿a −IF力1)竹が異なっているので、本発明方
法の実施に当っては、それらの中から、系の湿度、1力
での他の条件に適したものを選択する。
The hydrogen storage alloy is an MCI alloy, -1-i -1" a
Various types of alloys have been investigated, including 1'n tin alloys, la-a Ni 51"ri Mn s-based alloys, etc. Each alloy has a different wet a-IF force (1) bamboo, so it is difficult to carry out the method of the present invention. Then, select one suitable for the humidity of the system and other conditions under single force.

熱機関としては、比較的低温の熱源の1−ネルギーを利
用Jるため、それに適しIこもの、たとえばフレオンガ
スタービンなどを選択する。 最近ン町しい技術的進歩
をみせているスターリング1ンジンも利用できる。 そ
のほかに興味あるものとして、これも最近好んで研究さ
れている形状記憶合金を用いlC1いわゆる熱駆動エン
ジンをとりあげることができる。 その概念はすでに知
られている(特開昭56−129773号)。 熱駆動
エンジンの場合、形状記憶合金の変態温度が、水素吸蔵
合金の水素吸蔵温度の上限以下であって、水素放出温度
の下限どの間になければならないことは、容易に理解さ
れるであろう。 このほか、比較的低温の熱源により作
動づ゛るものであれば、任意の熱1幾関を使用できる。
Since the heat engine utilizes the energy of a relatively low-temperature heat source, a suitable engine such as a Freon gas turbine is selected. Stirling engine engines, which have recently seen significant technological advances, are also available. Another interesting example is the so-called 1C1 thermally driven engine, which uses shape memory alloys, which have recently been the subject of much research. The concept is already known (Japanese Patent Laid-Open No. 129773/1983). It will be readily understood that for thermally driven engines, the transformation temperature of the shape memory alloy must be below the upper limit of the hydrogen storage temperature of the hydrogen storage alloy and between the lower limit of the hydrogen release temperature. . In addition, any heat source that operates from a relatively low temperature heat source may be used.

以下、図面のフローダイアグラムを参照して、本発明の
詳細な説明Jる。 図において、T1〜TI2は系の温
度を、またP1〜P5は系の圧力をあられず。 いずれ
も番号が進むほど、温度または圧力が高い。
The present invention will now be described in detail with reference to the flow diagrams of the drawings. In the figure, T1 to TI2 represent the temperature of the system, and P1 to P5 represent the pressure of the system. In both cases, the higher the number, the higher the temperature or pressure.

原料として、任意の供給源の粗製水素ガス、たとえばC
OGから分離したガスを対象とする。
As feedstock, crude hydrogen gas from any source, e.g.
The target is gas separated from OG.

代表的な組成は、通常1−12.55%、(CH4+G
o)35%、その他10%である。 その楊度をT 1
0 、圧力をP5どする。
A typical composition is usually 1-12.55%, (CH4+G
o) 35%, others 10%. The degree of change is T 1
0, set the pressure to P5.

粗製ガスは、低温のガスとの熱交換により温度をT4に
下げ、圧力もやや低下して])4になる。
The temperature of the crude gas is lowered to T4 by heat exchange with the lower temperature gas, and the pressure is also slightly lowered to ])4.

ついで、 断熱膨張のくり返しに一;す、その圧力をP
lに低下させるととbに、温度を「1【こ低下させる。
Then, after repeated adiabatic expansion, the pressure is reduced to P.
When the temperature is lowered to 1, the temperature is lowered by 1.

 この]゛1は、分離Jべきガス成分がイの分圧におい
て示1沸点より低い、適当な温度である。
1 is a suitable temperature at which the gas component to be separated is lower than the boiling point of the gas component at the partial pressure 1.

