JPH0442801A - Separation of condensable gas and device therefor - Google Patents

Separation of condensable gas and device therefor

Info

Publication number
JPH0442801A
JPH0442801A JP2151185A JP15118590A JPH0442801A JP H0442801 A JPH0442801 A JP H0442801A JP 2151185 A JP2151185 A JP 2151185A JP 15118590 A JP15118590 A JP 15118590A JP H0442801 A JPH0442801 A JP H0442801A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
container
alloy
condensable gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2151185A
Other languages
Japanese (ja)
Other versions
JP2820506B2 (en
Inventor
Yoshiaki Arikawa
有川 佳明
Kouji Tokushige
得重 浩二
Maomi Kono
河野 眞臣
Hiroshi Miyamoto
博 宮本
Sadaji Nishida
西田 定二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chugoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2151185A priority Critical patent/JP2820506B2/en
Publication of JPH0442801A publication Critical patent/JPH0442801A/en
Application granted granted Critical
Publication of JP2820506B2 publication Critical patent/JP2820506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To readily condense and remove water in hydrogen and to eliminate the necessity for a dryer in hydrogen purification using a hydrogen occluding alloy by exhausting another gas concentrated in space in a container charged with an alloy and taking out hydrogen through a re-condenser. CONSTITUTION:A cooling medium is fed to a container 2 charged with hydrogen occluding alloy granules 1 and the container 2 is cooled. When crude hydrogen containing a noncondensable gas such as N2, O2 or CO2 is fed from an induction pipe 8 to the container 2, hydrogen is occluded in the alloy 1, a noncondensable gas is concentrated between alloy granules 1 and water, a condensable gas, is condensed into liquid. After hydrogen is sufficiently introduced, the noncondensable gas between the alloy granules 1 is exhausted from a piping 9 to the atmosphere. Then, a heating medium is fed to the container 2, the container 2 is heated, hydrogen in the alloy 1 is taken out, condensed water is evaporated by heating, entrained with hydrogen and released. Hydrogen is recondensed by a re-condenser 13 put in a line, condensate is removed from a piping 11 and high-purity hydrogen is taken out from a piping 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素吸蔵合金を用いた水素ガス精製システムに
適用される凝縮性ガスの分離方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a condensable gas separation method and apparatus applied to a hydrogen gas purification system using a hydrogen storage alloy.

〔従来の技術〕[Conventional technology]

水素吸蔵合金を用いた水素精製装置は近年開発の途にあ
るが、凝縮性ガス、特に水分に関しては特に着目されて
いない。特に発電機内水素ガスに関しては、全く別系統
において脱湿剤(シリカゲル、活性アルミナ等)による
水分分離が行われている。
Although hydrogen purification equipment using hydrogen storage alloys has been under development in recent years, no particular attention has been paid to condensable gases, especially moisture. In particular, regarding the hydrogen gas inside the generator, water is separated using a dehumidifying agent (silica gel, activated alumina, etc.) in a completely separate system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の方法及び装置は水素ガス中の水分を除去するに当
り、脱湿剤を充填した塔に水素ガスを通気させている。
Conventional methods and devices remove moisture from hydrogen gas by passing the hydrogen gas through a column filled with a desiccant agent.

水素ガス中の水分濃度と脱湿剤中の水分保有率の間にお
いて、平衡関係が′hす、水素ガス中の水分濃度が下が
れば、大量の脱湿剤を用いるか、再生操作を頻繁に行う
か、いずれにせよ容易ではない。他の方法及び装置は、
水素ガスを圧縮し、ガス冷却して水分を結露せしめるも
のであるが、圧縮動力を要すること、水素ガスの圧縮に
は危険を伴ない装置は高価であることなど、困難な問題
が多い。
There is an equilibrium relationship between the moisture concentration in hydrogen gas and the moisture retention rate in the dehumidifying agent.If the moisture concentration in hydrogen gas decreases, it is necessary to use a large amount of dehumidifying agent or to perform regeneration operations frequently. Either way, it's not easy. Other methods and devices include:
This method compresses hydrogen gas, cools the gas, and causes moisture to condense, but there are many difficult problems, such as the need for compression power and the fact that compressing hydrogen gas is not dangerous and the equipment is expensive.