湿度がT1まで下がれば、粗製水素ガス中の水素以外の
成分は液化覆るから、気液分plIt装同にかけて精製
水素と不純物とに分離りる。 これ’3 Itよ冷却す
べき粗製水素ガスと熱交換りる。 不純物(Ct−14
+ COはか)は、温度が−1−3か;’> ’l’ 
J:lに上昇したのち、系外へ出る。
When the humidity drops to T1, components other than hydrogen in the crude hydrogen gas liquefy and are separated into purified hydrogen and impurities by gas-liquid separation. This '3 It exchanges heat with the crude hydrogen gas to be cooled. Impurity (Ct-14
+ CO), the temperature is -1-3; '>'l'
After rising to J:l, it exits the system.

精製水素ガスは、圧縮I幾によってLF力を1)1から
P3に上昇させると、それにとbなつ’ 1Fnl p
3がT2からT5に高まる。 その後さらに粗製水系ガ
スとの熱交換により温度がT9に」−り、圧ツノ(より
ずかに低下してP2となる。 この状態ぐ合金2に接触
させて、これに吸蔵させる。 吸蔵の)μ行につれて合
金2は発熱し、その温度はT12に痙する。
When purified hydrogen gas is compressed by increasing the LF force from 1 to P3, it becomes b'1Fnl p
3 increases from T2 to T5. Thereafter, through further heat exchange with the crude water-based gas, the temperature drops to T9, and the pressure drops slightly to P2. In this state, it is brought into contact with Alloy 2 and occluded by it. Alloy 2 generates heat as it goes μ, and its temperature decreases to T12.

一方、合金1からは高純僚水素が放出され、それにとも
なって熱の吸収が起り、合金1の温度はT5に低下する
。 合金2に発生した熱は、熱媒体を通じて熱機関に流
入する。 合金1は熱媒体を通じて熱機関から熱を吸収
し、これにJ:つで熱憬関内に熱流が生じる。(熱機関
の高温側の温度はT11、低温側のそれはT7どなる。
On the other hand, high-purity hydrogen is released from Alloy 1, heat is absorbed accordingly, and the temperature of Alloy 1 decreases to T5. The heat generated in alloy 2 flows into the heat engine through the heat medium. Alloy 1 absorbs heat from the heat engine through the heat medium, and a heat flow is generated in the heat chamber at J:. (The temperature on the high temperature side of the heat engine is T11, and that on the low temperature side is T7.

) この熱流を利用して前記したようム熱機関を作動さ
せ、IJられた動力を圧縮機の動力などとして利用する
わけである。
) This heat flow is used to operate the heat engine described above, and the IJ power is used as power for the compressor.

この熱機関により発生J−る動力は、前記のフローダイ
アグラムの例に示すように深冷分1lll後の精製水素
ガスの圧力を上貸さμるために使用してもよいが、原料
ガスの圧力が低い場合は、その圧力の上昇のために使用
してもよい。 また、精製水素ガスは、図示した例のよ
うに気液分子111 装Wlから出たところで圧縮する
ほか、粗製ガスど熱交換した後に圧縮してもよい。 こ
の場合、いずれを選択するかは、使用りる合金の種類に
よっ゛(決定りればよい。
The power generated by this heat engine may be used to increase the pressure of the purified hydrogen gas after 1llll of deep cooling as shown in the example of the flow diagram above, but the pressure of the raw material gas may be used to increase the pressure if it is low. In addition to compressing the purified hydrogen gas when it comes out of the gas-liquid molecule 111 unit Wl as in the illustrated example, the purified hydrogen gas may also be compressed after heat exchange with the crude gas. In this case, which one to select depends on the type of alloy used.

精製水素の冷却は、断熱膨賑のくりかえしにJ、って行
なうことかできるが、ある温度までは、冷媒たとえばフ
レオンなどを用いた冷7JI Iffによって行なって
もよく、この冷7J11のフンダレツリー−の動力の一
部に、熱1幾関が発生する動力をilJ用してもよい。
Purified hydrogen can be cooled by repeating adiabatic expansion and expansion, but up to a certain temperature it can also be cooled by using a refrigerant such as Freon, and the cooling process of this cold 7J11 funda tree. Part of the power may be power that generates heat for ilJ.

 なJ3、熱機関の動力のつかいみらはこれに限らず、
水素吸蔵合金から放出された高lK!度水素ガスの圧縮
に、あるい【、(この水素精59系以外の系におけるガ
スの圧縮そのほかに向け’C1)J:いことは、もらろ
Iυである。
J3, the usage of the power of the heat engine is not limited to this,
High lK released from hydrogen storage alloy! For the compression of hydrogen gas, or for the compression of gas in systems other than this hydrogen refinery 59 system, and other purposes.

合金2の水素吸蔵が限界に達し、イの間に合金1の水素
放出が終了したら、パル1操作にJ、り合金1および2
を切り換えて、今度はI’i製水素ガス゛を合金1に吸
蔵させ、合金2に吸蔵された水素をh支出させることは
いうまでもない。 このような操作をくり返すことによ
り、a’li純麿ホ累ノIスが製造できる。 この際、
合金1からT4に出される初I!IJのガスには、不純
物が多く含まれ(いるのぐ、バルブSから系外に放出づ
る。
When the hydrogen absorption of Alloy 2 reaches its limit and the hydrogen release of Alloy 1 is completed during A, J is applied to Pal 1 operation, and Alloys 1 and 2 are
Needless to say, the hydrogen gas produced by I'i is now stored in Alloy 1, and the hydrogen stored in Alloy 2 is dissipated. By repeating such operations, a'li Junmaro Hosei no I can be manufactured. On this occasion,
The first I to be released from Alloy 1 to T4! The IJ gas contains many impurities and is released from the valve S to the outside of the system.

ぎわめて高側したとえは99.999%以上の水素ガス
を得ることを望む場合は、水素吸蔵合金への吸蔵と放出
を、2段またはそれ以上、つまり2以上の合金の絹を用
意して、第一段から放出された水素ガスを第二段の合金
に吸蔵させてから放出させる、という1秤を重ねて処理
りるど好都合である。
If you want to obtain extremely high hydrogen gas, for example, 99.999% or more, you can use two or more stages of occlusion and release into a hydrogen storage alloy, that is, prepare two or more alloy silks. It is convenient to process the hydrogen gas emitted from the first stage by occluding it in the second stage alloy and then releasing it.

本発明によるときは、熱機関の効率にもよるが、粗製水
素ガスの圧縮に要する動力の、約30%はどを水素吸蔵
に伴い発生ずるエネルギーで補充覆ることができる。
According to the present invention, although it depends on the efficiency of the heat engine, about 30% of the power required for compressing crude hydrogen gas can be supplemented with the energy generated as a result of hydrogen storage.

本発明には、さまざまな変更態様が可能であって、たと
えば熱交換後のCO+ CH4のもつ冷熱を圧縮後の1
]製水素ガスの冷7.IIに使用Jることも有益である
し、他に利用できる排熱やLNGなどの冷熱源が得られ
る場合、それらをとり入れて利用することにより、エネ
ルギー消費の節約の度合を高めることができる。
Various modifications are possible to the present invention. For example, the cold energy of CO + CH4 after heat exchange can be converted into 1 after compression.
] Cold production of hydrogen gas 7. It is also beneficial to use other cold heat sources such as exhaust heat and LNG, and by incorporating and using them, the degree of energy savings can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のへ純度水素ガスの製造方法の1稈を示す
フローダイアグラムである。 特許出願人 大同特殊鋼株式会礼 代理人 弁理士 須 賀 総 大
The drawing is a flow diagram showing one culm of the method for producing pure hydrogen gas of the present invention. Patent applicant Daido Steel Co., Ltd. Agent Patent attorney Sodai Suga

Claims (2)