そこで本発明では、こうした運転維持の繁雑性、コスト
高、危険性などを回避し、水素ガス中の水分を容易に取
除く方法及び装置を提供するものである。
Accordingly, the present invention provides a method and apparatus for easily removing moisture from hydrogen gas while avoiding the complexity, high cost, and danger of such operation and maintenance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、水素吸蔵合金を用いた水素の精製は
、合金を充填した容器に粗水素ガスを導びき、水素のみ
を合金に吸蔵させ他のガスを容器内空間に濃縮した後、
空間部ガスを容器外に排出し、ついで合金内に吸蔵され
ている水素のみを取出すことにより、高純度の水素を得
ようというものである。なお、合金への水素の吸蔵時に
は、発熱を伴なうので、容器及び合金を冷却し、水素の
放出時には逆に加熱する。
In the present invention, hydrogen purification using a hydrogen storage alloy involves introducing crude hydrogen gas into a container filled with the alloy, storing only hydrogen in the alloy, and concentrating other gases in the space inside the container.
The idea is to obtain high-purity hydrogen by discharging the space gas outside the container and then extracting only the hydrogen stored in the alloy. Note that when hydrogen is absorbed into the alloy, heat is generated, so the container and the alloy are cooled, and when hydrogen is released, they are heated.

こうした操作の中で、粗水素ガス中の凝縮性ガスは吸蔵
時濃縮される段階で、分圧が上がるとともに冷却するこ
とにより凝縮を起こす。
During such operations, the condensable gas in the crude hydrogen gas is condensed at the stage where it is concentrated during storage, and the partial pressure increases and the gas is cooled to cause condensation.

方、非凝縮ガスはIl!縮されたガス状態で、容易に系
外に排出される。放出時には容器及び合金は加熱される
ので、凝縮液は蒸発しながら水素とともに放出されてい
くことになる。この時、容器外、精製水素ラインにおい
て冷却すると再び凝縮性ガスは凝縮し、水素より分離さ
れる。
On the other hand, the non-condensable gas is Il! It is easily discharged from the system in a compressed gas state. Since the container and the alloy are heated during discharge, the condensate is evaporated and discharged together with the hydrogen. At this time, when it is cooled outside the container in the purified hydrogen line, the condensable gas condenses again and is separated from the hydrogen.

〔作用〕[Effect]

水素吸蔵合金を用いた水素精製システムにおいて、水素
以外のガスは合金容器内空間部に濃縮されるが、特に凝
縮性ガスは分圧の上昇と冷却により、容器内において凝
縮する。
In a hydrogen purification system using a hydrogen storage alloy, gases other than hydrogen are concentrated in the inner space of the alloy container, and in particular, condensable gases are condensed in the container due to an increase in partial pressure and cooling.

先づ、非凝縮性ガスを排出波、合金より水素を放出させ
るが、加熱により凝縮液が蒸発し、水素とともに取出さ
れる。この時、凝縮成分は大部分が、水素ガス中に飽和
の状態で、放出初期において放出される。従って、放出
水素ガスを容器外において冷却することにより、凝縮成
分を分離除去することができる。
First, the non-condensable gas is discharged and hydrogen is released from the alloy, but the condensate is evaporated by heating and taken out together with the hydrogen. At this time, most of the condensed components are saturated in hydrogen gas and are released at the initial stage of release. Therefore, by cooling the released hydrogen gas outside the container, the condensed components can be separated and removed.

即ち、粗水素ガスは、高純度水素、非凝縮性ガス及び#
縮性ガスの凝縮液の3つの区分に分離される。
That is, crude hydrogen gas includes high purity hydrogen, non-condensable gas and #
The condensate of the condensable gas is separated into three sections.

〔実施例〕〔Example〕

本発明の実施例を以下図面に従って詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

ここで、水素吸蔵合金粒1は容器2内に充填されている
。又、容器2は冷却媒体又は加熱媒体を冷却媒体人口3
、出口4、加熱媒体人口5、出口6により給排し、冷却
又は加熱できるよって行われる。
Here, hydrogen storage alloy grains 1 are filled in a container 2. In addition, the container 2 stores the cooling medium or the heating medium in the cooling medium population 3.
, an outlet 4, a heating medium 5, and an outlet 6 for supplying and discharging, and cooling or heating.