【特許請求の範囲】[Claims] (1) 粗製水素ガスの温度を低下さVイ)ことにより
ガス中の不純物を液化させ、気液分離して精製水素ガス
をIJlこの精製水素ノfスをしxつ1こん水素吸蔵合
金に吸蔵させてから放出させることにJ:つて、にり高
い純度の水素ガスを・11フイ)ことからなり、水素吸
蔵合金への水素Q)吸蔵に(’l′−なう発熱を熱(幾
関ににり動ツノに変換し、この動力をガスの圧縮などに
利用することを1寺徴とJ′る高純度水素ガスの製造方
法。
(1) By lowering the temperature of the crude hydrogen gas, impurities in the gas are liquefied, gas and liquid are separated, and the purified hydrogen gas is converted into a hydrogen storage alloy. The process of occluding and then releasing hydrogen gas consists of hydrogen gas of very high purity. The method for producing high-purity hydrogen gas is characterized by converting the fuel into a moving horn and using this power for gas compression.
(2) 熱機関の低温源として、水素ガスを放81しつ
つあり、従つ−C熱を吸収しつつある水素吸蔵合金を利
用する特許請求の範囲第1項の製3古方法。
(2) The manufacturing method according to claim 1, which utilizes a hydrogen storage alloy which is emitting hydrogen gas and is therefore absorbing -C heat as a low temperature source for a heat engine.
JP13135283A 1983-07-19 1983-07-19 Preparation of high-purity hydrogen gas Pending JPS6027602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13135283A JPS6027602A (en) 1983-07-19 1983-07-19 Preparation of high-purity hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13135283A JPS6027602A (en) 1983-07-19 1983-07-19 Preparation of high-purity hydrogen gas

Publications (1)

Publication Number Publication Date
JPS6027602A true JPS6027602A (en) 1985-02-12

Family

ID=15055921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13135283A Pending JPS6027602A (en) 1983-07-19 1983-07-19 Preparation of high-purity hydrogen gas

Country Status (1)

Country Link
JP (1) JPS6027602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442801A (en) * 1990-06-08 1992-02-13 Chugoku Electric Power Co Inc:The Separation of condensable gas and device therefor
CN106874630A (en) * 2017-03-28 2017-06-20 上海理工大学 Based on the regional power grid new energy development potential evaluation method that electricity is dissolved

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442801A (en) * 1990-06-08 1992-02-13 Chugoku Electric Power Co Inc:The Separation of condensable gas and device therefor
CN106874630A (en) * 2017-03-28 2017-06-20 上海理工大学 Based on the regional power grid new energy development potential evaluation method that electricity is dissolved
CN106874630B (en) * 2017-03-28 2020-04-21 上海理工大学 Electric quantity consumption-based regional power grid new energy development potential evaluation method

Similar Documents

Publication Publication Date Title
KR102446458B1 (en) Cryogenic Air Separation Method to Generate High-Pressure Oxygen
US4702903A (en) Method and apparatus for gas separation and synthesis
US3349571A (en) Removal of carbon dioxide from synthesis gas using spearated products to cool external refrigeration cycle
US3098732A (en) Liquefaction and purification of low temperature gases
JPH01313301A (en) Continuous production of hydrogen and carbon dioxide
JPS62228862A (en) Recovery of argon from purge gas of ammonia plant after discharge of hydrogen utilizing combination of low-temperature separation and non-low temperature separation
US4107277A (en) Process for production of ammonia
US3815376A (en) Process and system for the production and purification of helium
CN108795508A (en) A method of detaching coke-stove gas using nitrogen and helium swell refrigeration
US2983585A (en) Preparation of liquid hydrogen
US3126266A (en) Meisler
JPH0553193B2 (en)
JP2002243360A (en) Method and facility for producing liquid hydrogen
KR880003161A (en) Gas generation process with cascade heat recovery
JPH0244572B2 (en)
CN106871576B (en) Commercial syngas low temperature front-end demethanization method and system
JPS6027602A (en) Preparation of high-purity hydrogen gas
CN109028756B (en) A method of coke-stove gas is separated using helium swell refrigeration
JPH10273301A (en) Hydrogen manufacturing equipment
US3251189A (en) Gas separation process and apparatus
SU1770277A1 (en) Method of ammonia production
US4091008A (en) Production of a gas rich in methane
US2760352A (en) Fractionation of gases
US3094402A (en) Process for the separation of air
CN114669164B (en) System and method for preparing high-purity helium from natural gas BOG