一方粗水素は、本実施例では発電機内水素ガスであり、
水素の他に窒素、酸素、二酸化炭素等の非凝縮性ガスの
他に水分を凝縮性ガスとして含んでいる。温度常温、圧
力4 atmである。
On the other hand, in this example, the crude hydrogen is hydrogen gas inside the generator,
In addition to hydrogen, it contains non-condensable gases such as nitrogen, oxygen, and carbon dioxide, as well as moisture as condensable gases. The temperature was room temperature and the pressure was 4 atm.

水素導入弁8を開け、粗水素を冷却されている容器に導
入すると合金1に水素が吸蔵され合金粒間に他のガスが
濃縮されてくるが、凝縮性ガスである水分は凝縮して液
状となる。十分に水素を導入した後切換弁12aを閉じ
、切換弁129を開けて合金粒間の非凝縮性ガスを非凝
縮ガス排出配管9より大気に排出する。ついで、切換弁
12bを閉じ、容器を加熱に切換えて、切換弁1’2c
を開けて合金内の水素を取出すが。
When the hydrogen introduction valve 8 is opened and crude hydrogen is introduced into the cooled container, hydrogen is stored in the alloy 1 and other gases are concentrated between the alloy particles, but water, which is a condensable gas, condenses and becomes liquid. becomes. After sufficient hydrogen has been introduced, the switching valve 12a is closed, the switching valve 129 is opened, and the non-condensable gas between the alloy grains is discharged to the atmosphere from the non-condensable gas discharge pipe 9. Next, the switching valve 12b is closed, the container is switched to heating, and the switching valve 1'2c is closed.
Open it and take out the hydrogen inside the alloy.

凝縮している水分は加熱により蒸発し、水素に同伴して
出てくるので、このラインに再凝縮器13を入れて再凝
縮させ、凝縮液取出配管11より凝縮液として取出し、
精製水素取出配管1゜からは高純度の水素を取出して、
発電機に戻す。
The condensed water evaporates due to heating and comes out together with hydrogen, so a re-condenser 13 is inserted into this line to re-condense it, and it is taken out as a condensate from the condensate extraction pipe 11.
High purity hydrogen is extracted from the purified hydrogen extraction pipe 1°,
Return to generator.

なお14は冷却媒体配管である。Note that 14 is a cooling medium pipe.

本システムにおいて使用した水素吸蔵合金はミツシュメ
タルニッケル系のものであり、合金容器の冷却温度30
℃において、平衡水素圧1atm 、加熱温度80℃に
おいて6 atmである。
The hydrogen storage alloy used in this system is Mitshu Metal Nickel based, and the cooling temperature of the alloy container is 30°C.
℃, the equilibrium hydrogen pressure is 1 atm, and the heating temperature is 6 atm at 80℃.

一方、再凝縮器における冷却温度は5℃である。On the other hand, the cooling temperature in the recondenser is 5°C.

導入する水素純度は99,9%(dry)であり、水分
は1. OOOppm程度である。容器内において非凝
縮性ガスの濃縮倍率は100倍であり、水分は100.
OOOppmに達し、その大部分は凝縮する。放出温度
80℃において、水素放出初期には飽和状態の水分を同
伴し、水分濃度は極めて高い(数十優に達する)。これ
を再凝縮器13において5℃に冷却すると水分濃度は1
チ以下となり、その差分が凝縮する。放出稜期には、放
出水素中の水分はほとんどなくなるので、再凝縮器13
を通す必要はない。
The hydrogen purity introduced is 99.9% (dry), and the water content is 1. It is about OOppm. The concentration ratio of non-condensable gas in the container is 100 times, and the concentration ratio of water is 100 times.
OOppm, most of which is condensed. At a release temperature of 80° C., saturated water is accompanied at the beginning of hydrogen release, and the water concentration is extremely high (reaching well over several dozen). When this is cooled to 5°C in the recondenser 13, the water concentration becomes 1
The difference is condensed. During the release ridge stage, the water in the released hydrogen is almost gone, so the recondenser 13
There is no need to go through it.

この方法で、粗水素ガスから、精製水素ガス、非凝縮性
ガス及び凝縮水を分離した場合の収支を次に示す。
The balance when purified hydrogen gas, non-condensable gas, and condensed water are separated from crude hydrogen gas using this method is shown below.

■導入ガス 水素       99,9 非凝縮ガス     01 凝縮ガス(水)   0.1 ■分離ガス 水素        0.9 非凝縮ガス     0.09 凝縮ガス      0.01 ■精製ガス 水素       990 非凝縮ガス     0.01 凝縮ガス      0.02 ■凝縮液 凝縮ガス      0.07 以上のように凝縮性ガスの分離を極めて容易に行いうる
■Introduced gas hydrogen 99.9 Non-condensable gas 01 Condensed gas (water) 0.1 ■Separated gas hydrogen 0.9 Non-condensable gas 0.09 Condensed gas 0.01 ■Purified gas hydrogen 990 Non-condensable gas 0.01 Condensed gas 0.02 (1) Condensate liquid Condensed gas 0.07 As described above, condensable gas can be separated extremely easily.

〔発明の効果〕〔Effect of the invention〕

本発明においては、水素の純度を上げることにより発電
効率を上げることができるが、水素ガスに含まれる凝縮
性ガスを水素吸蔵合金容器内で濃縮さらには凝縮きせる
ことにより、精製水素側の凝縮ガス分圧を高めることが
でき、冷却等により容易に分離できるという方法は、極
めて有用である。
In the present invention, power generation efficiency can be increased by increasing the purity of hydrogen, but by concentrating and further condensing the condensable gas contained in the hydrogen gas in the hydrogen storage alloy container, the condensed gas on the purified hydrogen side A method that can increase the partial pressure and easily separate by cooling or the like is extremely useful.

例えば、現状の発電機には、ガス乾燥機を設置し、水分
を除去しているが、本発明によれば容易に水分を凝縮除
去できるので、乾燥機は不用となる。
For example, current generators are equipped with a gas dryer to remove moisture, but according to the present invention, moisture can be easily condensed and removed, making the dryer unnecessary.

又、単にガスを冷却しただけでは凝縮は起らず、−旦水
素吸蔵合金容器内で濃縮、凝縮させることにより、水分
濃度の高い状態で冷却することができるため、精製水素
ラインで凝縮除去できる。
In addition, simply cooling the gas does not cause condensation; by first condensing and condensing the gas in a hydrogen-absorbing alloy container, it can be cooled in a state with a high moisture concentration, so it can be condensed and removed in the purified hydrogen line. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示す系統図である。 1・・・水素吸蔵合金、2・・・容器、8・・・粗水素
導入配管、9・・・非凝縮性ガス排出配管、10・・・
精製水素取出配管、11・・・凝縮液取出配管、13・
・・再凝縮器。 代理入 石 川  新
The drawing is a system diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Hydrogen storage alloy, 2... Container, 8... Crude hydrogen introduction piping, 9... Non-condensable gas discharge piping, 10...
Purified hydrogen extraction piping, 11... Condensate extraction piping, 13.
...Recondenser. Substitute Arata Ishikawa

Claims (2)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を用いた水素精製システムにおいて
、内部に水素吸蔵合金を収納し、冷却及び加熱手段を備
えた水素精製容器を冷却しつつ粗水素ガスを導入し、同
粗水素ガス中の水素を水素吸蔵合金に吸蔵させると共に
同粗水素ガス中の不純物ガスの濃縮と凝縮性ガスの凝縮
を行なった後、濃縮された不純物ガスを前記水素精製容
器から排出し、次いで、前記水素精製容器を加熱しつつ
水素吸蔵合金から水素を放出させると同時に凝縮された
凝縮性ガスを水素中に気化同伴させ前記水素精製容器外
の再凝縮器に導入し、再度冷却して凝縮性ガスを凝縮液
として系外に排出することを特徴とする凝縮性ガスの分
離方法。
(1) In a hydrogen purification system using a hydrogen storage alloy, crude hydrogen gas is introduced while cooling a hydrogen purification container that houses a hydrogen storage alloy and is equipped with cooling and heating means, and After storing hydrogen in the hydrogen storage alloy, concentrating the impurity gas in the crude hydrogen gas, and condensing the condensable gas, the concentrated impurity gas is discharged from the hydrogen purification vessel, and then the hydrogen purification vessel At the same time, the condensed gas is vaporized and entrained in the hydrogen and introduced into the recondenser outside the hydrogen purification vessel, and cooled again to convert the condensable gas into a condensate liquid. A method for separating condensable gas, which is characterized by discharging it out of the system as a condensable gas.
(2)水素吸蔵合金を用いた水素精製システムにおいて
、内部に水素吸蔵合金を収納し、冷却及び加熱手段を備
えた水素精製容器と同容器と水素供給対象装置との間に
内部を冷却する手段を有した再凝縮器と、同再凝縮器に
接続した凝縮液取出配管と、前記水素精製容器に接続し
た非凝縮ガス排出配管とを備えたことを特徴とする凝縮
性ガスの分離装置。
(2) In a hydrogen purification system using a hydrogen storage alloy, a hydrogen purification container containing the hydrogen storage alloy and equipped with cooling and heating means, and means for cooling the inside between the container and the hydrogen supply target device. 1. A condensable gas separation device comprising: a recondenser having a recondenser; a condensate extraction pipe connected to the recondenser; and a non-condensable gas exhaust pipe connected to the hydrogen purification container.
JP2151185A 1990-06-08 1990-06-08 Method and apparatus for separating condensable gas Expired - Lifetime JP2820506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151185A JP2820506B2 (en) 1990-06-08 1990-06-08 Method and apparatus for separating condensable gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151185A JP2820506B2 (en) 1990-06-08 1990-06-08 Method and apparatus for separating condensable gas

Publications (2)

Publication Number Publication Date
JPH0442801A true JPH0442801A (en) 1992-02-13
JP2820506B2 JP2820506B2 (en) 1998-11-05

Family

ID=15513142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151185A Expired - Lifetime JP2820506B2 (en) 1990-06-08 1990-06-08 Method and apparatus for separating condensable gas

Country Status (1)

Country Link
JP (1) JP2820506B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027602A (en) * 1983-07-19 1985-02-12 Daido Steel Co Ltd Preparation of high-purity hydrogen gas
JPH01126203A (en) * 1987-11-10 1989-05-18 Tokyo Gas Co Ltd Production of high-purity gaseous hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027602A (en) * 1983-07-19 1985-02-12 Daido Steel Co Ltd Preparation of high-purity hydrogen gas
JPH01126203A (en) * 1987-11-10 1989-05-18 Tokyo Gas Co Ltd Production of high-purity gaseous hydrogen

Also Published As

Publication number Publication date
JP2820506B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US4270938A (en) Processes for decontaminating nuclear process off-gas streams
US11650010B2 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
JP4033591B2 (en) SF6 gas recovery device
US3126266A (en) Meisler
JPH09285719A (en) Gaseous sulfur hexafluoride recovering and regenerating device and mobile recovering and regenerating device
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP2003001061A (en) Method of concentrating carbon dioxide in combustion gas
JPH0442801A (en) Separation of condensable gas and device therefor
JPH08152262A (en) Circulating and adsorbing apparatus for rare gas separating process
JP2001232134A (en) Method and device for neon recovering
JP3719919B2 (en) Sulfur hexafluoride gas purification equipment
JP4033593B2 (en) SF6 gas recovery device
JPH03135410A (en) Pressure swing method for separating and recovering volatile organic matter
JP4491118B2 (en) How to extract ozone
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JP3256811B2 (en) Method for purifying krypton and xenon
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH08337402A (en) Device for removing impurity from gaseous hydrogen and its operating method
JPH06107402A (en) Helium refiner
JP3385410B2 (en) Noble gas purification method and apparatus
JPH09290147A (en) Insulating medium recovering apparatus of electric apparatus
JPH06109361A (en) Device and method for separating high purity argon
JP2856892B2 (en) Vacuum evacuation system for fusion reactor and its cryopump
US1395389A (en) Georges claude
JPH01290512A (en) Method for recovering xenon from waste gas containing xenon

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12

EXPY Cancellation because of completion of term